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CM2A A2022–2 

1 A fund earns an annual rate of return it, with the rate of return in any year being 
independent of the rate in any other year. The distribution of log(1 + it) is normal with 
parameters µ and σ2.  

The mean of it is 5% and the standard deviation is 3%.  

(i) Calculate µ and σ2. [3] 

(ii) Calculate the probability that the fund return for any year is between 1% and 
3%.  [3] 

(iii) Comment on your answer to part (ii). [1] 

A sum of £10,000 is invested into the fund. 

(iv) Calculate the probability that the accumulated value of the fund at the end of  
3 years is less than £11,000.  [2] 

  [Total 9] 
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2 (i) Define the term ‘loss ratio’ as used in the Bornhuetter–Ferguson method for 
estimating outstanding claim amounts. [1] 

The run-off triangle below shows cumulative claims incurred on a portfolio of 
insurance policies. 

Accident year 

Development year 

0 1 2 

    

2017 864 1,011 1,072 

2018 798 915 

2019 820 
 

Annual premiums written for accident year 2019 were 1,520 and the ultimate loss 
ratio is assumed to be 92.5%. Claims can be assumed to be fully run off by the end of 
development year 2. 

(ii) Calculate the total claims arising from accidents in 2019, using the 
Bornhuetter–Ferguson method. [5] 

1 year later, an unexpected event has resulted in higher claims than expected. The  
run-off triangle is now as shown below. 

Accident year 

Development year 

0 1 2 

    

2018 798 915 1,320 

2019 820 1,412 

2020 1,016   
 

(iii) Calculate the revised total claims arising from accidents in 2019, using the 
Bornhuetter–Ferguson method. [3] 

(iv) Discuss the implications of your answer to part (iii) for the insurance 
company. [3] 

  [Total 12] 
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3 Consider a share, St, and a derivative on the share with a value at time t of f(t, St). 

(i) Define, in your own words, what is represented by each of the following 
Greeks for this derivative: 

(a) Delta 

(b) Gamma 

(c) Vega. 
  [3] 

Consider another share, At, which pays no dividends. The continuously compounded 
risk-free rate is r. Let K be the fair price at time 0 of a forward contract on At 
maturing at time T. 

(ii) State the formula for K. [1] 

Under the risk-neutral measure, Q, the share is expected to grow at the risk-free rate. 

(iii) Demonstrate that the expected present value of the forward contract at time t 
(0 ≤ t ≤ T) under the measure Q is At – e –r(T  – t) K. [2] 

(iv) Calculate Delta, Gamma and Vega for the forward contract. [2] 

(v) Comment on how the Greeks for the forward contract in part (iv) compare to 
the same Greeks for the underlying share.  [2] 

(vi) Discuss whether it would be appropriate to use a forward contract to Delta 
hedge a European call option on the share. [3] 

  [Total 13] 
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4 Suppose that under the unique equivalent measure martingale measure, Q, for a term 
structure model, the Stochastic Differential Equation satisfied by the instantaneous 
interest rate r is:  

 drt = αሺμ – rtሻdt + σdZt 

where α > 0, μ and σ are fixed parameters and under Q, Z is a standard Brownian 
Motion. 

The process X is defined by: 

Xt = rtbሺT – tሻ + න rs

t

0

ds 

where the function b is given by b(s) =  (1 – e–αs)

α
. 

The function f is given by fሺx, tሻ = expሺaሺT – tሻ – xሻ, where a is a differentiable 
function. 

(i) Apply Ito’s formula to f(Xt, t). [6] 

[Hint: You may use, without proof, the fact that dXt = Atdt + BtdZt where  
At = αμb(T – t), and Bt = σb(T – t).] 

(ii) Find a differential equation that the function a must satisfy, in order for  
f(Xt, t) to be a martingale. [2] 

(iii) Determine an additional condition on a that is necessary for a bond with unit 
payoff at time T to have a price given by the formula: 

 Bሺt, Tሻ = fሺXt, tሻexp ൫׬ rsds
t

0
൯  [5] 

  [Total 13] 
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5 An insurance company holds a large amount of capital and wishes to distribute some 
to policyholders using one of two possible options. 

Option A 

A sum of £500 will be invested for each policyholder in a fund in which the expected 
annual effective rate of return is 3.5% and the standard deviation of annual returns is 
2%. The annual rates of return are independent and (1 + it) is log-normally distributed 
with parameters μ and σ2, where it is the rate of return in year t. The policyholder will 
receive the accumulated investment at the end of 15 years. 

Option B 

A sum of £500 will be invested for each policyholder for 10 years at a fixed rate of 
return of 4% p.a. effective. After 10 years, the accumulated sum will be invested for a 
further 5 years at the prevailing 5-year spot rate. This spot rate follows the probability 
density function shown below: 

Spot rate 
(% p.a.) 

Probability 

0.5 0.15 

1.0 0.25 

4.5 0.40 

7.0 0.20 

 
The policyholder will receive the accumulated investment at the end of the 15 years. 

(i) Demonstrate that μ = 0.0342 and σ = 0.0193. [4] 

(ii) Calculate the expected value and standard deviation at the end of year 15 of: 

(a) Option A. 

(b) Option B. 
  [12] 

(iii) Determine, for each of Options A and B, the probability that a policyholder’s 
accumulated investment at the end of the 15 years will be less than £775. [5] 

(iv) Compare the relative risk of the two options. [2] 
  [Total 23] 
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6 Consider a share with price S0 at time t = 0. The share will pay out a dividend of X at 
time t = 1 and again at time t = 2. The continuously compounded risk-free rate is r per 
unit of time.  

Assume that the dividend payments are reinvested at the risk-free rate. 

(i) Demonstrate that the fair price of a forward contract on St maturing at time 
T > 2 is K = ሺS0 – IሻerT, where I is the present value of the two dividends. [4] 

A share is worth $100 at time t = 0. It will pay a dividend of $5 at time t = 1 and again 
at time t = 2. The continuously compounded risk-free rate is 5% per unit of time. 

(ii) Calculate the fair price of a forward contract on the share maturing at time  
T = 3. [2] 

An investor takes a long position in the forward contract in part (ii) at time t = 0.  
Immediately afterwards, the proposed dividends on the underlying share are 
cancelled. 

(iii) Discuss the implications of this for the investor. [2] 
  [Total 8] 

7 An investor makes decisions based on the utility function Uሺwሻ = w – 6w2, where w is 
the investor’s wealth in millions of dollars ($m). 

(i) Demonstrate that the investor has both increasing absolute and relative risk 
aversion. [3] 

The investor has $50,000 to invest over a 1-year period and has no other wealth. They 
have three options: 

A Invest in a risk-free account. There will be no change in the value of the 
investment over 1 year. 

B Invest in an asset that will give a 60% return over 1 year with probability 0.2, 
a 20% return with probability 0.7 and a –40% return with probability 0.1. 

C Invest in an asset that will give a 30% return with probability 0.5 and a 20% 
return with probability 0.5. 

The investor makes no allowance for discounting when making investment decisions. 
The investor must invest the whole $50,000 in a single option. 

(ii) Determine which option the investor should choose to maximise their 
expected utility at the end of the year. [5] 

(iii) Comment on why the investor could not use U(w) to choose from the above 
options if their initial wealth was $65,000. [2] 

  [Total 10] 
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8 Consider a company funded entirely by debt and equity. The total value of the 
company’s assets is $40 million. It has debt with a current outstanding amount of  
$20 million, with a continuously compounded interest rate of 8% p.a. and maturity in 
7 years. Interest is added to the outstanding debt to be paid at maturity. 

The volatility of the company’s total assets is 10% p.a. The continuously compounded 
risk-free rate of interest is 2% p.a. 

(i) Calculate the outstanding value of the debt, with interest, at maturity. [1] 

(ii) Calculate the current value of the company’s equity using the Merton model.
 [5] 

(iii) Calculate the implied probability that the company will have sufficient assets 
to repay the debt at maturity. [1] 

(iv) Demonstrate that the implied value of the company’s debt is $29.7 million to 
the nearest $0.1 million (where the total value of the company is the value of 
the equity plus the value of the debt). [1] 

(v) Explain why your answers to parts (i) and (iv) are different. [2] 

An analyst wishes to set up a two-state credit model for the company. The two states 
will be denoted ‘solvent’ and ‘default’ with a constant transition intensity, λ, from 
solvent to default. 

(vi) Calculate the value of λ that gives the same probability of default at maturity 
of the debt as calculated in part (iii). [2] 

  [Total 12] 

END OF PAPER 


