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For actuaries, the availability of a complex and very predictive 
modelling tool that is also difficult to interpret and to 
communicate is a great opportunity, strange though it may seem. 
Actuaries are able to understand what is going on ‘inside’, but we 
are also able to assess the output from a practical perspective: 
Do the results make sense? Can I use these results in my pricing 
or reserving models? What could go wrong? How can I best 
communicate the method, and its strengths and limitations?

Machine learning, or data science more generally, offers the 
actuarial profession the best of both worlds – a powerful suite of 
models and methodologies, along with the opportunity to ‘add 
value’ to the work of non-actuarial data scientists through many 
of these practical points. 

We hope you find this machine learning issue of the Longevity 
Bulletin interesting, and that it illustrates how actuaries can use 
these, still relatively novel, techniques for the ultimate benefit of 
our insurance and pension fund stakeholders. 

Matthew Edwards 
Editor

Introduction by the Editor

The calculation of an actuarial value, whether in the context 
of pricing or reserving, generally requires the most accurate 
possible assumption regarding the contingent event in 
question: for most life and pensions actuaries that will be the 
event of death or, conversely, survival. The accuracy of the 
assumption depends in large part on correctly identifying and 
quantifying the mortality-related characteristics of the life in 
question. 

Traditionally, age and sex have been the two key factors,  
with the concept of ‘wealth implies health’ allowed for implicitly 
via an appropriate amounts weighting of the analysis. But 
the heterogeneity remaining after allowing for those primary 
factors can be considerable, causing problems for pricing  
and reserving.

Driven largely by competitive pressures, along with the 
example already seen in retail non-life pricing which had been 
quick to spot the benefits of multi-factor analytical methods, 
life actuaries started to test the applicability of these models 
to mortality in the mid-2000s. The use of generalised linear 
models (GLMs) and survival models on annuity portfolios 
allowed retail annuity providers to introduce postcode into their 
pricing bases as a highly predictive proxy for socio-economic 
status. Insurers with richer data were able to use such methods 
to develop more predictive underwriting models using 
additional factors such as BMI, smoking status and medical 
history, if available. 

At around the same time, the rise of the bulk purchase annuity 
market led to the requirement to be able to rate the mortality 
of small pension schemes lacking credible experience; this need 
was solved by the development of postcode-rating engines, 
calibrated from GLM analyses of large multi-scheme datasets.

By the mid-2010s, UK life insurers and pension consultancies, 
and some non-UK multinationals, took such progress for 
granted and started to think of the next steps. Machine learning 
offered a natural progression, given the machine learning 
successes seen in many other fields.

Over the last five or so years, machine learning has been 
tried in many life insurance contexts. The predictive boost of 
machine learning can be valuable, but this extra predictiveness 
is not ‘free’. To be able to function well, machine learning 
generally requires very large data volumes. But the main 
disadvantage of machine learning is the reduction in 
transparency and communicability compared with GLMs  
or survival models. 



4

Foreword by the President 
of the IFoA

While it’s a truism that we operate in a 
constantly changing world, with each 
year bringing fresh challenges, many of 
these changes can actually be positive. 

Actuaries, and the actuarial profession, seek to overcome fresh 
obstacles and new problems using the most recent ‘tools’ – 
whether those tools be methodologies, computer resources, 
new datasets, or anything else. 

The rise of data science is a great example of how those  
three aspects have grown in parallel to some extent in recent 
years. That ‘parallel’ growth is not of course a coincidence,  
as each has fed off, and indeed fed, the others: more powerful 
computers and richer data allow us to try potentially more 
powerful methods.

The analytic opportunities of data science in general, and 
machine learning in particular, have not been wasted on 
actuaries. As we see in the articles in this issue, even within just 
the confines of mortality and longevity there are plenty of ways 
we can deepen our understanding of mortality risk through the 
deployment of these techniques. 

The Institute and Faculty of Actuaries has moved accordingly, 
and since 2020 our Certificate in Data Science has provided 
IFoA members with an introduction to data science. In the 
three years the course has run so far, over 500 members 
have successfully passed and been awarded the Certificate. 
In addition, aspects of data science have been added to the 
IFoA’s Fellowship exams, such as the introduction of practical 
papers in R for our Core Statistics (CS) subjects, and a module 
on machine learning in CS2. Some data-science related 
content has also been added to our later practice-area-specific 
specialist exams. 

The IFoA intends to add further data-science related content 
to its Fellowship examinations in the future, including a specific 
data science route to Fellowship, with a greater emphasis on 
the practical application of data science skills. This is a powerful 
example of actuaries adapting so as to take advantage of new 
fields and techniques. With data science, we are not seeking to 
replace data scientists, but to ensure we can fully understand 
the various nuances of the subject in order to add value. 

We can apply our understanding of aspects such as model risk 
and trend projection, or practical points such as an appreciation 
of how best to use the results and communicate the method, 
while also allowing data scientists the space to flourish.

Although ChatGPT is the main topic of conversation in tech 
and innovation forums this year, there is still some way to go 
before actuaries can claim to have exhausted the possibilities 
of machine learning. No doubt ChatGPT and equivalent AI 
systems can advise us on what stones we have left unturned!

My thanks to the authors and editors of these articles for  
this valuable edition of the Longevity Bulletin. In an ever-
changing world, it’s great to see a clear statement of some  
of the positive changes!

Matt Saker 
President of the Institute and Faculty of Actuaries



Multivariable mortality 
modelling, survival analysis, 
and machine learning

John Ng, Director, Longevity Analytics at RGA
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The modelling and management of mortality and longevity 
risks are essential for insurers, reinsurers, pension funds,  
banks and government agencies. More advanced models can 
yield a more accurate mortality estimation that can assist 
pricing, reserving, underwriting, solvency and profitability.  
In addition, a rich and robust modelling methodology provides 
a more comprehensive understanding of mortality risks. This is 
important for fostering design innovations for annuities, equity 
release, and protection products, as well as supporting the role 
insurers and pension funds play in financing longevity risks.

In this article I set out an overview of mortality modelling using 
survival analysis techniques, a discussion of machine learning 
methods, extensions to the generalised linear models (GLM), 
and some examples of applying these models. The focus will be 
on the use of individual-level data in models that incorporate a 
multitude of risk factors, rather than group-level or population-
level data. 

1. Mortality modelling and survival analysis

Traditionally, actuaries and demographers made extensive use 
of mortality rates, ie the probability of a group of similar lives 
dying in one year. In more recent times, mortality modelling has 
advanced considerably, with model development employing a 
statistical framework capable of statistical tests and confidence 
intervals. At the same time, there has been a significant 
increase in the volume, veracity, velocity and variety of data 
available for analysis, which encompasses policyholder data, 
demography, postcodes, electronic health records, lifestyle  
and credit scores. 

As insurers and pension schemes collect experience data on 
individual policyholders, this is essentially a form of longitudinal 
study because the individuals are observed for a period of time 
until a particular event of interest occurs (known as time-to-
event or survival time). The main challenge of time-to-event 
data is the presence of incomplete observations. This occurs 
due to censoring, ie when a death event happens outside of the 
observation period. For this reason, many classical statistical 
models and machine learning methods could not transpose 
directly to time-to-event data. 

Modelling time-to-event data requires a specific approach 
called survival analysis. It is used to predict the target variable 
of survival time until mortality, while accounting for censoring, 
and the presence of explanatory variables that may affect 
survival time (Rodríguez, 2007). 

Survival analysis is a very useful tool in evaluating risks such as 
mortality, longevity, morbidity, lapses, and demographic factors 
(eg marriage, migration and fertility). As the name indicates, 
survival analysis has origins in the field of medical research to 
estimate the survival rate of patients after a medical treatment. 
It is also known as reliability analysis in engineering, duration 
analysis in economics, and event history analysis in sociology 
(Abbas et al., 2019). 

Figure 1 shows a taxonomy of survival analysis models, which 
provides a holistic view of statistical and machine learning 
methods, categorised by continuous-time and discrete-time 
approaches (with separate charts for each). 
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1.1  Continuous-time survival analysis

Survival analysis theory focuses on two key concepts in 
continuous time: 

a.  the survival function S(t), ie the probability of being alive 
just before duration t

b. the hazard function h(t), ie the instantaneous death rate at 
time t, also known as the force of mortality by actuaries 

There is a one-to-one relationship between the hazard function 
and the survival function. Whatever functional form is chosen 
for the hazard function, one could use it to derive the survival 
function. The integral of the survival function then gives the 
expectation of life, ie mean of survival time (Rodríguez, 2007).

1.1.1  Non-parametric models

 The non-parametric methods are simple and require no 
assumptions on distributions. The Kaplan-Meier estimator, 
also known as the product limit estimator, provides an 
empirical estimate of the survival function. The Nelson-
Aalen estimator approximates the cumulative hazard 
function. As the sample size gets very large, these two 
estimators are asymptotically equivalent (Jenkins, 2005). 
Kaplan-Meier and Nelson-Aalen are univariable methods 
and likely to be less predictive; therefore, considering 
multivariable methods is recommended if multiple 
explanatory variables are available. 

1.1.2 Semi-parametric models

 In the semi-parametric category, the Cox proportional 
hazard model was proposed by Cox (1972) in perhaps the 
most often cited article on su rvival analysis. The hallmark 
of the Cox model is that it allows one to estimate the 
relationship between the hazard function and explanatory 
variables, without having to make any assumption on the 
baseline hazard function. Proportional hazards modelling 
assumes that the ratio of the hazards for any two 
individuals is constant over time. The fact that the hazards 
are proportional is helpful in making interpretations, such 
as when identifying the better treatment in medical trials 
or analysing loadings of risk factors in underwriting. The 
Cox model can also be generalised to handle time-varying 
covariates and time-dependent effects (Rodríguez, 2007).

 The Piecewise-Constant Exponential (PCE) model is 
another example of semi-parametric continuous-time 
model and can be seen as a special type of proportional 
hazards model (Jenkins, 2005). When the time axis is 
partitioned into a number of intervals in a PCE model, 
it assumes that the baseline hazard is constant within 
each interval. The advantage is that one does not have 
to impose the overall shape of the hazard function in 
advance. Another useful property of the PCE model is its 
equivalence to a certain Poisson GLM model; this will be 
discussed later.
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1.1.3 Parametric models

 Parametric statistical methods assume that survival time 
follows a particular theoretical distribution (Wang et al., 
2019). Commonly used distributions include exponential, 
Weibull, Normal, Gamma, log-logistic, log-normal and 
Gompertz (Jenkins, 2005). If the survival time follows the 
assumed distribution, resulting outcomes are accurate, 
efficient and easy to interpret, but if the assumption is 
violated parametric models can give sub-optimal results. 

 Another approach in the parametric category is the 
accelerated failure time (AFT) model. AFT assumes a 
linear relationship between the log of survival time and 
the explanatory variables. The effect of variables is to 
accelerate or decelerate the life course. The Weibull model 
is the only model that satisfies both proportional hazards 
and AFT assumptions (Rodríguez, 2007).

1.1.4 Other continuous-time models

 As discussed in Bayesian Survival Analysis (Ibrahim et al., 
2001), Bayesian approaches can be applied to survival 
models, including parametric, proportional and non-
proportional models. Interpretability is a strength of 
Bayesian modelling. 

 Other examples of survival models include machine 
learning methods, which will be discussed in Section 2,  
as well as competing-risk and multi-state models  
(Jenkins, 2005).

1.2 Discrete-time survival analysis

The survival analysis techniques discussed in the previous 
section assume continuous measurement of time. Although it 
is natural to consider time as a continuous variable, in practice 
observations are often on a discrete time scale, such as days, 
months or years (Jenkins, 2007). An advantage of discrete-time 
modelling is the embedding of the GLM framework.

Interestingly, the PCE model is equivalent to a GLM Poisson 
log-linear model for discretised pseudo-data, when the death 
indicator is the response and the log of exposure times is the 
offset (Rodríguez, 2007). The likelihood function of PCE and 
independent Poisson observations happen to coincide and 
would therefore lead to the same estimates. 

Generally, the choice of GLM for survival analysis depends on 
the nature of data (Rodríguez, 2007):

i.  If data is continuous and if one is willing to assume hazard 
is constant in each interval, the Poisson GLM is appropriate 
as it allows use of partial exposures

ii.  If data is truly discrete, logistic regression is recommended

iii.  If data is continuous but only observed in grouped form,  
the complementary log-log link is preferable. 



2. Machine learning models for survival analysis

In recent years, machine learning models have achieved 
success in many areas. This is due to built-in strengths that 
include higher prediction accuracy, ability to model non-linear 
relationships, and less dependence on distribution assumptions. 
Nevertheless, some machine learning algorithms bring notable 
weaknesses as well, such as difficulty in interpretation, 
sensitivity to hyperparameters, and a tendency to overfit. 
Dealing with censored data presents the biggest challenge 
for using machine learning in survival analysis. A deeper 
understanding of survival analysis, and how machine learning 
can overcome the challenge of censored data, is required in 
order to effectively adapt it to mortality modelling.

The discussion below starts with regularisation – a versatile 
machine learning technique applicable to many approaches, 
including GLM and classical survival models. The total range 
of machine learning models is vast; therefore, I look just at 
continuous-time models and deliberately exclude some notable 
discrete-time approaches, for instance support vector machines 
and random forest. Discrete-time supervised machine learning 
models are discussed in Modelling Discrete Time to Event Data 
(Tutz and Schmid, 2018), while extensions of GLM are discussed 
in Section 3. 

2.1  Regularisation

Regularisation is a technique used to simplify a model and 
reduce overfitting by adding penalties or constraints to the 
model-fitting problem. The three main types of regularisation 
are:

i.  Ridge, also known as Tikhonov or L2 regularisation, adds  
a penalty term based on the squared value of coefficients.  
It reduces the size of coefficients and deals with 
correlations between features simultaneously.

ii.  Lasso (least absolute shrinkage and selection operator), 
also known as L1 regularisation, adds a penalty term based 
on the absolute value of coefficients. In contrast to Ridge, 
Lasso can shrink coefficients to zero, which means it can 
perform automatic variable selection. Extensions of Lasso 
include Group Lasso, Fused Lasso, Adaptive Lasso and  
Prior Lasso.

iii.  Elastic net linearly combines the Ridge and Lasso  
penalty terms. 
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2.2 Cox models

Introducing regularisation into Cox proportional hazard models 
provides us with a form of machine learning – the resulting 
models include Ridge-Cox (Verweji and Van Houwelingen, 
1994), Lasso-Cox (Tibshirani, 1997), and Elastic Net-Cox (Simon 
et al., 2011). 

The Cox-Boost method (Binder and Schumacher, 2008) 
incorporates gradient boosting machines in Cox models. 
It is useful on high-dimensional data and considers some 
mandatory variables explicitly in the model.

2.3 Survival tree 

Survival trees are classification and regression trees (CART) 
specifically designed to handle censored data (Gordon and 
Olshen, 1985). The data is recursively partitioned based on a 
splitting criterion and objects with similar survival times are 
grouped together. This approach is easier to interpret and does 
not rely on distribution assumptions. 

2.4 Random survival forest and other ensemble methods

In machine learning, ensemble learning is a method that 
takes a weighted vote from multiple models to obtain better 
predictive performance than could be obtained from any of the 
constituent models alone. Common types of ensembles include 
bagging, boosting and stacking. 

Bagging survival trees involves taking a number of bootstrap 
samples from the survival data, building a survival tree for 
each sample, and then averaging the tree nodes’ predictions 
(Hothorn et al., 2004). 

Random survival forest is similar to bagging, but random forest 
uses only a random subset of the features for selection at each 
tree node. This helps reduce the correlation between trees and 
improves predictions. Random survival forest does not depend 
on distribution assumptions and can be used to avoid the 
proportional hazards constraint of a Cox model (Ishwaran et al., 
2008).

Boosting combines a set of simple models into a weighted sum 
and is iteratively fitted to the residuals based on the gradient 
descent algorithm. Hothorn et al. (2006) proposed gradient 
boosting to account for censored data. 

Stacking combines the output of multiple survival models and 
runs it through another model. Wey et al. (2015) proposed 
a framework of stacked survival models that combines 
parametric, semi-parametric and non-parametric survival 
models. This approach has performed well by adaptively 
balancing the strengths and weaknesses of individual  
survival models.



2.5 Artificial neural networks

Artificial neural networks (ANN) consist of layers of neurons 
interconnected as a network to solve optimisation problems. 
The adjective ‘deep’ in deep learning refers to the use of 
multiple layers in the network. Neural networks and survival 
forests are examples of non-linear survival methods.

The initial adaptation of survival analysis to neural networks 
sought to generalise Cox with only one single hidden layer 
(Farragi and Simon, 1995). Katzman et al. (2018) later proposed 
DeepSurv, a deep feed-forward neural network generalising  
the Cox proportional hazards model. It has the advantage  
of not requiring a priori selection of covariates, by learning 
them adaptively.

DeepHit is a deep neural network that learns the distribution 
of survival times directly (Lee et al., 2018). Unlike parametric 
approaches, it makes no assumption of the underlying 
stochastic processes and allows for the relationship between 
covariates and risk to change over time. DeepHit can be used 
for survival datasets with a single mortality risk as well as 
multiple competing risks.

3. Extensions and enhancements of GLM

GLM is a popular tool in survival analysis due to its versatility, 
interpretability, predictive power and availability in many 
software packages. Section 1 demonstrated that GLM Poisson, 
Logistic and C-Log-Log models can perform survival analysis. 
However, GLMs elicit two common negative views: they 
are restricted by distribution assumption, and they do not 
account for non-linear relationships, which reduces predictive 
performance. 

The first view is refutable because, as discussed in Section 1,  
a GLM is merely a device to derive the underlying survival 
model, so the model is not restricted by distribution 
assumptions of GLM. 

The second issue can be mitigated using approaches such 
as these to extend or enhance GLM. Note that these are not 
restricted to survival analysis and can be applied to GLMs 
in general. Some practitioners would view these as ways to 
combine the advantages of GLMs (for instance, interpretability) 
with the power of machine learning:

1.  Generalised additive model (GAM): GAM is a GLM in which 
one or more of the predictors depends linearly on some 
smooth functions, which is useful to capture non-linear 
patterns. Examples of smooth functions are cubic splines 
and fractional polynomials. This approach allows much  
more flexible models.

2.  Generalised linear mixed model (GLMM) – The GLMM 
extends the GLM by incorporating random effect terms. 
GLMMs are also referred to as frailty models (Tutz and 
Schmid, 2018).
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3.  Regularisation such as elastic net to handle multicollinearity 
and reduce overfitting.

4.  Automatic variable selection using Lasso or elastic net.  
This can help identify influential risk factors efficiently rather 
than using stepwise selection, especially when the number 
of possible predictors is large.

5.  Identification of predictive interaction terms with the help 
of machine learning, such as decision trees or random forest. 
If interpretability is important, it is preferable to keep the 
interaction terms relatively simple, rather than incorporating 
an influential yet hard-to-interpret ‘blackbox’ sub-model, 
such as a neural network, into a GLM.

6.  Dimension reduction, by using unsupervised machine 
learning techniques, if there is a very large number of 
variables relative to the number of observations.

4. Applications in mortality modelling

Tedesco et al. (2021) constructed machine learning models to 
predict all-cause mortality in a two- to seven-year time frame 
in a cohort of healthy older adults. The models were built on 
features including anthropometric variables, physical and lab 
examinations, questionnaires and lifestyle factors, as well as 
wearable data. Random forest showed the best performance, 
followed by logistic regression, AdaBoost and decision tree. 
Additional insights could be extracted to gain understanding  
on healthy ageing and long-term care.

Using the MIMIC-III dataset on long-term mortality after cardiac 
surgery and the AUC metric, the researchers observed the 
order of model performance, from highest to lowest, to be 
AdaBoost, logistic regression, neural network, random forest, 
Naïve Bayes, XGBoost, bagged trees and gradient-boosting 
machine (Yu et al., 2022).

The OpenSAFELY paper (Williamson, 2020) applied the 
multivariable Cox model to analyse data from 17 million 
patients in England and subsequently identified a range of 
risk factors for Covid-19 mortality This was instrumental in 
helping to identify high-risk population subgroups, as Dan 
Ryan describes elsewhere in this Bulletin. Later that year, RGA 
(Ng et al., 2020) published a paper that cross-compared an 
all-cause mortality model with OpenSAFELY’s Covid-19 model 
in a parallel and multivariable way. This revealed insights on 
excess mortality risk from certain factors, which were useful to 
actuaries and underwriters. Six months later, the OpenSAFELY 
team published another paper (Bhaskaran et al., 2021) 
analysing Covid-19 and non-Covid-19 mortality odds ratios, by 
using logistic regression. The team produced results that were 
very consistent with RGA’s.  



Conclusion

The goal of mortality modelling is to predict and understand 
mortality and longevity. This article provides a survey and 
taxonomy of mortality modelling under the survival analysis 
framework, structured by continuous-time and discrete-time,  
as well as statistical methods and machine learning. The  
choice of model depends on the nature of the data and the 
purpose – whether it is solely about predictive accuracy or  
if interpretability is important. 

Due to the increasing availability of data, technology and 
development in survival analysis and machine learning, financial 
services providers, such as insurers and pension funds, can 
leverage advances in these areas to provide financial protection 
more effectively to more people. 
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Introduction

Data science and modern analytical techniques are increasingly 
being utilised by the actuarial community, according to recent 
benchmarking by Actuartech on the adoption and use of data 
science (Actuartech, Reacfin and Synpulse, 2021) and modern 
infrastructure (Actuartech, 2023) within actuarial teams. 

Embedding these techniques within existing actuarial processes 
can be particularly effective through new ways of visualising 
data, more sophisticated modelling approaches, and process 
flows. 

Figure 1: Actuartech Actuarial Solution Framework, which contains the actuarial control cycle (Bellis et al., 2010), the data science 
pipeline, and wider considerations. Note that we will not be explicitly discussing elements marked with an asterisk. 

In this article, we explore practical considerations and 
recommend actions to take in respect of different phases of 
an actuarial solution which, together with the actuarial control 
cycle, includes the data science pipeline and the supporting 
infrastructure and process components. Figure 1 below shows 
an example structure to follow, and this article touches on most 
of these components. We also present an exploratory mortality 
experience analysis we performed to illustrate how certain 
considerations and actions look in practice.
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1. Problem specification 

As well as considering the specific objectives for analysing 
mortality experience in the context of available data, the 
actuarial function also typically aims to balance cost, 
complexity and accuracy of the solution. In relation to 
actuarial solution development, we are seeing actuarial teams 
incorporating solution design and development principles, 
strategic infrastructure decisions, policies and resource 
considerations (people, skills and infrastructure) in the problem 
specification phase.

In the investigation we present,1 we performed an experience 
analysis investigation by comparing actual mortality against 
expected mortality for the annuity book of a life insurer.  The 
expected mortality rates are taken from the PA(90)f (IFoA, 
1990a) and PA(90)m (IFoA, 1990b) tables. As part of the 
investigation, we used an A/E model to identify to what extent 
the expected base mortality would need to change to better 
predict mortality for the book of lives.

Furthermore, we wanted to develop a predictive model to 
support pricing or valuation assumption setting, and the 
analysis we performed opened further business-related 
questions (not discussed here), including:

• To what extent did the actual experience deviate from 
expected?

• Is there evidence to suggest the underwriting process 
requires changing?

• Are the pricing and valuation bases still appropriate? 

• Which areas of our modelling process and infrastructure 
requires updating?

When embarking on an investigation piece using new 
techniques, one must be mindful of the resources, including 
availability of the team, skillsets and feasibility given current 
deliverables. By expanding the aspects of the investigation 
to other domain experts (eg data scientists, data engineers 
and IT specialists), appropriate review and validation can be 
embedded in the process.

2. Data collection 

During the data collection phase, it is important to consider 
what relevant data is available, internally or externally, whether 
it has suitable features, the quality, how much data is available, 
and whether or not the data can be enhanced. You must also 
ensure that legal and ethical considerations, including data 
protection requirements, are addressed.  

For the example experience analysis, the following data inputs 
were sourced and queried using SQL, Python and Excel: 

• Consolidated actual experience data, spanning three years  
at a per policy level

• Assumptions for calculating the expected level of deaths, 
including life tables

• Other important factors such as valuation date and 
information about important historical influences and factors, 
for example relevant information about Covid cycles.

It would also be helpful to consider additional data (where 
ethically available) to enhance existing data sources eg data 
from reinsurers and population statistics. This is particularly 
useful where data is not sufficient for a credible analysis. 

3. Data management

Data management is an iterative process of transforming raw 
data into more informative and suitable variables. Tasks and 
techniques could include the following:

• Cleaning the data, for example by removing duplicates and 
handling missing values

• Creating new variables that might be predictive based on  
the dataset through feature engineering

• Reducing the number of explanatory variables through 
dimensionality reduction, for example by principal 
component analyses

• Clustering to create groups of similar data points

• Performing exploratory data analyses to better understand 
the data, for example through visualisations.

It could also be useful to perform preliminary model building 
where, for example, data is passed through a basic modelling 
pipeline, which comprises manipulating the data into the 
required form and fitting a generalised linear mode (GLM) 
(Dobson and Barnett, 2008) to test suitability.

Some of these tasks are discussed further below.

3.1 Data cleaning

To ensure a robust analysis, the quality of the data needs to 
be assessed to determine whether it is fit-for-purpose and 
the extent to which data cleaning is required. Data-cleaning 
techniques include: 

• Identifying and handling missing, ‘Null’, ‘not available’ or 
incomplete values

• Performing reasonability checks (eg is the death date later 
than the inception date and is the age sensible?)

1 | Please note that this is a simplified indicative example, exploring certain practical considerations when incorporating data science in experience analysis, and the   
  packages, findings, data or results presented should not be used to make any decisions.



• Investigating whether there are any duplicates or omissions 
in the data, and removing duplicates where appropriate

• Comparing data with that from previous investigations and 
independent records 

• Visualising key summary statistics.

The aim of such checks is to identify errors and inconsistencies 
effectively and remove these to achieve a clean set of data 
that is appropriate for the investigation.  Additionally, consider 
what specific tools and techniques will be most effective for 
achieving this aim, and ensure compliance with professional 
standards, such as TAS100 (FRC, 2023) in the UK, and data 
protection regulation.

In the example experience analysis, we applied the techniques 
above using Python. In our case, it was feasible to handle 
missing and nonsensical values on a case-by-case basis. We 
identified whether information could be retrieved elsewhere, 
or if the data point had to be removed altogether, and acted 
accordingly.

As measuring the cleanliness of data is often difficult, model 
accuracy and stability could be used to inform, for example, 
further data cleaning work required, making this a potentially 
iterative process step. 

3.2 Feature engineering and exploratory analysis

The aim is to focus on those variables that are most relevant 
to the analysis and of sufficient data quality to support any 
conclusions drawn. In some cases, it is appropriate and 
necessary to derive or engineer ‘synthetic’ variables based on 
the raw data. Practical aspects inform choices made at this 
stage, including the compatibility of the data, the types of 
model being used for the analysis, and the suitability of the 
variables chosen for automation. As best practice, document 
any adjustments or modifications, as well as any limitations  
of the data that have been identified. 

Throughout the data-management process, visualisation 
is important for understanding and communicating what 
transformations may be required and the impact they have 
(visualisation techniques are discussed in more detail later).
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Table 1: A summary A/E table showing in-force lives.

Period
Actual mortality  
(deaths p/1000)

Expected mortality  
(deaths p/1000)

Actual/expected

1 1.94 2.70 72.1%

2 3.27 2.72 120.5%

3 2.71 2.66 101.8%

In our example experience analysis, we used visualisations and 
summary statistics to explore the data, and used our actuarial 
and domain knowledge to validate the data before proceeding 
further. Table 1 below compares actual deaths incurred with the 
PA(90) expected mortality.

Once exploratory analysis is complete, feature engineering 
takes place to process the data prior to modelling. In our 
example, we performed the following feature engineering 
techniques:

• Scaled features towards a normal distribution using a  
log transformation

• Encoded categorical features using one-hot-encoding

• Filtered the data by reducing the age range under 
observation to avoid fitting noise.

Figure 2: Example comparison of actual and expected  
mortality by sex.
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4. Model building

4.1 Training and testing

Model building is an iterative process in which techniques 
such as model fitting and model prediction using different 
algorithms are applied.  

Before we fitted our model, we split the data as follows:

• Training set comprised 80% of credible data (post-
transformations and adjustments) from the past three years, 
excluding the most recent year

• Testing set comprised the remaining 20% of credible data.

We could also vary the proportions as required. Note the most 
recent year’s data was used as a validation set.

In this example our iterative model-fitting approach included:

1. A standard actual over expected (A/E) model was assumed 
(an A/E GLM of the Poisson family since mortality is 
assumed to increase exponentially with age) and fitted to 
the training set for calibrating the model

2. This model was tested for accuracy against data not 
included in the training set (20% out-of-sample), for 
instance, using the root mean square error (RMSE) or  
mean absolute error (MAE) to assess goodness of fit

3. The predicted rates and crude mortality rates were  
plotted against age as a curve to compare smoothness 
relative to accuracy

4. Based on the model performance and various standard 
model selection criteria such as Akaike information criterion 
(AIC), p-values, and domain knowledge, features are added 
or removed, and the model is retrained, retested and 
replotted

5. This process was repeated until we reached a satisfactory 
model
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6. We then employed steps 1–5 again, using more complex 
models (a Poisson regression model applying Lasso 
regularisation),2 until a reasonable set of candidate models 
were produced

7. The final model was selected from the shortlist generated 
by considering criteria such as prediction error, statistical 
measures, explainability (see Section 5.1), how close it was 
to the existing expected mortality model, and runtime, 
among others.

After performing the above tasks, we determined the following 
models were potential suitable predictive models for our 
example (see Table 2 below):

• Lasso Poisson Regression Model (performed very similarly 
to a standard fitted Poisson model) – selected based on 
accuracy, runtime, and avoidance of overfitting

• Bayes3 Poisson Regression Model – selected based on 
accuracy, ability to train on smaller samples of data, and 
ability for the model developer to specify prior distributions.

Lastly, we noted any limitations of our model, including age 
ranges where there were limited data points, as we wanted 
to ensure proper communication of the data and model 
limitations. 

Mortality experience analysis often lends itself to regression 
analysis through GLMs, but alternative models such as 
generalised additive models (GAMs) and extreme gradient 
boosting machines (XGBoost) may be used to allow for 
irregularities and ‘humps’ in the data, to the extent that a closer 
fit is preferred over smoothness. In the table below, we list 
useful software packages for fitting GLMs as well as GAMs and 
GBMs, for example.

2 | This is a method to penalise overly complex models and improve predictive ability across different datasets (Ng and Reid, 2021).

3 | Bayesian GLM modelling differs from traditional GLM modelling in that parameters are returned as distributions (in the form of posterior distributions), rather   
  than point estimates (Barber, 2012). This allows for more flexibility in the modelling process (for examples, parameters belonging to different density functions),  
  and the ability to stress-test assumptions by sampling different estimates from the parameters’ distributions. In addition, since priors are provided for the   
  distribution of parameters, expert judgement can be implemented where data is otherwise scarce.

Table 2: Comparing the candidate models against the actual experience and expected bases.

Expected basis Lasso Bayes

Mean Absolute Error  
(deaths p/1000)

3.86 3.92 3.62

Actual/Expected (%) 94.2% 93.1% 103.5%



4.2 Validation

A model that appears to perform well in one dimension (eg 
age) may perform poorly in another (eg socio-economic class) 
so we should analyse our model results from different angles. 
When validating a model, it is also important to consider model 
accuracy, stability and runtime, among others. 

Care is needed to avoid selecting a model that fits the training 
sample too closely, as this could lead to poor predictive 
performance (due to overfitting). One technique for managing 
this issue is to use various training and validation samples when 
fitting and testing the model. If the model chosen shows a 
tendency to overfit to the training data, it may suggest that  
an alternative model should be considered. 

Runtime is an important factor if the model will be used 
frequently. Typically, more accurate models require longer 
runtimes, so a balance is required between the accuracy 
preferred for the specific use and the time available for 
performing the analysis. 

In our example, we considered:

• Variance in the predictive performance when filtering over a 
particular feature, such as sex 

• Limitations of the model (eg at what years does it no longer 
produce reasonable results?)

• The run time of the model (eg it may be the case that a 
model has a better accuracy than the other but has a higher 
runtime than the other model) 

• The stability of the model and other relevant factors (eg how 
well the model performs when given completely new data, 
such as the most recent years’ set of data).
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Table 3: Commonly used software packages for modelling.

Algorithm Example software package

Python R Julia

GLM Statsmodels & Sci-kit Learn Included in baseline R GLM.jl

Lasso GLM Statsmodels & Sci-kit Learn glmnet Lasso.jl

Bayesian GLM PyMC3 rstan Turing.jl

GAM pyGAM mgcv
At time of writing, there was no 
specific Julia-native package;  

it calls R’s mgcv package

XGBoost xgboost xgboost XGBoost.jl

5. Reporting

5.1 Explainability

When considering model explainability, we refer to a process 
that aims to showcase the features that are most significant in 
the model’s decision-making process. Techniques such as those 
listed below can help us understand and communicate models 
that could otherwise be perceived as black boxes.

• Inherently interpretable models, also white boxes, for 
example statistical models (eg naïve Bayes), linear models 
(eg linear and logistic regression), or additive models  
(eg Lasso). 

• Ex-post interpretable models are potential black boxes  
(ie highly complex and where the relationship between inputs 
and outputs is not clear) where explainability techniques can 
be applied to help interpret and explain model results. Model-
agnostic techniques include:

 – Variable importance plots: these show the average 
importance of each feature, in the sense of the extent to 
which the feature affects the target variable 

 – Partial dependence plots: show the marginal effect of 
specific variables (usually just one or two) on the predicted 
outcome. This can show whether the relationship between 
the chosen feature and the outcome is linear, monotonic or 
more complex, for example

 – SHapley Additive exPlanations (Shapley values) show to 
what extent each variable contributed to the prediction for 
a single line in the dataset (Lundberg and Lee, 2017) 

 – Local interpretable model-agnostic explanations (LIME) fit 
a simpler surrogate model that produces coefficients that 
indicate the impact different features have on a prediction 
(Ribeiro, Singh and Guestrin, 2016). 



5.2 Visualisations and dashboarding considerations 

Visualisations and dashboarding form an integral part of 
reporting and play an important role throughout our analysis, 
as this helps explain the process and results. 

When reporting results of the modelling process, it is important 
to consider the stakeholders’ level of familiarity with the 
analysis undertaken. More technical audiences, for instance, 
may appreciate tables and visualisations detailing model 
diagnostics. Those looking to extract business intelligence 
across multiple parameters may benefit more from an 
interactive dashboard rather than a static slide deck. Further 
considerations include:

• Knowing the stakeholder requirements before settling on 
tools and software for reporting

• Comparing at least one other model, as well as previous 
investigations performed

• Avoiding only presenting single point values of model 
performance (eg overall mean squared error), and instead 
include results across multiple dimensions (eg model 
performance with respect to smokers aged 40–45 vs  
non-smokers). 

In our example experience analysis, a written static report 
with key visualisations was appropriate for stakeholders, along 
with the full codebase, presented in Jupyter Notebooks. Key 
visualisations included plotting aggregated data across various 
dimensions (age, smoking status, underwriting year, etc.) and 
mortality rate (actual, fitted (ie the model result), and the 
expected (as determined by the prior basis)). This allowed us  
to assess goodness of fit across various dimensions.

Figure 3: Comparing baseline expected mortality to the A/E 
Lasso Poisson regression model by age.
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6. Other important considerations 

6.1 Professionalism

6.1.1 Risk management and governance 

The actuarial solution framework should incorporate proper  
risk management, governance and control in all aspects of  
the pipeline. 

Required considerations from governance and regulatory 
frameworks include those listed below, but note that other 
regulatory requirements, company specific policies or 
guidelines may apply.

• Integrity

• Compliance (regulatory and professional)

• Speaking up

• Judgement (reasonable and justifiable)

• Models (fit for purpose and sufficient controls)

• Communications (clear and comprehensive)

• Human oversight

• Data governance

• Transparency and explainability

• Fairness and non-discrimination

• Documentation and record keeping

• Robustness and performance.

These were derived from the Actuaries’ Code (IFoA, 2019); 
TAS100 (FRC, 2023); EIOPA Guidelines for Insurance (EIOPA, 
2021); and EU AI Act (Draft) (European Commission, 2021).
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Furthermore, the key principles as set out in professional 
standards, such as APS X1 (IFoA, 2019b) and APS X2 (IFoA, 
2015) should also be considered.

Other relevant regulations and guidelines may apply, for 
example Solvency II (European Parliament, 2009), GDPR 
(European Parliament, 2016) and FCA Fair Treatment of 
Customers (FCA, 2022) in the UK, as well as:

• Guidance from the Information Commissioner’s Office  
(ICO) on:

 – AI and data protection (ICO, 2023)

 – Explaining decisions made with AI (ICO and The Alan 
Turing Institute, 2022)

 – AI auditing framework (draft guidance for consultation) 
(ICO, 2020)

• Any other guidance or legislation, for example from the 
Prudential Regulation Authority (PRA) in the UK

• Guidance from the AI Standards Hub in the UK, which 
provides a useful overview of relevant regulation across 
various industries and is working with the UK government to 
help inform a pro-innovation approach to AI assurance. 

The guidelines and legislation above could form a key part of 
the governance and control framework for data-science related 
work. For further and more detailed information on how to 
interpret professional guidance, refer to the IFoA’s Guidance for 
Members on Ethical and Professional Data Science (IFoA, 2021) 
and the IFoA and Royal Statistical Society’s Guide to Ethical 
Data Science (IFoA and RSS, 2019).

The rate of development of AI tools and the availability of large 
language models (eg ChatGPT) present additional risks and 
require associated mitigating measures to be put in place. This 
article does not cover this, as we have focused on the core 
concepts of applying data science. However, an example issue 
that could arise is the ability of new models and AI tools to 
generate code which can be used to fit the models discussed 
above, amongst other uses. This raises questions regarding 
accountability, responsibility for outputs, and meeting 
professionalism requirements. Further research regarding an 
actuarial perspective is available on request.

6.1.2 Transparency 

Transparency refers to the disclosure of information to 
stakeholders to understand the process a system or model 
followed, with relation to how the data is used by the model 
(and the solution overall), sources of external data (eg postcode 
socio-demographic classification indices, or credit ratings), the 
workings of the model, and in what context the outcomes will 
be used. In our example, technical documentation has been 
maintained considering the underlying data, assumptions, and 
approach to feature engineering and model development. 
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6.2 Monitoring and versioning 

To ensure that changes to the analysis in all elements of the 
actuarial solution framework are committed and communicated 
sufficiently, we employ version control. After the model 
is implemented as part of the solution, the performance 
should be monitored and changes to the model or solution 
documented. Good version control practices and detailed 
documentation help developers and practitioners provide 
quality assurance. In order to collaborate in a secure, backed-up 
manner, tools such as GitHub and GitLab can be utilised. These 
tools can also assist in issue tracking and release management 
by allowing for a centralised platform. 

Lastly, after the model is implemented as part of the solution, 
the performance should also be monitored on an ongoing basis.

6.3 IT and infrastructure

IT and infrastructure decisions may be impacted by:

• Frequency of analysis:

 – How often will an analysis on new data be required?

 – How frequently, if at all, will models need to be retrained, 
or the whole experience analysis redone (ie rerun through 
all the steps in the data science pipeline)?

 – To what extent will models be monitored for drift and 
changes in underlying data?

• Data storage: How is our data stored, accessed and version 
controlled?

• Tools: What tools, software and/or platforms are utilised 
during our investigation eg how are we versioning our code 
base, how are we evidencing validations? 

• Organisational infrastructure: 

 – Do we have access to the required software, and the 
permissions required to perform our investigation? Is the 
available infrastructure fit for purpose?

 – Is the underlying infrastructure sufficient to support 
the implementation of the experience analysis eg the 
required computing power to perform the investigation, 
or the capacity to have a live dashboard that is constantly 
available to stakeholders? Is the environment secure 
enough to host our data and code?

 – Are tools and software utilised appropriately documented 
for handover to other teams, such as IT, internal audit, etc.?

 – What relevant IT and infrastructure policies are we required 
to comply with? 

From Figure 4 below we can see the use of various tools and 
techniques by actuarial teams that will influence the IT and 
infrastructure environment.



Additionally, by collaborating with other subject matter experts 
including data engineers, IT and data scientists, actuarial 
teams can ensure solutions and analysis produced can be used 
appropriately by other members of their organisation.

Conclusion

Data science and modern analytical techniques add value to 
traditional actuarial work by helping automate manual tasks, 
manage data efficiently, make improved predictions, and 
enhance decision-making. However, these techniques also  
need to be adopted ethically and securely, and used fairly.  
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Estimating neighbourhood 
death rates using the 
random forest algorithm

Andrew Cairns, Jie Wen and Torsten Kleinow

Introduction – the longevity problem we address
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Recent decades have seen increasing evidence for inequality 
in mortality for different socio-economic groups in various 
national populations. Socio-economic characteristics are not 
the actual cause of mortality inequalities. Rather, the socio-
economic characteristics of a population are correlated with the 
prevalence of various health-related lifestyles such as smoking, 
diet and exercise. 

In addition, they can be related to the availability of preventive 
health care, crime rates, air pollution and other external factors 
that have an impact on health and mortality. Often, observed 
inequalities are based on existing socio-economic indicators 
such as income (eg Chetty et al., 2016), affluence (Cairns et al., 
2019), deprivation (Villegas and Haberman, 2014) or education 
(eg Mackenbach et al., 2003, 2015). 

However, many of these metrics are designed for other 
purposes. This means that while the English Index of Multiple 
Deprivation, for example, can be used as a good predictor of 
mortality, perhaps we can do better by designing a customised 
mortality index. Specifically, it might be possible to improve 
on these existing approaches by combining individual pieces 
of socio-economic information at the individual or (as we do 
here) neighbourhood level and analyse this using modern data-
science techniques: here, the random forest algorithm. This 
method will allow us to capture how mortality rates respond to 
a range of variables, potentially in a non-linear way. 

The structure of the model

In general, our data consists of a set of observations. Each 
observation has a set of predictive variables and a single 
response variable. In our case study:

• The number of observations represents the number of 
neighbourhoods (Lower Layer Super Output Areas or LSOAs)

• The predictive variables are socio-economic and related 
variables that give an indication of the general character of 
each LSOA

• The response variable is the ratio of actual deaths in a 
specific LSOA over a specified range of ages and years 
relative to what would be expected if the LSOA had the  
same base mortality rate as the national population.

Our challenge is to predict the actual-to-expected death ratio 
(which we refer to as the relative risk) as a function of the 
predictive socio-economic variables. So, effectively, we have 
a regression problem to solve. We do so by making use of the 
random forest algorithm. 

This is a widely used machine learning algorithm that combines 
the output of multiple regression trees (also known as 
decision trees) to determine a single result. It can be used for 
classification and regression problems and the flexibility that 
it offers is a key reason for its popularity. In our case, we will 
use this method to find an ‘average prediction model’, using a 
selection of samples of subsets of the data, randomly chosen, 
and capturing varying degrees of features of the predictive 
variables. Using multiple trees has additional advantages 
of flexibility, including greater accuracy, a reduced risk of 
overfitting, and the ability to determine the importance of each 
variable in the model (using a chosen metric). This comes at 
the cost of greater computing times and complexity of the 
model, which can sometimes make interpretation of the results 
more difficult. 

Regression trees

Regression trees themselves are a form of supervised 
machine learning, where a sequential process is followed to 
split the data of interest. In our case, this is the relative risk 
response variable. Each tree consists of non-overlapping 
nodes (sometimes called leaves), splits and predictors. Moving 
through the tree can be considered as answering a series of 
questions, such as ‘Is the value of a specific predictive variable 
greater than 0.3?’. Depending on the answer to this question, 
further subsequent questions might be ‘Is the value of the 
predictive variable greater than -0.6 (if the answer to the 



 

original question was no)?’. When the optimal split has been 
determined, we arrive at a node in the tree. In our example, 
each node will be a value of the predictor function for the 
response variable, which is estimated as the mean of the subset 
of the observations of the response variable that is allocated to 
the specific node. This is shown in Figures 1 and 2 below. 

In this stylised example, illustrated in Figures 1 and 2, we have 
two predictive variables and 1,000 observations There are 
currently three splits and the whole of the area is covered by 
the four nodes. The splits are numbered in the order they took 
place. Splits 1 and 2 used predictive variable X 1 to divide the 
data, first at X  1 = 0.3 then at X  1 = -0.6. Split 3 then found that it 
was optimal to use predictive variable X 2 to split the righthand 
node above and below X 2 =0.6. The general algorithm works 
in a similar way but considers a larger number of predictive 
variables and makes more than three splits.
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Figure 2: Graphical representation of the regression tree 
corresponding to the left-hand panel of Figure 1. Yk is the mean 
of the observations falling within Node k.

The number of splits made in the tree (equivalently the number 
of questions asked) will depend on a selection criterion. We 
have chosen the residual sum of squares (RSS), aiming to 
minimise this when considering the difference between the 
combined predictor for the response variable and the actual 
observations that we have of that variable. 

Increasing the number of splits in the tree

Splits are added by scanning over each node, each predictive 
variable within each node, and the position of the split of that 
predictive variable within that node. 

To choose the fourth split in our stylised example we optimise 
along the following lines. Minimise the RSS over:

• Each of the pre-existing nodes (eg node 2 in Figure 1,  
Panel A) (ie only a single node is split into two rectangles;  
all other nodes remain as they were)

• Each of the two predictive variables (eg a vertical or 
horizontal split of node 2 in Panel A)

• The position of the split horizontally or vertically (eg the 
vertical split 4 in Panel B)

• (Assuming we are considering a split of the pre-existing 
node 2 into a reduced node 2 and new node 5) the values f 2 
(updated from the old f 2) and f 5 taken by the function either 
side of the new split. The optimal values for the function f (x) 
at any point in the newly divided nodes (nodes 2 and 5 in 
Panel B) are the mean of the observations within each of the 
two new nodes.

Figure 1: Stylised representation of how a regression tree  
grows with two correlated predictive variables X 1 and X 2. 
Panel A: tree consists of nodes, splits and function values.
Panel B: split 4 optimises over the location of the split and 
the updated function values either side of the split.
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Splitting stops when the algorithm reaches a specified stopping 
criterion. The idea is to add increasing granularity to the 
piecewise constant estimator of the response, in order to make 
the combined estimator (ie considered across all of the data 
simultaneously) closer to the observed results, while avoiding 
overfitting.  

A detailed description of the algorithm and its application in a 
mortality context can be found in Wen et al. (2023). Here, we 
provide an overview of its main elements. For further detail, 
including treatment of categorical variables, see James et al. 
(2021) or Hastie et al. (2017).

The random forest algorithm

It is often found that individual regression trees can suffer from 
relatively high levels of uncertainty. For example, if we split the 
data into two randomly chosen halves and fit a regression tree 
to each, the results can be quite different.

The random forest algorithm (RF) is a popular approach that 
substantially reduces this uncertainty. RF works by combining 
the results for a defined number of individual trees, with the 
uncertainty reduction depending on differences in how each 
tree is grown.

The original observations are first divided into two parts:  
a training dataset and a validation dataset. 

For each tree grown (by using the splitting process described 
above):

• The tree is fitted to a randomly chosen subset of the 
observations in the training dataset. It is common (see, e.g., 
James et al., 2021) for the subset to be formed by taking a 
random sample with replacement from the training dataset. 
This results in a sample which contains approximately 2/3 of 
the training dataset.

• As each tree grows, for each split, rather than optimise over 
all possible predictive variables, we optimise over a randomly 
selected subset of predictive variables. The size of this 
subset is usually substantially less than the total number of 
predictive variables

• Each tree keeps growing so long as all nodes contain at least 
a specified number of observations

• Each tree produces an estimator and the random forest 
estimator is then the arithmetic average of all predictors for 
all of the individual regression trees.

All the training datasets are drawn from the full training subset 
of the full set of observations. To validate the model, the 
remaining observations are then used as an ‘out-of-bag’ sample 
to test the accuracy of the estimator. The out-of-bag sample 
also allows us to tune the choices for the number of trees,  
the size of the subset of predictive variables and the minimum 
number of observations required for each node in the tree.

24

Once validation is complete and the choices for the above 
variables (referred to as ‘hyperparameters’) are fixed, the 
model can then be rerun on a different (but still randomly 
selected) training set and tested for goodness of fit on the 
complementary `test’ dataset. (This training/test division can 
also be used to compare the outputs of the random forest with 
alternative models.) If all of this is satisfactory then the final 
step is to run the random forest algorithm on the full set of 
data.

Standardisation of predictive variables

In some settings the predictive variables might be standardised 
in some way (for example, by transforming the data so that it 
has a standard normal distribution). In the context of the RF 
algorithm, the purpose of this is mainly to facilitate graphical 
analysis of the results (see, for example, Figure 5). Provided a 
transformation of the data preserves the order of the observed 
values, the results of the RF algorithm are not sensitive to such 
transformations. This contrasts with, for example, generalised 
linear models: if a relationship is linear, then anything other 
than a linear transformation of the data results in a qualitatively 
different model. This lack of sensitivity is a key advantage of 
the RF algorithm. It means the user does not have to spend 
time thinking about how to standardise (or otherwise) the data 
and allows them more time to think about other issues.

Application to English neighbourhood 
mortality

As noted earlier, our data consists of deaths and exposures for 
single ages from 2001 to 2018 with twelve predictive variables 
for each LSOA. Please note that we have not applied age 
standardisation when comparing actual and expected deaths. 
The predictive variables used in this study (after much time 
spent selecting variables) were:

• Old-age income deprivation

• Employment deprivation

• Proportion above age 65 with no qualifications 

• Crime rate 

• Average number of bedrooms 

• Proportion born in the UK

• Wider barriers to housing (eg homelessness and 
affordability)

• Proportion in management positions

• Proportion working more than 49 hours per week

• Urban-rural class

• Proportion aged 60+ in a care home with nursing

• Proportion aged 60+ in a care home without nursing.



Of these, the deprivation measures relating to old-age income 
deprivation and employment deprivation are the most 
important drivers of mortality inequality. Also important at the 
neighbourhood level are urban-rural class and proportions in 
a care home, both with and without nursing. The remaining 
predictive variables are less important but have been found  
to be statistically significant, sometimes in unexpected ways 
(see the discussion of Figure 5). 

As we discuss below, the urban-rural class turns out to be an 
important predictive variable that is missing (at least explicitly) 
from the alternative Index of Multiple Deprivation (IMD) 
(Ministry of Housing, Communities and Local Government, 
2015). The five urban-rural classes are:

1. Urban conurbations excluding London

2. Urban cities and towns

3. Rural towns and villages

4. Rural hamlets and isolated dwellings

5. Urban conurbation in London only. 

The inclusion of nursing home proportions allows us to adjust 
for the distorting effect on the mortality of neighbourhoods 
with care homes. In doing so, the resulting Longevity Index 
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for England (LIFE) gives a measure of mortality that reflects 
the mortality of the non-care home population in an individual 
LSOA relative to the national average. For further details, see 
Wen et al. (2023).

Here, we present a small number of snapshots of what is a 
complex set of inputs and outputs and potential graphics. 

The LIFE app

Readers can explore the results in more detail with the open-
source LIFE app that can be found at https://andrewcairns.
shinyapps.io/LIFEapp_Version3/. The app allows users to look 
at individual LSOAs, males and females, and different ages.  
It also allows users to map the LIFE index to observe how the 
LIFE index varies throughout a region.

An example of this is shown in Figure 3 for the North West of 
England. The map illustrates clearly how areas of high mortality 
are concentrated in the larger cities, an observation that is at 
least partly explained by concentrations of high deprivation in 
these areas. 

Figure 3: Example of a screen shot from the LIFE app showing 
relative risk percentiles for females aged 74 in the North West  
of England.

https://andrewcairns.shinyapps.io/LIFEapp_Version3/
https://andrewcairns.shinyapps.io/LIFEapp_Version3/


Figure 4: ASMR for ages 70–79 for Decile 4 from 2001–2018 for 
the five urban-rural classes. Panel A: deciles based on the IMD. 
Panel B: deciles based on the RF LIFE index.

In Figure 4 we highlight how poor the IMD is at discriminating 
between urban and rural areas in terms of predicting mortality. 
In the left-hand panel we show how the age-standardised 
mortality rate (ASMR) varies over time for IMD decile 4 (by way 
of example) subdivided into the five urban-rural classes. That 
is, we only count deaths and exposures for LSOAs that belong 
to IMD decile 4 and a specific urban-rural class. If the IMD 
was a good predictor of mortality, then there should be little 
difference between the ASMRs for the five urban-rural classes. 
Instead, what we see for decile 4 is considerable variation 
between the urban-rural classes.
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In particular, mortality in the most rural areas (class 4) is much 
lower. In contrast, decile 4 based on use of the LIFE index 
(right-hand panel) shows very little variation between the 
urban-rural classes, mainly as a result of incorporating urban-
rural class as a predictive variable. This demonstrates that the 
LIFE index and the random forest algorithm has, at least, picked 
up this feature of the data.

Dependence on key predictive variables

ASMRs for IMD Decile 4 by Year and Urban-Rural Class 
Panel A
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Figure 5: Scatterplot showing how the LIFE decile for ages  
70–79 depends upon two key variables. Panel A: old-age income 
deprivation and employment deprivation. Panel B: old-age 
income deprivation and the proportion of UK born.

LIFE Decile 1
LIFE Decile 2
LIFE Decile 3
LIFE Decile 4
LIFE Decile 5
LIFE Decile 6
LIFE Decile 7
LIFE Decile 8
LIFE Decile 9
LIFE Decile 10

4

2

0

-2

-4

Pr
op

or
tio

n 
U

K
 b

or
n 

(s
ta

nd
ar

di
se

d)

Old age income deprivation (standardised)
-4 -2 0 2 4

B

A

2005 2010 2015 2020

0.06

0.05

0.04

0.03

0.02

A
SM

R
 (

lo
g 

Sc
al

e)

Year
2000 2005 2010 2015 2020

Urban-Rural 1
Urban-Rural 2
Urban-Rural 3
Urban-Rural 4
Urban-Rural 5

ASMRs for Life Decile 4 by Year and Urban-Rural Class 
Panel B



Further graphical investigations revealed that LSOAs that 
belonged to feature A were mainly LSOAs that had a low 
proportion of UK born. Thus, in the right-hand panel we show 
how the LIFE decile depends on old-age income deprivation 
and the proportion of UK born. The striking feature of this plot 
is how the characteristics in the lower part of the plot (when 
the standardised value of the proportion of UK born is below 
about -1) differ markedly from the upper portion. The upper 
portion suggests that the proportion of UK born has very little 
predictive power. In contrast, the lower portion (about 15% of 
the data, mostly in London and larger cities) suggests that the 
proportion of UK born is also as strong a predictor of mortality 
as old-age income deprivation. 

From a statistical perspective, the results suggest that, on a 
like-for-like basis, neighbourhoods with a low proportion of 
UK-born people have lower mortality. It is less clear how we 
interpret this unusual feature. One possibility out of many 
is that deprived neighbourhoods with a high proportion of 
immigrants are good at looking after each other or follow 
healthier lifestyles. It is certainly a feature that merits further 
study. 

The right-hand plot also highlights a big advantage of the 
random forest algorithm over traditional linear models: the  
non-parametric nature of the RF algorithm means that it can 
easily pick up unusual and localised features of the data. 

Regional mortality

In Table 1 we investigate how well the LIFE index performs as a 
predictor of mortality at the regional level. Each region shows 
actual over expected (A/E) deaths by region for males 70–79, 
2001–2018. The unadjusted column shows the raw A/E based 
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on national mortality only, and echoes the much-discussed 
North-South divide in mortality. The middle column, Adjusted 
IMD, adjusts expected deaths to account for variation in  
the distribution of deprivation based on the IMD by region.  
This reveals that much of the variation that we observe in the 
unadjusted A/E is due to variation in deprivation, but some 
variation remains. The final column adjusts using the LIFE index 
(including actual care home proportions) rather than the IMD, 
and we can see that regional variation has further significant 
reductions. So, again, we can see that the LIFE Index does a 
better job at explaining variation in mortality across England 
using socio-economic and related non-spatial predictive 
variables only.

However, from Table 1, we can see that the LIFE index does 
not do a perfect job: some regional differences remain. 
Understanding the remaining regional differences is beyond 
the scope of this article. But, in brief, cause of death data might 
help; for example, lung-cancer mortality by region and income 
deprivation clearly indicates that smoking prevalence by 
deprivation is significantly higher in the northern regions than 
in the south. In other words, while the prevalence of smoking, 
as a causal risk factor, has a very strong dependence on socio-
economic status, there is additional variation by region. This, in 
turn, has an impact on all-cause mortality at the regional level 
that reveals itself in the final column of Table 1.

Table 1: Actual versus expected deaths for males aged 70–79 
over the period 2001–2018 by region. Unadjusted: expected 
deaths based on national mortality by single year and single 
age. Adjusted IMD: national mortality rates are multiplied by 
a relative risk based on IMD rankings. Adjusted LIFE: national 
mortality rates are multiplied by a relative risk based on the  
LIFE index.

Actual over Expected Deaths (%)

Unadjusted Adjusted

Region IMD LIFE

North East 115.5 106.1 101.1

North West 112.9 106.0 103.8

Yorkshire and the Humber 107.6 102.8 101.5

East Midlands 101.8 102.6 101.1

West Midlands 104.2 100.3 99.1

East 91.5 96.1 97.1

London 99.5 95.4 99.1

South East 90.4 99.9 100.3

South West 89.2 92.8 96.2



Summary and key findings

We have described how the random forest (RF) algorithm 
works and how it can be applied to English neighbourhood 
data to reveal new insights into how mortality and longevity 
varies across the country through use of the Longevity Index 
for England (LIFE). We find that the LIFE index delivers 
a significant improvement over the IMD as a predictor of 
neighbourhood mortality. In part, this is because the index is 
tailored to the modelling of mortality outcomes. But it is also 
because the flexibility of the random forest algorithm allows 
us to incorporate a greater variety of predictive variables with 
potentially non-linear effects and interactions. The resulting 
improved fit reveals the following key points:

• Old-age income deprivation and employment deprivation  
are the key predictors of mortality rates

• Urban-rural class (which is not a component of the IMD) 
along with proportions in a care home are also important  
as predictors

• Using IMD deciles gives a misleading impression that  
there is significant, unexplained variation in mortality at  
the regional level. The LIFE index demonstrates that much  
of the variation that we see at regional level can be explained 
by making proper allowance for socio-economic and urban-
rural neighbourhood characteristics.

The RF algorithm does not assume a linear relationship 
between predictive variables and response variables: it just 
picks up whatever shape relates one to the other. Similarly, 
there is no need to specify in advance any interactions between 
combinations of predictive variables and the response variable: 
the algorithm detects and incorporates these automatically. 
This contrasts with more traditional methods of mortality 
modelling, such as generalised linear models (GLMs) where any 
interactions need to be individually identified and incorporated 
into the model. Nevertheless, GLMs do have the advantage of 
greater interpretability, although graphical analysis of RF inputs 
and outputs can help considerably with interpretation.

As we have only presented some of the empirical findings 
based on the LIFE index, we invite the reader to explore this 
topic further through the LIFE app mentioned above, or by 
contacting the authors.
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The digitisation of health records has created significant 
opportunities for research, as well as improving the accessibility 
of medical records for the patients themselves. Information that 
in the past was only available in voluminous paper files can now 
be viewed, and even amended, using mobile phones. This can 
include diagnoses, observations, investigations and changes in 
medications. 

This transformation has progressed at different speeds through 
the UK health system, with primary care leading the way. The 
coding of existing paper records in almost every GP practice 
was a gargantuan task, but it has supercharged the patient 
consultation. GP practices have been capturing terabytes of 
data onto primary care software systems such as EMIS Health, 
SystmOne, iSORT and INPS Vision. Rapid exchange of medical 
information, automated prescribing, and a more insightful 
picture of the patient’s health are now possible.

This data transformation allowed large patient databases 
such as the General Practice Research Database (now 
Clinical Practice Research Datalink (CPRD)) and The Health 
Improvement Network (THIN) to be established, and made 
anonymised electronic health records (EHR) available 
for research. Access to each EHR dataset requires ethical 
approval and justification of the public health benefits of any 
research protocol. Worldwide academic institutions and the 
pharmaceutical industry were the most prolific investigators. 
Indeed, it was only through these anonymised EHR datasets 
that the pharmaceutical industry had clear sight over how, 
where and when medications were being used and with what 
outcomes. 

Actuaries and the insurance industry were much more cautious 
about the benefits of EHR datasets, put off by a combination 
of licensing costs of £300,000+ per annum, doubts over the 
veracity and completeness of the underlying data, and long-
standing concerns over the applicability of general population 
mortality and morbidity experience to insured portfolios and 
pension schemes. Part of this reticence likely reflected the 
expectation that it would take significant time and effort to 
demonstrate to regulators that the innovative uses of such 

datasets would not only improve future best estimates (and 
hence reduce premiums) but also reduce uncertainty in future 
assumptions and recognise this through lower requirements in 
risk capital. 

Nevertheless, pioneers across the actuarial profession took the 
first tentative steps in the early 2000s, analysing anonymised 
data from GPRD to support new mortality models. Publications 
soon followed, such as the SIAS publication Disease and 
Death by Love and Ryan in 2007. But even now, the number of 
insurers and reinsurers involved in research into EHR datasets is 
limited. Indeed, in the decade before Covid, public and political 
concerns meant that access for insurers and reinsurers became 
harder, but was still possible through financial support of 
research projects at academic institutions. 

One research collaboration between Aviva and the University 
of East Anglia underpinned a five-year research programme 
launched in 2016 by the IFoA’s Actuarial Research Centre, 
bringing together actuarial approaches and health data.  
As reported in Longevity Bulletin 9, ‘Big data in health’, a multi-
disciplinary group under Professor Elena Kulinskaya developed 
the MyLongevity app using anonymised EHR data from 
THIN to calculate life expectancy, taking into account socio-
demographic profiles and health conditions (Kulinskaya and 
Gitsels, 2016). The research output of this group also included 
an investigation of the contribution that the use of statins 
had made to improvements in life expectancy, illustrating the 
potential for EHR datasets to support the development of 
future mortality improvement assumptions. 

In 2021 a new actuarial working party was established  
under Niall Fennelly looking at future engagement with EHR 
datasets. This group has been working with underwriters and 
academics to better understand how electronic reports based 
on individual EHR reports could provide the data needed by 
insurers to underwrite and assess claims without adding to the 
burden of GPs with laborious paper forms (Fennelly, 2021).  
So actuarial engagement has been renewed, but the question 
is whether actuaries are once again playing catchup on the use 
and analysis of EHR datasets. 



The impact of Covid-19 in boosting the use of 
electronic health records

The harrowing nature of the early months of the Covid-19 
pandemic forced us all to re-examine our working principles. 
We needed to understand the epidemiology of Covid-19 
quickly, and to support any actions that could improve 
treatment or prevent the spread of infections. Innovation was 
encouraged, while new paradigms cast aside once immoveable 
obstacles. The power of EHR datasets to identify those most 
at risk was quickly realised, and extraordinary efforts were 
made to connect existing data pools and free up access to 
researchers (Lynn, 2022).

An unprecedented effort involving the Bennett Institute 
for Applied Data Science at the University of Oxford, the 
EHR research group at the London School of Hygiene and 
Tropical Medicine, NHS England, and TPP, a global digital 
health company, brought the OPENSAFELY dataset into being 
in April 2020. This dataset contained primary care health 
records for 40% of the UK population. BY 7 May 2020 they 
had demonstrated the value of OPENSAFELY by publishing 
the world’s largest study into factors associated with Covid-19 
deaths. 

Then, in a gesture that broke with the previous operating 
model, the collaborative group provided free and open access 
to the OPENSAFELY platform for other research groups to 
further our collective understanding of Covid. Every project was 
reviewed by NHS England to ensure that it supported relevant 
research and planning activities in response to the Covid-19 
pandemic; so far 140 projects have been approved – summaries 
of each can be found at opensafely.org/approved-projects.  
A truly extraordinary effort and success story!

First steps with machine learning

Access to these EHR datasets is only part of the transformation. 
In the past, research projects would use generalised linear 
models and other regression techniques to determine the 
relationship between primary/secondary outcomes, target 
variables and pre-specified co-variates. An increasing 
proportion of research studies today use a variety of machine 
learning (ML) techniques to explore the richness of data 
provided by EHR datasets. These ML techniques are able to 
identify complex patterns in patient health information and 
end up producing much more detailed explanations of the 
underlying relationships (Siwicki, 2022).
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For example, ML models are able to rapidly construct time 
sequences of diagnostic codes, removing distortions caused 
by administrative processes. Combinations of diagnosis codes 
in a particular order may be more predictive than either the 
occurrence of diagnoses on their own or in a different order. 
This approach also has the advantage of identifying de novo 
disease markers that could prompt doctors to investigate 
further (Kent, 2020). However, care is needed in that improved 
techniques for identifying and quantifying a multitude of 
correlations do not provide a back-door to proving causation.

Further, we need to maintain some perspective over these 
impressive modelling capabilities, as ML patterns discovered in 
EHR datasets may reflect specific local features that it would be 
inappropriate to apply elsewhere. It is of vital importance that 
users of ML techniques require a combined understanding of 
the ‘real-world situation’ that the data is intended to represent, 
the circumstances of how the data was gathered and stored, 
and any assumptions and biases in the specific ML technique 
being applied. Such applications must involve rigorous training, 
testing and validation using different subsets of data, and any 
application of such techniques without due consideration poses 
a serious risk to the reliability of the outcome (Knevel and  
Liao, 2022).

By way of positive examples, Feng (2022) investigated the 
ability of a variety of ML techniques to predict Covid mortality 
and hospital admission risks. These ML techniques included 
gradient boost, random forest and AdaBoost. These supervised 
ML techniques were limited to routinely collected EHR data, 
and yet were able to achieve similar levels of predictive 
accuracy to regression analyses based on chest-imaging data 
that would only have been available after Covid-19 diagnosis. 

Further, Rajkomar et al. (2018) used de-identified EHR data 
from two US medical centres with over 200,000 patients 
hospitalised for at least 24 hours, and were able to develop 
ML predictive models for inpatient mortality, unplanned 
readmission and discharge diagnoses using 46.8 billion data 
points. These ML models outperformed traditional predictive 
models over time, as illustrated in Figure 1 on the next page.

https://www.opensafely.org/approved-projects/


More and more research papers are investigating the possibility 
that the use of ML techniques, such as recurrent neural 
networks on EHR datasets, may provide doctors with the 
possibility of individual risk prediction and health trajectories. 
Ayala Solares et al. (2020) highlight the importance of focusing 
on EHR datasets that are sufficiently large and data rich, such 
as the CPRD, to be generalisable to other situations and on 
ML techniques that recognise the importance of time between 
events on the medical record. 

Indeed, if we look at EHR datasets in more detail, we can see 
that reliance on traditional regression techniques constrains 
the data types that we can consider in developing predictive 
models. All EHR datasets consist of patient-level episodic data 
where diagnoses, tests and treatments are assigned to a date, 
and then combined first across all patients in a GP practice and 
then across all GP practices that contribute to that primary care 
software system provider. 
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Figure 1: Comparison of ML and traditional predictive models on inpatient mortality for two US medical centres. (Source: Rajkomar, 
A., Oren, E., Chen, K., et al. (2018), Fig. 2. Licensed under CC BY 4.0.) 

As such, each episode consists of structured data, such as 
disease diagnosis codes, and unstructured data, such as free 
text, where GPs capture additional explanatory or qualifying 
text on patient’s medical conditions and treatments. As there 
are no limits or guidelines as to what could be included in a free 
text field, traditional regression techniques cannot make use of 
the information provided (Liu et al., 2021).

As in other professions, GPs often adopt a shorthand language 
to allow information to be captured quickly and efficiently. 
As an initial first step, the THIN dataset identified commonly 
occurring typed phrases in the free-text fields, appending the 
relevant codes to each episode and hence converting some 
of the unstructured data to structured data. However, more 
advanced ML or deep learning (DL) techniques could use fusion 
strategies with more semantic layers to consider structured and 
unstructured data, or multimodal data, together and extract 
meaning across free-text fields rather than just individual 
words, as illustrated in Figure 2. 

Structured Data Representations Intermediate Layer Level Text Representations

Structured Data Embeddings Embedding Level Text Embedding

Structured Data Features Concept Level Concepts from Text

Structured Data Data Level Unstructured Text

probabilities

Decision Level

probabilities

Figure 2: Comparison of different interaction levels in analysing multimodal data. (Source: Liu, Z., Zhang, J., Hou, Y., et al. (2021),  
Fig. 2. Licensed under CC BY 4.0.) 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Wider clinical benefits from ML applications

However, it is not just researchers who are benefitting from the 
wider application of ML and DL techniques to EHR datasets. 
Increasing accuracy in the structure of medical coding means 
that even with training doctors waste valuable time identifying 
the correct code. Valuable time that could be spent interacting 
with the patient. 

Efforts to develop ML models that help doctors to find 
necessary information in large EHR datasets require large and 
realistic databases of medical questions on which to train the 
models. As a layered approach in developing such databases, 
researchers at MIT have worked together with doctors to 
produce an initial database of 2,000 relevant questions, and 
then used this initial database to generate further questions 
using an ML model (Zewe, 2022). Evaluation of these further 
ML-generated questions indicated that they were of high-
quality about 60% of the time.

Further efforts to reduce the amount of time spent by doctors 
in data entry have focused on advances in natural language 
processing. Digital assistants can now either use dictation 
to pre-populate key fields in medical records or extract 
meaningful content from background recordings during  
the patient consultation (Alldus, 2021).

Deeper engagement for insurers in machine 
learning

So what about the life insurance industry? What would be 
the benefits of deeper engagement in EHR datasets and the 
use of ML to develop predictive models? Would the benefits 
sufficiently outweigh the material costs that would be involved? 

Let us first consider the current underwriting process. 
Underwriting forms and medical reports provide a detailed 
picture of the individual’s current state of health. But the 
underwriting engine itself is likely the end result of combining 
different cohort studies into incidence and mortality associated 
with specific diseases. Combining these studies is a matter of 
expert judgement, as is considering what differences there 
may be between the participants of these cohort studies and 
real-world populations. These underwriting engines have 
clearly proved their worth, particularly if insurers evaluate 
their performance in broad buckets across different medical 
conditions with a similar level of impairment. The question 
is what more could investing in ML analysis of EHR datasets 
provide?

First of all, these large EHR datasets would provide actual 
matched experience to the underwritten lives in terms of 
medical conditions and treatments, rather than hypothecated 
experience. These EHR datasets are being continually updated, 
rather than relying on cohort studies that may be many years 
out of date. Further, these EHR datasets would provide direct 
information to underwriters as to how particular conditions are 
being treated, and how that compares to clinical guidance and 
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previous treatment regimens. Moreover, access to free text and 
the use of ML techniques to extract semantic meaning from 
the free text would enable underwriters to compare prognosis 
for different severities of the same medical condition. Broad 
indicators of socio-economic status in the EHR dataset such as 
HealthACORN and MOSAIC could be enhanced by unfettered 
consideration of other proxies, and hence improve the 
relevance of EHR datasets to insured portfolios.

While not underestimating the costs involved, there could 
be a significant first-mover advantage in using real-world 
evidence to provide more precise estimation of the risks and 
price accordingly. Late adopters would run the risk that their 
aggregate pricing would be inappropriate and insufficient 
for the lives that they were insuring, and be late to notice 
and understand changes in prognosis for particular medical 
conditions.

Higher resolution in underwriting decisions may encourage 
actuaries to shift in developing future assumptions from top-
down models of population mortality trends to bottom-up 
approaches that track the experience of limited numbers of 
statistically credible groups with similar medical impairments. 
For each group, EHR datasets would provide direct insights 
on potential sources of improvement or deterioration, either 
through considering differences between actual treatments 
or current clinical guidance, or changing understanding of the 
determinants of disease diagnosis. The direction of travel would 
be towards individual predictions of future improvements/
deteriorations to complement more accurate underwriting 
assessments of current health.

The reality is that the wave of innovation that the Covid-19 
pandemic unlocked has transformed our expectations of what 
is accessible and open to investigation. It has supercharged 
our investigation of the benefits of ML in understanding EHR 
datasets. The days of life insurance lagging behind general 
insurance when it comes to deep appreciation of data-rich 
environments may be coming to an end. 

The UK Biobank, for example, contains a wide spectrum of 
health and mortality data on over 500,000 participants and 
is prepared to consider applications from both academia and 
industry if researchers can demonstrate how their research 
benefits public health and are prepared to publish. Bona fide 
researchers have the opportunity to work with different tiers 
of data with licensing costs between £3,000 and £9,000. Such 
opportunities need to be seized by the actuarial profession. 
It would be a great pity if actuaries were to be left behind by 
other data professionals just at the point that ML techniques 
start to unlock the potential of rich EHR datasets. 
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The CMI’s use of GLMs in 
the analysis of mortality and 
morbidity experience

The Continuous Mortality Investigation (CMI) performs regular analyses of UK mortality 
and morbidity data and makes use of a variety of techniques to support its outputs.  
In this article, we explore the CMI’s use of generalised linear modelling (GLM).  
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Background

GLM is a flexible framework for analysing a variety of data 
types based on an extension of the linear regression modelling 
technique. Using GLM, we can model a relationship between a 
number of explanatory variables and the variable of interest, 
isolate the impact of each explanatory variable on the target 
variable and predict outcomes for that variable. 

GLMs are used in many areas of actuarial work. The CMI often 
undertakes GLM analysis alongside its more conventional  
one-way analyses of mortality, using Actual/Expected (A/E) 
values to gain a more complete picture of the factors driving 
mortality rates. 

GLM analyses allow a range of mortality and morbidity factors 
to be taken account of within a single model. They can be 
useful in understanding which factors are most significant and 
considering how they interact with each other. They can also 
highlight where one-way A/E values could be misleading and 
provide an alternative view of the true underlying experience.

The CMI takes a pragmatic approach to GLMs, in particular

• The results should be easily interpretable by the user of the 
output in which the analysis is published, so more complex 
models that include several interactions between explanatory 
variables are carefully considered to check whether they add 
sufficient insight to simpler models. For this reason, the CMI 
also often includes an offset term of expected claims/deaths, 
so that model coefficients can be shown as percentages 
centred around 100%, to aid interpretation.

• Data limitations can often constrain the robustness of some 
of the results. For example, dependence between variables 
that are assumed to be independent can occur where one 
data contributor only sells a particular type of business 
or through a particular sales channel. The CMI is therefore 
prudent in its interpretation and commentary of the results.

Two examples of GLMs used by the CMI include mortality 
investigations for pension annuities in payment and for term 
assurances, where the tool has added explanatory insight to 
more traditional one-way analyses.

Analysis of pension annuities in payment

The CMI Annuities Committee has used GLMs as part of their 
analysis, most recently in CMI Working Paper 165, as part of 
an analysis of mortality experience of individual annuities in 
payment. This analysis compared enhanced annuities, which are 
subject to an enhancement to the income paid to reflect health 
or lifestyle factors of the annuitant that are likely to lead to 
heavier mortality, with those receiving no specific enhancement 
(‘standard’ annuities). The analysis also considered the impact 
of the 2015 pension freedoms reforms on the individual pension 
annuity market.

GLM analysis was used to provide an additional perspective 
alongside traditional A/E analysis. The GLM model used for  
this analysis included the following variables:

• Annuity type (enhanced or standard)

• Commencement period (in this case, focusing on whether the 
annuity came into payment prior to pension freedoms being 
announced in March 2014, after they came into effect in April 
2015, or in the transitional period between being announced 
and being introduced)

• Duration (length of time since the annuity came into 
payment)

• Annuity amount

• Office (the life insurance provider)  

• Calendar year.

https://www.actuaries.org.uk/learn-and-develop/continuous-mortality-investigation/cmi-working-papers/annuities/cmi-working-paper-165


The GLM generally corroborated the one-way A/E analysis, 
by showing similar effects for several factors, but there were 
some differences of note. For example, the differential between 
experience of standard and enhanced annuities appeared 
greater in the GLM analysis than in the A/E analysis, and 
durational effects appeared to be stronger in the GLM analysis. 

One interesting feature was that GLM analysis suggested that 
annuities commencing post-pension freedoms had experienced 
heavier mortality than annuities commencing pre-pension 
freedoms, while the one-way A/E analysis suggested the 
opposite. We conjecture that this may be due to the allowance 
for durational effects in the GLM analysis. This was an 
interesting analysis and one that we will consider repeating  
in future.

Analysis of term assurances

The CMI Assurances Committee has recently used GLMs as 
part of their work to produce the ‘16’ Series term mortality and 
accelerated critical illness tables, published in CMI Working 
Paper 150.

GLMs were first used as a method to determine the drivers 
of mortality and morbidity to reflect in the tables, using a 
preliminary set of rates to calculate expected claims, which 
were included as an offset term. The analysis showed that:

• The factors that were reflected in the previous ‘08’ Series 
tables – age, sex, smoker status and duration – were 
important factors that should be reflected in the  
graduated tables.

• It was reasonable to graduate the ‘all offices’ data – ie, it 
was not the case that any life insurance provider had rates 
with a substantially different age or durational shape to the 
preliminary rates.

More significantly, the analysis did not produce clear evidence 
that the shape of claim rates by age or by duration varied 
consistently across offices by other factors – ie, distribution 
channel, sum assured band, product type, joint / single life 
status and year of commencement. As a result, we decided not 
to vary the shape of the tables by any of these factors, as level 
adjustments to the tables should be adequate.

The Committee also used GLMs, with the proposed tables used 
to calculate expected claims, which were used as an offset term 
in the models. The results of these revised models were shown 
in the working paper to help users understand how experience 
varied by the factors that were not included in the rates. 
Results relating to individual life insurance providers’ specific 
experience were collated in ‘benchmarking documents’ and 
shared with the data contributors to help them understand how 
their experience compared to the new tables.
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Update on other items

The following provides an update on other recent CMI releases 
and upcoming work.

• The weekly mortality monitors, which are publicly available 
on the CMI website

• CMI_2022 was published alongside Working Paper 177  
on 22 June 2023

• “All offices” experience of term assurances in 2021 was 
published in Working Paper 176

• Analysis of long-term historical mortality improvements  
in Working Paper 175

• Proposed methods for the ‘S4’ Series pensioner mortality 
tables in Working Paper 174. 

https://www.actuaries.org.uk/learn-and-develop/continuous-mortality-investigation/cmi-working-papers/assurances/cmi-working-paper-150
https://www.actuaries.org.uk/learn-and-develop/continuous-mortality-investigation/cmi-working-papers/assurances/cmi-working-paper-150
https://www.actuaries.org.uk/learn-and-develop/continuous-mortality-investigation/other-cmi-outputs/mortality-monitor
https://www.actuaries.org.uk/learn-and-develop/continuous-mortality-investigation/cmi-working-papers/mortality-projections/cmi-working-paper-177
https://www.actuaries.org.uk/learn-and-develop/continuous-mortality-investigation/cmi-working-papers/assurances/cmi-working-paper-176
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