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Abstract

Objective: This research sought to update understanding following improvements to treatment and deepen
the understanding of the mortality risk associated with Type 1 or Type 2 diabetes, including relative risk in the
presence of comorbidities. Specifically, a model to provide mortality predictions at a granular level for lives with
and without diabetes. The model is tailored for use by the insurance industry to provide an updated source
from which to appreciate the risk posed when underwriting people with diabetes. By providing an updated
and deeper understanding of mortality risk, the research’s aim is to improve access to insurance for those
individuals living with diabetes.

Method: The model combines industry standard underwriting risk factors, such as age, gender, deprivation
index, body mass index, smoker status, blood pressure, and cholesterol level, with various comorbidities related
to diabetes. A comprehensive analysis of mortality risk factors, between 2010 and 2019, for people with
and without diabetes is undertaken on over 1.2 million records based on Clinical Practice Research Datalink
(CPRD), Hospital Episode Statistics (HES), and Office for National Statistics (ONS) death registrations data.
Cox proportional hazards models are used to estimate the probability of death, stratified by gender across
three distinct populations: Type 1 diabetes, Type 2 diabetes, and a general population sample.

Results: The model output produced are permutations of the following: gender; population split by general
sample, Type 1 and Type 2 diabetes; and a time dependent exponential model and a time invariant homoge-
neous model. A Shiny model application allows interaction with the model outputs (https://0jv7e6-scott-reid.
shinyapps.io/diabmdl/) and spreadsheets provide additional explanation. Useful insights were obtained
through industry discussions on the variation of existing market practice against that implied by the results.
Key rating factors were generally aligned with market practice such as age, BMI, Blood pressure and Choles-
terol and years since a diabetes diagnosis. However, for a few significant mortality risk impacting co-morbidities
the results did not adhere to prior expectations. Exploratory work suggested that the order and sequencing of
key co-morbidities for diabetes must be included in future model development.

Keywords: Diabetes; Mortality risk; Cox proportional hazards model; Insurance
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1 Foreword by the Diabetes Steering Group on behalf of the Institute
and Faculty of Actuaries

The Diabetes Steering Group (DSG), on behalf of the Institute and Faculty of Actuaries (IFoA), are delighted
to introduce this paper, which, to our knowledge, is the first study that provides a comprehensive analysis of
various mortality risk factors for individuals diagnosed with both Type 1 and Type 2 diabetes Reid et al. (2023).
This report includes a model which provides the user with a mortality risk prediction for individuals living with
and without diabetes.

This research is considered important to the primary audience, the UK insurance industry, as it furthers the
DSG’s key research aim as set out in our initial paper Reid et al. (2023); that is, to widen access to insurance
products for customers living with diabetes by improving the insurance industry’s access to information on the
specific mortality risk for those living with diabetes. This primary intended audience for this research is the
actuarial community and insurance industry, specifically those insurers and reinsurers that write protection and
longevity risk products in the UK. However, the IFoA have a royal charter under which the DSG also seek to
provide information for the wider public interest.

The Diabetes Working Party produced a sessional paper Reid et al. (2023) published on 18th May 2023
which provided insights to diabetes mortality risk via a comprehensive literature review and a global underwrit-
ing survey. Following this, the working party sought to further the research aim by commissioning a research
project. That research project is detailed herein and was commissioned by the IFoA’s Actuarial Research
Centre (ARC) and a group of industry participants, specifically Pacific Life Re, Partner Re, Swiss Re, Legal &
General, and Zurich Insurance Group. The research was carried out by world-leading experts in risk analysis,
risk modelling and risk evaluation at the University of Leicester, namely Dr Bogdan Grechuk1, Dr Evgeny Mirkes
and Prof Alexander Gorban. These academic researchers are supported by the Real World Evidence Centre
and the Leicester Diabetes Centre, a unique, collaborative partnership between the NHS and the University of
Leicester.

Individuals with diabetes, both Type 1 and Type 2, run a greater risk of developing one or more severe
health complications, including cardiovascular and cerebrovascular disease. Diabetes is also a leading cause
of blindness in working-aged individuals and a common cause of kidney failure. Life expectancy following a di-
agnosis of diabetes has historically been lower than in those without diabetes, given that inadequate glycaemic
control gives rise to several complications that cause premature death, along with increased risks of long-term
disability.

In recent years, early detection and management of diabetes, both from a personal as well as a physician-
led perspective, has improved such that survival with diabetes has increased. New pharmaceuticals, coupled
with enhanced monitoring and modern insulin dosage systems, have transformed the lives of individuals living
with diabetes. Life expectancy with optimal glycaemic management has been extended in those with diabetes;
however, the long-term impact of new pharmaceuticals has yet to be fully appreciated.

The overarching aim of the research project is to develop a deeper understanding of the mortality risk asso-
ciated with a diagnosis of Type 1 and Type 2 diabetes and the impact of recent improved medical treatments.
More specifically, the DSG’s objectives are to:

• Gain insights from recent data by considering advanced data analytic techniques to understand relative
mortality risk factors and interactions.

• Produce a model that can predict mortality across a wide age range at a granular level for lives living with
and without both Type 1 and Type 2 diabetes. The model should include co-morbidities such that the
impact on mortality of living with and without diabetes in the presence of a wide range of co-morbidities
can be understood.

The work carried out by the University of Leicester is detailed within this paper; specifically, the following
areas are detailed: a background on the data sources used, e.g. Clinical Practice Research Datalink (CPRD)
and linked data; the process of data ingestion and cleaning; the data analysis; and the fitting of a Cox pro-
portional hazard model. The DSG sought a transparent model where inferences can be drawn and therefore,
a regression model was selected, namely Cox proportional hazard. The DSG built an accompanying Shiny
application2 so that the insurance industry and any interested wider stakeholders, e.g. Diabetes associations
and general practitioners (GPs), can interact with the model output.

1https://le.ac.uk/people/bogdan-grechuk
2https://0jv7e6-scott-reid.shinyapps.io/diabmdl/
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The DSG is satisfied that the research outputs have been carried out to a high quality and in line with ex-
pectations to produce findings that are relevant to the primary intended audience (e.g. the actuarial community
and insurance industry).

The interactive Shiny application will enable the user to consider the impact of different attributes on a
general sample population, as well as a population of diabetes Type 1 and Type 2. The DSG would like to
draw the reader’s attention to the benefits and limitations Section 6.6 and to advise that care be exercised
when interpreting results and utilizing the Shiny application. Section 7 includes a general industry discussion
followed by an applied industry discussion. The modelling was appreciated in the general discussion but there
are many complications such as the quality of the data and how to handle co-morbidities correctly. Building
a general model that covers Type 1 and Type 2 for the all the different co-morbidities was ambitious and we
understand this is the first time that has been done. The general feedback was that creating a model based on
CPRD data was worthwhile as an initial approach that can be improved in future based on the feedback from
practitioners.
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Data used

This study is based in part on data from the Clinical Practice Research Datalink (CPRD) obtained under
licence from the UK Medicines and Healthcare products Regulatory Agency. The data is provided by patients
and collected by the NHS as part of their care and support. The interpretation and conclusions contained in
this study are those of the author(s) alone3. We also used linked Hospital Episode Statistics (HES) data and
Office for National Statistics (ONS) mortality data.

2 Introduction

2.1 Background

Both Type 1 and Type 2 diabetes are serious diseases and there has been a dramatic increase in prevalence
over the last few decades. The number of worldwide cases has quadrupled between 1980 and 2004 Zhou
et al. (2016) and has increased for both Type 1 and Type 2 diabetes Patterson et al. (2019). More than half
a billion individuals are living with diabetes worldwide as of 2021, and this number is predicted to grow to 1.3
billions in the year 2050 Ong et al. (2023). Over 300 million individuals have prediabetes Atlas et al. (2015) and
it is estimated that almost half of all individuals (49.7%) living with diabetes are undiagnosed Cho et al. (2018).

In the UK, the number of individuals living with diabetes in all its forms is approaching 5 million, and this
number is predicted to rise to 5.5 millions by 2030 Cho et al. (2018). The expected lifetime of an individual with
diabetes is significantly lower than for a non-diabetes individuals of similar age and other conditions (Bertoni
et.al Bertoni et al. (2002), Tancredi et.al. Tancredi et al. (2015)). The analysis of diabetes-related mortality is
complicated by the fact that individuals rarely die from diabetes directly, instead, individuals with diabetes have
increased risk of death from other diseases (Defronzo et.al DeFronzo (2009)). In the last decade, significant
advances in medical treatments for Type 1 Boscari and Avogaro (2021) and Type 2 Chee and Dalan (2024)
diabetes seem to have reduced the mortality risk for many individuals. However, the effect of these treatments
on mortality risk is not yet fully understood. Studies to date which provide information on mortality risk for
individuals with diabetes is derived from data 10 or more years old which does not reflect those more recent
treatments.

2.2 Overview of this research project

This research project develops models for mortality prediction for individuals with Type 1 and Type 2 diabetes.
These models are based on recent data (namely the years 2010 to 2020) and as such include the impact of
recent treatments. The model output is mortality predictions for an individual based on risk factors including
age, gender, body mass index (BMI), blood pressure (BP), cholesterol level (CL), smoking status, index of mul-
tiple deprivation (IMD), blood glucose (sugar) level (HbA1c), duration since diabetes diagnosis, and existence
of various co-morbidities. With this information on each risk factor as an input, the models provide an output of
a probability of death for the individual within the next t years for any given t > 0. To compute this probability,
the models allow for the effect of the risk factors, listed above, separately and, for some of the factors, in com-
bination. For example, coronary heart disease significantly increases the mortality risk for all individuals with
diabetes, but the increase is particularly strong for individuals with high BMI.

It is important to note that this analysis does not attempt to draw causal epidemiological conclusions.
Instead, it seeks to pinpoint risk factors that are reliably correlated with mortality in the diabetic population. Such
an approach reflects the requirements of underwriting practice, which relies on consistent and interpretable risk
differentiators to support equitable, evidence-driven decisions.

The analysis of data in this research project, alongside the existing literature Huxley et al. (2015); Kautzky-
Willer et al. (2023) reveal many risk factors which correlate with mortality differently depending on whether the
diagnosis is of Type 1 or Type 2 diabetes, and gender. Therefore, separate mortality models were developed

3Copyright © 2025, re-used with the permission of The Health & Social Care Information Centre. All rights reserved.

5



by gender for (i) general population, (ii) individuals living with Type 1 diabetes, and (iii) individuals living with
Type 2 diabetes. There are therefore six models produced in total.

All of the models are Cox proportional hazards models Cox (1972). A major advantage of this model is
that the computed Cox coefficients explicitly show the effect of each factor on the mortality risk. The primary
audience, the insurance industry, are required by regulation to have transparency in pricing terms and as such
a transparent model where inferences can be draw was preferred.

These models can be used to inform the insurance industry on the specific mortality risk posed by individ-
uals with diabetes with the aim of achieving availability of insurance products for those living with diabetes and
also more appropriate pricing and reserving for life and health insurance products. These models provide a
better understanding of the mortality risk factors for individuals with diabetes which may also be of interest to
wider stakeholders.

2.3 Comparison with the existing literature

Diabetes literature is very rich. However, many studies investigate the effect of only one or at most several
risk factors. Indeed, each risk factor considered herein can be found in the existing research as it affects
the prevalence of diabetes or the associated health outcomes including: age de Miguel-Yanes et al. (2011);
Constantino et al. (2013), gender Ohkuma et al. (2019); Mauvais-Jarvis (2018), ethnicity Goff (2019), physical
activity Wahid et al. (2016), body mass index Chatterjee et al. (2017), alcohol consumption Baliunas et al.
(2009), socio-economic status Evans et al. (2000) and co-morbidities such as cardio-vascular disease Leung
et al. (2009); Wilmot et al. (2012); Riley and Cowan (2014); Stamler et al. (1993), heart failure Ohkuma et al.
(2019), coronary heart disease Peters et al. (2014), stroke Collaboration et al. (2010), hypoglycaemia Elwen
et al. (2015), high blood pressure Chiriacò et al. (2019), depression Ali et al. (2006), dementia Bello-Chavolla
et al. (2019), fatty liver disease Song et al. (2021) and COVID 19 Hussain et al. (2020); Pal and Bhadada
(2020) (non-exhaustive list).

In contrast, this project builds a model that allows for many risk factors, separately and, for some of the
factors, in combination. Such studies are far less common in literature. Jensen et.al. Jensen et al. (2014) de-
veloped a clustering methodology which can be used to identify new risk factors related to diabetes. Golovenkin
et.al. Golovenkin et al. (2020) studied a selection of more than 100, 000 hospitalization cases with individu-
als suffering from diabetes characterized by 55 attributes. The outcome of interest was hospital readmission,
rather than mortality.

To the best of our knowledge, none of the existing recent literature provides a comprehensive analysis of
the impact of various risk factors on the mortality of individuals living with diabetes. In addition, the literature
does not provide a general model for mortality prediction for individuals with and without diabetes based on a
large variety of risk factors. Herein, this is the focus of this research.

3 Data structure

3.1 Data collection

This research project requires information regarding the outcome of interest, death. It also requires information
regarding possible risk factors for that outcome of interest, such as diabetes diagnosis type and date, age,
gender, etc. The first was sourced using the Office for National Statistics (ONS) Death Registration Data,
which enables a status of alive or deceased to be mapped to an anonymised individual record, and, in the
latter case, the date of death. The second was sourced using the CPRD (Clinical Practice Research Datalink)
database Herrett et al. (2015), which contains anonymised individual data records from a network of general
practices (GP) across the UK. In addition, information from the Hospital Episode Statistics (HES) database was
utilised to gain further information on co-morbidity diagnosis from the National Health System (NHS) hospitals’
admissions and outpatient appointments data. Deprivation is considered a significant risk factor for mortality
Evans et al. (2000). To allow for this, an Index of Multiple Deprivation (IMD) score was mapped at a GP and at
an individual level.

These datasets and the linkage of these datasets were necessary to enable the influence of various risk
factors on the mortality of those living with diabetes to be understood. Samples of the full database were
taken over a restricted time and geographical scope so as to work with the least amount of data to achieve
the research aim. This approach aligns with the principle of data minimisation, ensuring that only the min-
imum amount of data necessary to adequately address the research question was used, thereby reducing
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computational burden and safeguarding data privacy. These datasets are fully anonymized, intended for use
by researchers and their use in this project was approved by CPRD in 2021.

The time period for this research spans from 1 January 2010 (the “study start date”) to 31 December 2019
(the “study end date”). This was the most recent 10-years period that was not impacted by the COVID-19
pandemic. Although some of the datasets are UK wide, the HES data is restricted to England and as such, the
geographical scope of the research was narrowed to England as this linkage was necessary to understand the
influence of co-morbidities on the mortality of diabetes patients. Data from the private healthcare system is not
included; this is not considered material because the vast majority of diabetes care and associated hospital
admissions in England occur within the NHS, making NHS Hospital Episode Statistics a comprehensive and
representative source for the population under study.

The following samples were requested from the CPRD database:

• A diabetes sample: anonymised individual records from the database who have at least one record
related to diabetes (Type 1 or Type 2), were alive at the study start date, and were at least 18 years
of age by that date (i.e. a year of birth is 1991 or earlier). This sample resulted in 621,115 individual
records. Given that approximately 4 million adults in England were living with diabetes (diagnosed and
undiagnosed) in 2019, about 15% of them were included in this sample.

• A general sample: a random sample of 250,000 anonymised individual records, regardless of diabetes
status (i.e. general) who were alive and were at least 18 years of age at the study start date. This sample
is about 0.5% of the relevant population.

• An additional sample: a random sample of 25,000 anonymised individual records, regardless of diabetes
status, with any of the following diseases: Heart failure, Coronary heart disease, Angina, Heart attack,
Stroke, Amputation, Macrovascular disease, Asthma, Atrial fibrillation, Cancer, CKD (kidney disease),
COPD (Chronic obstructive pulmonary disease), Dementia and Epilepsy.

These samples are not mutually exclusive and as such, some records appear in several samples. In total,
1,205,657 unique records were selected across the three samples. This is referred to herein as the “total
dataset”.

For each individual record in the total dataset, the following were sought:

• the entire medical record available in CPRD was requested;

• the Hospital Episode Statistics (HES) data for that record was linked;

• the ONS Death registration data for that record was linked;

• and the IMD was mapped at an individual and GP level.

3.2 CPRD data

The CPRD data arrived in the following tables: Patients, Practice, Staff, Consultation, Clinical, Additional
Clinical Details, Referral, Immunisation, Test and Therapy (9 tables in total referred to herein as the “main
tables”), plus additional tables without necessary information (referred to herein as “ignored tables”). The list
of ignored tables is presented in Table 12.

Each table has its own set of columns of various lengths. The first column is Patient Identifier (“patid”),
which is an encrypted unique identifier given to an individual record in the CPRD dataset. All tables and
figures can be found in the separate “Tables and Figures” document. Table 1 provides a list of columns and
their description. The field patid is used to find records in all tables that correspond to a given individual record.
Other forms of linkage are provided, Tables 1-10 describes all columns in the main tables, together with all
forms of linkage. For convenience, links between fields are also summarised in Table 11 and Figure 1.

There are also two additional dictionaries tables, “Medical dictionary” and “Product dictionary”. The dis-
eases in CPRD tables are encodes using Read version (v) 2 codes also known as “Medcodes” e.g. Heart
failure has Medcode “G58..00”. A list of Medcodes with descriptions of the corresponding medical terms is
presented in dictionary Table “Medical dictionary” and products (e.g. prescribed drugs) are encoded using
“prodcodes”. Table “Product dictionary” lists all such drugs and their descriptions. We refer you to Tables 13
and 14 for columns descriptions in the dictionary tables.
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3.3 Data from linked sources

The linked data from HES are organised into 11 tables: Patients, Hospitalizations, Episodes, Diagnoses by
episodes, Diagnoses by hospitalisation, Primary diagnoses across a hospitalisation, Procedures, Augmented
Care Periods, Critical Care, Maternity, and Health Resource Group. See Tables 15-25 for the descriptions of
all table columns. For this research, only the first 6 tables were necessary as these contain information about
diagnoses. All tables contain column “patid” to assist in linkage. Individual patients may contribute data to more
than one GP practice. In this case, multiple patid’s may represent the same individual. However, a column
“gen hesid” within the table “Patients” in the HES data provides a CPRD generated unique key which allows
information in CPRD tables and in HES tables to be identified where it refers to the same individual. Within the
total dataset, there were 15,107 cases which had multiple patid’s.

The information about diagnosis in HES is recorded using the International Classification of Diseases ver-
sion 10 (ICD-10) coding frame. This differs from the CPRD’s medcodes e.g. Heart failure has Medcode
“G58..00” while the corresponding ICD-10 code is “I50.9”. For this reason, a mapping between ICD-10 codes
and medcodes was required.

The linked ONS Death registration data consists of only one table. It contains the required information of
patid, date and cause of death. A full list of columns is shown in Table 26.

The IMD data consists of two files - one contains a dictionary to identify the GP county, and another with
the deprivation score at the individuals and GP level. A description of the columns is shown in Table 27.

Not all individuals in the total dataset are “eligible” for the linked data: HES, ONS and IMD. There is a
text document linkage eligibility new patids.txt which provides which individuals are “eligible” for linked data.
Individuals eligible for HES linked data has attribute “hes e” equal to 1. Similarly, individuals eligible for ONS
linking have “death e” equal to 1, while individuals eligible for IMD linking have “lsoa e” equal to 1.

4 Data treatment and missing data analysis

4.1 Information required for mortality risk analysis

The selection of variables for this study was informed by a combination of evidence from the academic literature
(as discussed in Section 2) and established actuarial practice within the insurance industry. Many of the
included factors, such as age, gender, smoking status, body mass index (BMI), and indicators of co-morbid
conditions, have consistently been associated with variations in mortality risk among individuals with diabetes.
These are widely recognized both in clinical studies and in underwriting guidelines as relevant indicators of
long-term health outcomes. Additionally, variables such as blood pressure, cholesterol levels, and HbA1c
were included based on their routine use in risk stratification and premium setting by insurers, where actuarial
judgment and historical claims experience inform expectations of mortality risk, even in the absence of strong
causal evidence. As mentioned in Section 2.2, the objective of this analysis is not to establish epidemiological
causation, but rather to identify variables that show meaningful correlations with mortality outcomes within the
diabetes population. This distinction aligns with the practical needs of insurance underwriting, where the goal
is to detect consistent, interpretable differentiators in mortality risk that can support fair and evidence-based
decision-making.

The following data items are available across the linked data. The aim of data treatment was therefore
to produce a data table, where each individual (patid) has the following information, which is appropriately
cleaned and suitable for analysis:

• Outcome of interest:

– Individuals status as alive or deceased as at study end date 31.12.2019

– Date of death, where applicable

• Mortality risk factors of interest:

– Static data items

* Age at the start date

* Gender

* Index of multiple deprivation (IMD)

* Smoking status

– Regularly recorded data items
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* Body mass index (BMI)

* Blood pressure (BP)

* Cholesterol level (CL)

* Blood glucose (sugar) level (HbA1c)

* Indicator for diagnosed diseases which are considered “potentially significant” (see Table A).
We emphasize that this is the original list of “potentially significant” diseases for the mortality of
individuals with diabetes. This list was formed based on the literature review (Section 2), and
consultations with specialists from Leicester Diabetes Research Center. We do not claim that
all these diseases are indeed significant. In fact, identification of a subset of significant diseases
is a major part of this research project.

* Date of diagnosis, where applicable

The following data items, although available across the linked data and considered potential risk factors of
interest, were not included for analysis for the reasons shown below.

• Marital status – high level of missing data

• Ethnicity – high level of missing data and not used by the UK insurance industry

The following sections provide insights for each item of data used including commentary on missing data
analysis where relevant and data treatment. Further commentary can be found alongside the relevant tables
within the “Tables and Figures” document.

Table A: List of abbreviations used for medical conditions

DT1 Type 1 Diabetes DT2 Type 2 Diabetes
AF Atrial Fibrilation AID Acquired immune deficiency syndrome

Amp Amputation Ang Angina
Ano Anorexia Anx Anxiety
Ast Asthma Bli Blindness
Bro Bronchiectasis CHD Coronary heart disease
Can Cancer CLD Chronic Liver Disease
CS Chronic sinusitis COP Cryptogenic organising pneumonia
CyF Cystic Fibrosis DDI Diverticular disease of intestine
Dem Dementia Dep Depression
Epi Epilepsy Hem Hemiplegia
HeL Hearing loss HF Heart failure
Hyp Hypertension IBS Irritable bowel syndrome
LD Learning disabil. MLD Mild Liver Disease

MVD Macrovascular MSc Multiple sclerosis
PrD Prostate disorders PsE Psoriasis or eczema
PuF Pulmonary Fibrosis PUD Peptic Ulcer Disease
Sch Schizophrenia RhA Rheumatoid arthritis
Str Stroke SLD Moderate or Severe Liver Disease

ThD Thyroid disorders

4.2 Data for outcome of interest

There are two potential sources of date of death: “deathdate” field in the original CPRD data and “ONSDeath”
field in the linked ONS data. For some individuals there are discrepancies in these fields. Some individuals
have different dates of death (see Table 46) and there are 86,825 records with an ONS date of death without
a “deathdate” in the CPRD data (this is 16% out of the total of 543,668 individuals in the total sample linked in
ONS). The lack of any recorded activities (such as GP visits, hospitalizations, etc.) after the ONS date of death
is considered adequate evidence that the ONS date of death is correct. Within the insurance industry, the ONS
data is considered the “gold standard” for death records and this is supported in the literature Gallagher et al.
(2019).
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All individuals who died before the study start date are removed. To ensure that individuals with deaths
pre-dating the ONS death register’s creation in 1998 are not included within the study period, the CPRD date
of death is used if it is before 1998. For deaths after 1998 the ONS death data is used.

The CPRD date of death is considered fit for the filtering purpose above but is not considered fit for the
purpose of mortality analysis. Therefore, where a link between the ONS and CPRD data cannot be established,
these cases are removed from the study. That is, only individuals with ONS linked data are used. Although,
this reduces all sample sizes it is considered appropriate because the CPRD date of death information is
considered to be unreliable for mortality analysis. In the diabetes sample, there were 621,115 individuals
initially. A link can be established to the ONS for 283,057 (45%). Excluding those individuals who died before
the study start date, the sample contains 242,461 individuals (85%). In the general sample, there were 250,000
individuals initially. A link can be established to the ONS for 103,597 (41%). Excluding those individuals who
died before the study start date, the sample contains 95,786 individuals (92%). These data are summarized in
the table below.

Sample Type Initial Individuals Linked to ONS (%) Alive at Study Start (%)
Diabetes Sample 621,115 283,057 (45%) 242,461 (85%)
General Sample 250,000 103,597 (41%) 95,786 (92%)

• The effect of excluding the non-ONS linked individuals is compared between the initial sample (all individ-
uals) and the linked sample (only individuals linked with ONS). Standard tests for statistical significance
such as Kolmogorov-Smirnov test (KS-test) are not useful for large datasets4. Therefore, a manual
threshold is introduced. A 1% difference in fractions for linked and non-linked sub-samples is considered
a sufficient effective size. The impact of filtering needs to be considered by the main variables of interest
for mortality analysis including gender, age, and comorbidities.

• Table 47 shows the contingency of gender from the initial to the linked sample. Female individuals com-
prise 47.8% among the initial sample and 47.6% among the linked sample. The change in the composition
of the samples, i.e. the effect size is 0.2%. Because this is less than 1%, it can be assumed that linking
and gender are independent.

• Figure 3 presents the contingency of age from the initial to the linked sample. The age distributions are
similar and the mean age with 59.79 for the initial sample and 60.82 for the linked sample. The difference
in mean age is nearly 1 year, which is considered as negligible alongside the similar age distribution.

• Table 48 presents a comparison of various diseases associated with the individuals in the initial and the
linked sample. Most of the diseases (28 out of 41) show statistically significant differences in prevalence
between the initial and the linked samples, indicating that linkage to the ONS is not independent of
disease status for these conditions. This suggests that certain comorbidities may affect the likelihood
of successful linkage, potentially due to systematic differences in healthcare usage or death registration
practices associated with specific conditions. As a result, this introduces the possibility of selection bias in
analyses relying solely on the linked sample. While the effective sizes for many of these conditions remain
modest, this dependency needs to be acknowledged in any inference about disease-related mortality
risks to avoid over- or under-estimating effects due to differential linkage rates.

A careful investigation of the database reveals the existence of some individuals of old age that are linked
to ONS, have no death date records, but also have no recorded GP activity after the study start date. We
suspected that these individuals are in fact deceased or immigrated and no longer residing within the UK5, and
performed a more careful investigation.

Of the 1,205,657 records within the total sample:

• 53,045 records have an age at the study start date of at least 80.

• According to CPRD data, 33,079 were alive at the study start date

• According to the ONS linked data, 8,566 of the above were linked to ONS and alive at the study end date.

• The overlapping cases from the above two datasets indicated as “alive” is 8,347

For those 8,347 “alive” individuals, we then search for test dates and diagnoses dates, and we have discovered
that

4Such tests almost always return a statistically significant difference, due to the large data size.
5There may be other similar reasons, e.g. transferring from GP to a care provider.
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• 1,353 individuals have the last date of diagnoses before the study start date.

• 1,884 individuals have the last date of test before the study start date.

• There are totally 1,251 individuals without any recorded GP activity after the study start date.

Table 49 shows the age distribution for the samples before and after removing those individuals. In partic-
ular, there are 5 individuals older than 120 with no death date records, and all 5 cases have no GP recorded
activity after the study start date. It is unlikely that individuals alive at these ages are no longer interacting
with the registered GP. It was considered likely, that these individuals are deceased, but the death was not
recorded. This may occur where an individual has immigrated from the UK some time ago. On this basis, all
records with an age greater or equal to 80 at the study start date, which do not have any GP recorded activity
after the study start date, are removed from the analysis.

The removal of the above 1,251 individuals, which we call “fake” individuals, has a crucial effect on the
research objective, especially in insurance context. While the proportion of these individuals in the entire
database is negligible (1,251 out of 1,205,657, which is about 0.1%), their proportion among 8,347 individuals of
age 80+ linked to ONS is 15%. This percentage increases when we increase age threshold, and reaches 100%
for the individuals aged 110+. Therefore, if “fake” individuals were not excluded, they would lead to a severe
underestimation of the mortality rate at old ages.

After removal these individuals, the number of individuals left in the total sample which are linked to ONS
is 656,410. All the statistic for the total sample described below is made based on this set of individuals.

4.3 Data for mortality risk factors of interest

The following data were processed as either static or regularly monitored.

4.3.1 Static data items

The following data items are considered static, and therefore extracted from the data as at the study start
date. Although some items may vary through the study period, such changes are not considered materially
significant for the purposes of mortality modelling. For instance, occasional corrections to recorded date of
birth or gender are rare and typically reflect data quality improvements rather than actual changes in the
individual’s characteristics. In the context of this study, where the objective is to evaluate broad mortality
risk patterns across a large population, treating these variables as fixed at the study start date simplifies the
analysis without introducing meaningful bias. This assumption aligns with industry practice in insurance risk
modelling, where underwriting is typically based on characteristics known at a specific point in time.

Age and Gender Age is defined as the number of full years of age at start of the study. It has been computed
as 2009 minus the year of birth. In Cox proportional hazard model, we will also have a parameter t that
represents time from the study start to any given time moment. The age at any moment can then be computed
as A + t, where A is the age at the study start. Having A constant simplifies the analysis.

Gender is recorded as binary value: 1 – Male, 2 – Female, as recorded at birth.

IMD Index of multiple deprivation (IMD) takes an integer value from 1 to 10, and is computed based on the
postcode recorded at the study start. For individual records, the data item “IMD decile” is missing for nearly
58% of total sample and nearly 61% of the general sample. In these cases, the missing value is impute with
the IMD for the individuals registered GP. The remaining missing values, 291 cases (171 for which the IMD is
recorded as 0 and 120 for which it is recorded as NaN) are allocated a value 5, which is a middle value for the
index.

We acknowledge that the proportion of missing individual-level IMD data is substantial and that GP catch-
ment areas are geographically broader than individual postcodes. However, excluding these records would
result in a loss of over half the study population, drastically reducing statistical power and likely introducing
significant selection bias, as data missingness is rarely random. Consequently, we utilized the GP-level IMD as
a pragmatic proxy, operating on the reasonable assumption that patients generally register with a GP practice
in close proximity to their residence, thereby sharing similar socioeconomic characteristics.
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Smoking status Files Smoke_ent_*.txt contain information about smoker status (1 – Yes, 2 – No, 3 – Ex).
From Smoke_ent_*.txt we received 12,511,090 records. After removing records with value 0 “Data Not Entered”
we have 12,509,309 records. After removing duplicated records, we have 11,068,831 records.

These files should be accompanied by Smoke_Clin_*.txt to identify dates. There were 10,714 records with
missing event dates. These dates were substituted by system date, which is the date the record was made in
the database.

In addition, files Smoke_Int_*.txt and Smoke_test_*.txt present smoking information using medcodes. ICD-
10 codes and medcodes for smoker status are presented in Table 35. Total number of records from files
Smoke_Int_*.txt, Smoke_test_*.txt and Smoke_diag.txt is 16,248. After removing all of records with medcodes
unrelated to smoke status we have 4,107 records.

In the total dataset we have 75,727 individuals or 6.7% without smoker status recorded. In General sample
we have 50,080 or 21.6% such individuals. Results of analysis of randomness of missingness are presented in
Table 36. They show that values missed not completely at random. This means that we cannot remove records
with missing values but we should impute data. The imputation method we used is set value “Non-smoker”
for records without smoker status. This approach is based on the heuristic of clinical coding practices, where
positive risk factors (such as smoking) are actively recorded by clinicians, whereas the absence of a record is
frequently used to implicitly denote a negative (non-smoking) status.

4.3.2 Regularly recorded data items

The following data items are considered to be regularly recorded and therefore extracted from the data on an
ongoing basis between the start date and end date of study.

It is a known issue in health data analysis that observational data can be recorded and missing in a biased
way. This is because it is more likely for health metrics to be recorded where health is poor or there is a diag-
nosis which requires more frequent interaction with the health system or management of that metric Rusanov
et al. (2014). Therefore, missing data analysis and treatment is carefully considered herein and the impacts
discussed within the results and conclusions.

Body mass index (BMI) There are two sources of BMI observation data. Information was extracted from
both sources, merged, cleaned, and then analysed for missing data bias.

The first source is any table containing data with medcodes specified in Table 28 and Table 29. In total,
there are 489,756 records with medcodes from Tables 28 and 29 which represents 4% of all BMI measurements.
For the 277 observations with an interval code and no corresponding event date (0.05%), the system date is
substituted. That is, the date the information was entered into CPRD which is, for those cases where both
dates are known, within a few days of the event date.

The second source of BMI measurement observations is within the “Additional Clinical details” table of the
HES data alongside the date of the observation as found in the clinical information file. There are 14,317,076
records in this table, which is 96% of all BMI measurements. Each record contains patid (ID of individual),
adid (ID of measurement), and the value of the measurement. These records were filtered to remove a) those
with no measurement value (308,392 measurements, 2.5%) and b) any duplicate with the same combination of
(patid, adid)(1,824,379 duplicates, 15%).

Joining the two sources provides a file with a time series of BMI measurement observations. Individuals
have from 1 to a maximum of 1,508 observations within the study period. Records with obvious data input er-
rors such as negative, nil, very small/large values (16,221, 0.13%) are removed. After this, there are 12,193,099
BMI measurement observations for 978,380 individuals. We will call this “BMI total sample”.

BMI is known to be recorded and missing in a biased way. This is because it is more likely for BMI to
be recorded where health is poor or there is a diagnosis which requires more frequent interaction with the
health system or management of weight Nicholson et al. (2019). For the analysis of missing data, a given
individual is considered to have a known value where there is at least one BMI measurement, otherwise it
is missing. This disregards the lack of recording frequency which is expected for healthier lives. While this
approach does not distinguish between the clinical context of individuals with differing health needs, it offers a
pragmatic framework for handling large-scale, routinely collected data. It is important to acknowledge that the
presence of a single BMI measurement may reflect varying levels of data quality: for instance, in individuals
with chronic conditions such as diabetes, infrequent BMI recording may indicate incomplete data, whereas in
healthier individuals, infrequent contact with healthcare services may reasonably result in fewer recordings.
Although this introduces some bias, treating the presence of at least one BMI value as a known measurement
provides a consistent and transparent definition of observed versus missing data.
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Table 30 presents the results of the relation between missingness of BMI and diagnosed diseases of interest
in the BMI total sample. For most diseases of interest, the missingness of BMI is not random, as would be
expected based on clinical practices. This aligns with prior expectations, since conditions such as diabetes,
cardiovascular disease, and obesity are known to prompt more regular weight and BMI monitoring as part of
ongoing management and risk assessment. Conversely, there are only three diseases—Epilepsy, AIDS, and
Multiple Sclerosis—for which the association with BMI missingness is statistically insignificant. This also seems
reasonable, as these conditions may not routinely require weight monitoring as part of standard care pathways.
One further condition, Learning Disability, shows a small p-value suggestive of statistical dependence but a
very small effect size, indicating minimal practical impact. This may reflect heterogeneous care patterns in this
group, or variability in healthcare engagement and data recording practices. Overall, the observed pattern of
associations largely corresponds with clinical expectations and known drivers of BMI measurement in routine
care.

For the general sample of 250,000 individuals, there are 769,757 BMI measurements for 162,238 individuals
(65%). Therefore, only 65% of the sample have at least one BMI measurement observation. Table 31 shows
the results of missing data analysis where the χ2 independence test shows that there are only 4 attributes for
which we do not have enough evidence to reject hypothesis about independence with confidence level 99%.
There is only one attribute (diagnosed stroke) which has significant p-value (0.758).

In conclusion, the missingness of BMI is highly correlated with age, sex and comorbidities. This means
that removing records with missing values is not appropriate and therefore impute the missing data would be
preferable. For this analysis, missing BMI measurements are input based on the “nearest neighbour” approach
with regard to characteristics age, gender and comorbidities. Specifically, we used the 1NN method, in which
the imputed value corresponds to the actual BMI of the nearest neighbour, rather than an average or moving
average of several nearest neighbours. This preserves the granularity of real observations while ensuring that
imputations reflect biologically and clinically plausible values from similar individuals. This method is consid-
ered suitable in this context because these characteristics are strong predictors of BMI and are consistently
recorded with high completeness in the dataset.

Blood pressure (BP) Blood pressure measurements are found within the additional file named BP_medval_*.txt
which contains over 32m observations. These records were filtered to remove those with a) no measurement
value (544,923, 1.7%) and b) any duplicate with the same patient ID (3,875,362, 12%). Where diastolic field was
greater than the systolic field (61,286, 0.2%), the values were reversed as this is a usual input error. The sys-
tolic and diastolic fields were reviewed for reasonableness (systolic range [30,120], diastolic range [50, 300]).
Where a record had values outside reasonable range, the record was removed (281,831 + 201,426, 1.5%). For
the 475 cases with a missing event date, the date was substituted by system date with the same logic as per
BMI.

After the above data treatment, there are over 27m BP measurement observations which correspond to
individuals in the data and so leave the remaining without BP observations: 7.6% (85,651) individuals in the
total dataset and 26% (65,286) individuals in the general sample. Table 31a shows that the analysis of the
randomness of the missing data is not completely at random, as expected. Therefore, it is not appropriate to
remove records with missing values and the preferred treatment is to impute the data. The imputation method
adopted was to take the mean value from individuals with the same gender and the same (or similar, that is,
closest in the Hamming distance) set of comorbidities.

Cholesterol level (CL) The majority of cholesterol measurement observation data is found in the “Test” tables
and some results are also found in the “Referral” tables. The data can be filtered specifically for cholesterol
tests using readcodes and medcodes for cholesterol tests that are presented in Table 33.

The following values are measured during a CL test with the normal levels presented in Table 32.

• HDL (high-density lipoprotein) – the higher the better

• Non-HDL (also written as LDL)– the lower the better. This group includes IDL, VLDL and lipoprotein

• Total cholesterol (TC) or serum cholesterol – this is the total amount of cholesterol in the blood and
includes both HDL and non-HDL cholesterol

• Triglycerides – the lower the better

• The TC to HDL ratio (TC:HDL) – the lower the better

13



Under extreme conditions (e.g. homozygote with defective genes), total cholesterol can be above 1000mg/dL
which corresponds to 26 mmol/L Kattah et al. (2019). Therefore, any cases where the observation is above 40
mmol/L within the data is assumed to be an incorrect coding of units. That is, the true unit is mg/dL and as
such, it is converted to mmol/L6.

For the 256 cases with a missing event date, the date was substituted by system date with the same logic
as per BMI. In total there are over 12m CL measurement observations. After removing duplicates, there are
over 10m observations over 903,041 individuals, about 75% of all individuals in the total dataset. For the general
sample, cholesterol measurements are observed for about 33% individuals. Therefore, 67% of individuals do
not have any CL measurements observations. Results of analysis of randomness of missingness (see Table
34) shows that values are missed not completely at random. Therefore, it is not appropriate to remove records
with missing values and the preferred treatment is to impute the data. The imputation method used is 1NN in
space of age, gender and comorbidities- this is the same method as we used for BMI.

Blood glucose (sugar) level (HbA1c) HbA1c information can be found mainly in table “Test” within the HES
data. The result of HbA1c measurements can be presented either as interval or as a scalar data. To extract
measurements of HbA1c, the medcodes presented in Table 38 are used. There are 100,064 measurement
observations with interval data among 13,930,560 observations from the “Test” table.

For those records with a missing event date, the date of data registration is taken. This is considered
appropriate because, based on available records with both values present, the date of measurement and the
registration date typically occur within a few days of each other. Therefore, using the registration date provides
a reasonable approximation of the measurement time with minimal impact on the temporal alignment of the
data.

The units of measurements for all individuals and for the general sample individuals are presented in Tables
39 and 40, respectively. As we can see from these Tables, there are many units of measurements used,
and the intervals of reasonable values in these units have non-empty intersections. Therefore, if the unit of
measurement is not given, it is impossible to guess it based on the value. For this reason, measurements with
some units such as “No Data Entered”, “No unit”, etc., were removed. When the unit is given, we convert the
measurements to % (A1c), which is one of the standard representations7.

Extreme value observations were treated as incorrect data inputs and the observations removed. The
sample data contains 10 records with HbA1c less than 2%, and 190 records with values greater than 20%.
These values fall outside the ranges for reasonableness, because HbA1c value of 3.2% is considered as
a pathologically low Joob and Wiwanitkit (2018), while, on the other hand, at values greater than 10% an
individual “needs injectable therapy” Association et al. (2017), and values exceeding 17% have been observed
by medics only at rare cases Petznick (2011). The removal of these 200 outlier records (0.0014% of the 13.9
million total observations) is not considered to materially affect the results, given the minimal proportion and
their likely erroneous nature. These exclusions help to preserve the overall quality and reliability of the dataset
without introducing meaningful bias.

There are 1,522,020 measurement observations with a date recorded but a measurement value missing.
In these cases, the observations are removed.

In total, HbA1c has been measured for about 61% of individuals in the total sample. That is, 39% of
individuals do not have any HbA1c measurement observation data. This varies significantly across samples.
In the diabetes sample, about 10% of individuals have missing HbA1c value. In the general sample, the
missingness of HbA1c is 85%.

It is anticipated that this measure is missing for those without a diabetes diagnosis because HbA1c is not
measured where medics do not consider an individual at risk of or showing signs of diabetes. Therefore the
analysis of missing data is approached separately for the two groups.

Results of analysis of randomness of missingness shows that there are values missed not completely at
random, see Table 41. Therefore, it is not appropriate to remove records with missing values and the preferred
treatment is to impute the data. For individuals without a diabetes diagnosis for whom HbA1c has never been
measured, a value within the “normal” range is input (say, 5%)8.

For individuals with a diabetes diagnosis, it is anticipated that HbA1c is missing without a significant bias by
age (at least for adults) and gender Weykamp (2013). This prior expectation is supported by our data. Hence,

6Conversion of units follows the following rule: mg/dL = mmol/L ×38.6 for cholesterol and mg/dL = mmol/L ×88.5 for triglyceride.
7There are several standard units of measurement for HbA1c: % (A1c), mg/dl (eAG1), mmol/l (eAG2). For these standard units, there

are formulae for conversion: eAG1 = 28.7A1c −46.7, eAG2 = eAG1 ×0.055766. Mmol/mol can be transformed to % using the formula
Hb[%]= 2.1 + 0.092Hb[mmol/mol].

8For individuals without diabetes, a normal range for HbA1c value is 4% to 5.6% inclusive. HbA1c levels between 5.7% and 6.4% are
indicative of pre-diabetes. A HbA1c value of 6.5% or higher is indicative of diabetes ElSayed et al. (2024).
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we focus the analysis based on the dependence on comorbidities. For every individual P with an unknown
HbA1c value, a search is performed across all individuals Pt in the diabetes sample such that (i) HbA1c is
known and (ii) the Hamming distance between comorbidities of P and Pt is less than k, where k is the minimal
value such that number of nearest neighbours is not less than 10. The input HbA1c value of P as the average of
HbA1c of its nearest neighbours. While we acknowledge that this method has some limitations, e.g. it does not
incorporate the temporal sequence of HbA1c observations, this approach allows us to preserve comorbidity-
related structure in the data, which is particularly relevant given the strong clinical association between certain
conditions (e.g., cardiovascular disease, renal impairment) and glycaemic control.

Diagnosed Diseases of interest Information is required regarding diseases (co-morbidities) that are ex-
pected to have a significant effect on the mortality risk . The list of diseases has been constructed by analysing
the literature, and in consultation with DSG and colleagues from Leicester Diabetes Research Center. The
resulting list of diseases is presented in Section 4.1.

The objective of the research is to differentiate mortality risk for individuals with diabetes. For example,
those with coronary heart disease may have a higher mortality risk when there is also a diabetes diagnosis
present compared to absence. Therefore, variables are coded to flag diabetes status and if any other disease
is present.

Diagnosed diseases can be found in the CPRD data and in the HES linked data.
In the CPRD data, diagnosed diseases are encoded in the form of “medcodes” and “readcodes”; the codes

relevant to diseases listed in Section 4.1 are summarized in Table 45. If any of the non-diabetes codes are
present in the CPRD data for an individual, a corresponding disease status variable is set to equal to 1.

A diabetes status variable is coded based on a list of diabetes-related medcodes/readcodes as found in
Tate et.al Tate et al. (2017). This list is used here because it was freely available, and using it as a starting
point significantly sped up the analysis.

The codes are split into three groups to define diabetes diagnosis status:

• 127 codes that are clearly related to Type 1 diabetes (D1T), see Table 42.

• 124 codes that are clearly related to Type 2 diabetes (D2T), see Table 43.

• 106 “unspecified” codes from which it is not possible to identify the Type of diabetes, see Table 44.

For each individual (patID) within the data, two variables are defined for modelling purposes based on if items
from the diabetes specific list of medcodes/readcodes is present or not before the end of the study period:

• d1 = 1 if Type 1 diabetes have ever been diagnosed, d1 = 0 otherwise.

• d2 = 1 if Type 2 diabetes have ever been diagnosed, d2 = 0 otherwise.

• For individuals with unspecified codes, these are classified in the following way:

– If d1 = d2 = 1, unspecified codes are disregarded.

– If d1 = 1 and d2 = 0, unspecified codes are classified as Type 1.

– If d1 = 0 and d2 = 1, unspecified codes are classified as Type 2.

– If d1 = d2 = 0, the classification is age dependent. If the first code appears below age 28, set d1 = 1
and d2 = 0, otherwise set d1 = 0 and d2 = 1.

Classification of the unspecified codes by age is considered appropriate because Type 1 Diabetes is usually
diagnosed earlier in life compared to Type 2 Thomas et al. (2018). The distribution of first diagnosis within
the total sample by Type of Diabetes is presented on Figure 2. It can be seen that this also holds within the
diabetes sample; for individuals with age of the first diagnosis of diabetes less than 28 it is more likely to be
Type 1 diabetes and for first diagnosis of diabetes at age 28 or more it is more likely to be Type 2 diabetes.

In the HES data, diagnosed diseases are encoded using International Classification of Diseases (ICD)
codes instead of medcodes/redcodes. At the time of the research, it was not possible to find a clear lists of
ICD codes corresponding to each diseases as in Tables 42, 43, 44, and 45. To utilise the HES data, the ICD
codes have been converted to medcodes/redcodes. Then we identify the diagnosis as per the process outline
above and summarized in Tables 42, 43, 44, and 45.

For the conversion, a dictionary from file ICD10.DBF from the “Clinical Terminology Browser” was used (the
only version released on 19.03.2018) available online at https://isd.digital.nhs.uk/trud3/user/guest/
group/0/pack/9/subpack/8/releases. It was developed to translate readcodes to ICD10 and there may be
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several readcodes for one ICD10 code. There are 14,702 different ICD10 codes covering 116,374 readcodes in
the file. Unfortunately, there are 458 ICD10 codes used in the HES data within the sample that are not defined
in this dictionary. In these cases, a nearest match was used to identify the diagnosis; for any given code, the
ICD code with the same four symbols that could be found in the dictionary ICD code was used and then the
corresponding row is used for decoding; otherwise the ICD code with the same three symbol code is used.

For every disease, the date of the first record with the corresponding ICD, readcode, or medcode is used
as the date of diagnosis. In effect, all records with the same disease at a later date are ignored. Some records
are missing a date of diagnosis. However, all these cases contain a date of inclusion of information into the
system (known as “system date”). Therefore, where the diagnosis date is missing the system date is used.
Adopting this approach, reduces the 0.6% of records in the total sample with missing date of diagnosis to nil.

5 Direct data analysis

To undertake reasonableness checks and better appreciate the morbidity and mortality risk within the samples,
data analysis was undertaken. We computed various quantities of interest, such as mortality rates or diseases
probabilities, directly from data, without the use of any models. This preliminary step aimed to ensure that the
underlying data was consistent with expected trends and to offer initial insight into the proximity of observed
outcomes, such as mortality and morbidity, to key rating factors. These analyses form a critical bridge between
raw data and the structured modeling process, helping to distinguish correlation from causation and identifying
patterns that may justify the inclusion or exclusion of certain variables in later stages.

The analysis is each subsection below is performed based on one of the following samples:

• general sample (GS)

• diabetes sample (DIB)

The distribution of age for GS and DIB is presented in Table 51 and Figure 4.

5.1 Mortality rates

To check the quality of data, a direct mortality estimation was performed by age bands on the GS and com-
pared to the National Life Tables (NLT) Office for National Statistics (2025). These tables are appropriate for
several reasons: they provide official, high-quality mortality benchmarks derived from comprehensive national
data; they cover a similar geographical region as the study sample (the UK for NLT versus England for the
study sample); data for various time periods are available. Furthermore, the ONS methodology is transparent,
statistically robust, and widely accepted in actuarial and demographic research, making the NLT a reliable
external reference point for validating age-specific mortality rates.

Mortality is estimated in age bands because, by any separate age, the direct estimate would produce
inaccurate results due to small sample sizes. The age bands employed are in 10-year increments, except for
the youngest group (e.g. 16-20, 20-30, 30-40, and so on).

For each age band A, the probability of death (e.g. the mortality rate) is calculated using the formula:

µA =
NDA
NA

where: NA is number of individuals in the age band A at the start of the study, and NDA is number of observed
deaths within the study period from those individuals in age band A. The resulting mortality rates are presented
in Table 68.

The NLT (“Tables”) present, for each age x, the probability qx that an individual aged x will die before
reaching age x + 1. The notation q(x, t) therefore denotes the probability, for an individual aged x, to die during
the year t. The Tables present mortality rates by three-year periods, e.g. q(x,2011) is the central estimate
for the period 2010 − 2012. A mortality rate by 10 year age bands over the study period is computed from the
Tables in order to make a comparison to the µA values calculated from GS. To achieve this, the number of NLT
expected deaths for each year t is calculated for a given population Nx for each age x, e.g.

M(x, t) = Nx · q(x, t).

The number of death in the following year t + 1, is calculated after reducing the population at age x for the
deaths in the year t and by accounting for the change in the probability of death for the cohort now 1 year
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older:
M(x + 1, t + 1) = (Nx − M(x, t)) · q(x + 1, t + 1).

Therefore, the number of deaths during the year t + k, for the cohort aged x in year t, can be calculated as

M(x + k, t + k) =

(
Nx −

k−1

∑
p=0

M(x + p, t + p)

)
· q(x + k, t + k).

This can also be rewritten as:

M(x + k, t + k) = Nx ·
k−1

∏
p=0

(1 − q(x + p, t + p)) · q(x + k, t + k).

The total number of deaths, for the cohort aged x at the study start, over the study period of 2010 to 2019 is
therefore:

Mx =
9

∑
k=0

M(x + k,2010 + k).

The total number of deaths within an age band A is the summation of the total deaths for each age x within A:

MA = ∑
x∈A

Mx.

To arrive at an estimation of mortality from NLT, the total deaths by age band, MA, are taken as a proportion
of the population at the start of the period, NA = ∑x∈A Nx,

µA =
MA
NA

Using the Nx values from the GS, the implied mortality rate µA based on the NLT estimate rates are presented
in Table 69. Figure 10 compares these to the GS mortality and the observed difference is negligible which
provides confidence that, at least in the aspect of general mortality, our data are consistent with the general
UK population.

5.2 Diseases probabilities

Before building the model for mortality prediction, we performed some direct estimates for diseases probabili-
ties that may be of independent interest. The objective of this exercise is to assess the plausibility and internal
consistency of the morbidity information before incorporating it into a multivariate modelling framework. This
step is of particular interest to the actuarial audience because the presence and prevalence of certain diseases,
such as cardiovascular conditions or cancer, are known to be strong predictors of increased mortality risk of
the individuals with diabetes and are frequently used as underwriting factors. By estimating these probabilities
directly from the data (i.e., without modelling assumptions), we aimed to uncover potential patterns, anomalies,
or data quality issues that might impact downstream risk assessment.

First, the probabilities of various diseases for individuals in the general (GS) and in diabetes (DIB) samples
are computed as the ratio:

P(A) =
NA
NT

,

where NT is the total number of individuals in the sample, and NA is the number of individuals in this sample for
which disease A has ever been diagnosed. The resulting disease probabilities are presented in Table 50. Some
of the findings are highlighted in green: for example, the most frequent disease in GS is dementia, the most
frequent in DIB (that is, given a diabetes diagnosis) is hypertension. Care should be taken when interpreting
such direct estimates. For example, it cannot be concluded that diabetes increases the risk of hypertension
as other factors are not accounted in such analysis, such as the difference in the weighted average age of the
samples. DIB is on average older than GS, see Table 51 and Figure 4, and older individuals have higher risk
of hypertension.

Second, the probability of various pairs of diseases in the samples is computed. That is, for any pair A and
B of diseases, the following ratio is computed:

P(A|B) = NAB
NB

,
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where NB is the number of individuals in the sample for which disease B has ever been diagnosed, and NAB
is the number of individuals with both diseases A and B diagnosed. The results are presented in Tables 52-
54 and Figure 5. In Table 52, yellow background highlights conditional probabilities greater than 50%, blue
background - conditional probabilities greater than 70%, while green background - conditional probabilities
greater than 99%. The same information is also presented in Figure 5 (right). As expected, the conditional
probability greater than 70% happens only in cases where one diseases implies the existence of another by
definition. Table 53 and Figure 5 (left) presents the same information but with yellow background highlighting
conditional probabilities greater than 30%, while blue background, greater than 60% (the green background
is still greater than 99%). Table 54 provides the actual values of these conditional probabilities. Conditional
probabilities of one disease given another disease for diabetes sample are presented in Tables 55 - 57 and
Figure 6.

These analyses provide valuable insights into the structure and co-occurrence of morbidity within the gen-
eral and diabetic populations. From an actuarial perspective, understanding the marginal and conditional
probabilities of diseases supports several key objectives: it aids in risk stratification, informs underwriting
guidelines, and provides empirical justification for the inclusion of specific health indicators in predictive mod-
els. Furthermore, patterns of disease clustering can point to latent health dependencies that may materially
affect mortality or morbidity risk. Although these estimates do not account for confounding factors and should
not be interpreted causally, they offer a transparent, data-driven foundation for exploring how chronic condi-
tions interact and concentrate within higher-risk groups—insights which are critical for both model calibration
and the development of fair, evidence-based rating structures.

5.3 Relative information gain

The entropy for disease A is given by the formula:

H(A) = H(NA, NT) = −NA
NT

log2
NA
NT

− NT − NA
NT

log2
NT − NA

NT
.

The conditional entropy of A given B is:

H(A|B) = NB
NT

H(NAB, NB) +
NT − NB

NT
H(NA − NAB, NT − NB).

The relative information gain (RIG) of A given B is then defined as:

RIG(A|B) = 1 − H(A|B)
H(A)

.

The objective of using entropy and relative information gain (RIG) in this context is to quantify the degree of
uncertainty reduction about the presence of one disease (A) given knowledge of another disease (B). Entropy
provides a measure of unpredictability or information content, while conditional entropy captures the remaining
uncertainty in A once B is known. RIG then expresses the proportion of uncertainty in A that is resolved by
knowing B, thus offering a normalized measure of association strength between diseases.

The RIG metric is particularly useful because it accounts not just for co-occurrence frequency but for how
much predictive information one disease provides about another. A higher RIG value indicates that disease
B is strongly informative about the likelihood of disease A occurring. For example, a RIG of 20% means that
knowing whether an individual has disease B reduces the uncertainty about their status regarding disease A
by 20%, relative to not knowing B. The relative information gain of one disease given another disease for GS
are presented in Table 58, Table 59, and Figure 7. In Table 58, yellow background highlights RIG greater than
5%, blue background highlights RIG greater than 10%, while green background highlights RIG greater than
20%. The same information is presented diagramically on Figure 7. Table 59 provides the actual values of all
relative information gains. The same information for diabetes sample is presented in Table 60, Table 61, and
Figure 8.

From an actuarial and risk modeling perspective, this information is highly valuable. It allows for the iden-
tification of disease pairs where one condition may act as a proxy or early indicator for another, which has
implications for both underwriting and early intervention strategies. Furthermore, these insights can inform
variable selection or interaction terms in predictive models by highlighting the most informative disease rela-
tionships. While RIG does not imply causality, it provides a clear and interpretable measure of association
strength that can guide both data exploration and practical decision-making in morbidity risk assessment.
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5.4 Diabetes morbidity rates

The frequencies of diabetic individuals among those with a certain disease in the sample is investigated. The
objective is to identify which diseases are most strongly associated with the presence of diabetes, helping to
uncover potential comorbidities and support risk profiling. This analysis provides insight into how frequently
diabetes co-occurs with other conditions, which can inform both underwriting decisions and the design of
predictive models that incorporate disease history as a factor in assessing health risk.

In Table 62, the diseases are listed in alphabetical order, while in Table 63 these are sorted by proportion
of diabetic cases among individuals with the given disease. Where there are less than 500 cases in the GS,
the presented estimates for these diseases are unreliable due to the lack of data and are therefore ignored in
further analysis (5 diseases highlighted by yellow background in Table 63). Angina has the highest frequency
with over 30% of individuals with angina are also diabetic. Irritable bowel syndrome (IBS) has the lowest fre-
quency with about 8% of individuals being diabetic. This distribution appears reasonable when considering the
known associations between diabetes and various comorbid conditions. Angina, a cardiovascular condition, is
strongly linked to diabetes due to shared risk factors such as hypertension, obesity, and dyslipidemia, which
may explain the high co-occurrence. In contrast, irritable bowel syndrome (IBS) is a functional gastrointestinal
disorder with less established metabolic or vascular overlap with diabetes, which supports the observed lower
co-prevalence. The pattern aligns with expectations based on current clinical and epidemiological understand-
ing.

The frequencies of individuals with diabetes among individuals with a certain combination of diseases was
also investigated. The objective was to identify multi-morbidity patterns that are particularly associated with a
higher prevalence of diabetes, potentially revealing synergistic effects between conditions that elevate diabetes
risk. Only combinations for which there are at least 500 individuals in the GS are included. The results are
presented in Table 64. The findings show that certain combinations, particularly those involving cardiovascular
diseases (e.g., angina and hypertension) are associated with markedly higher diabetes prevalence—often
exceeding 40%. This is consistent with known clinical risk factors and pathophysiological mechanisms that link
these conditions with diabetes. On the other hand, there are combinations for which the prevalence of diabetes
is around 10%, which is substantially lower than the overall proportion of adults with diabetes in UK. The use
of a 500-individual threshold helps ensure that the presented estimates are statistically robust.

These data are used to build a simple linear regression model for diabetes morbidity rates. This model and
its analysis are simplistic; it requires assumptions that are unlikely to be reasonable. This simplistic analysis,
however, does help meet the objective of illustrating broad patterns and potential associations between disease
prevalence and diabetes rates across different conditions or combinations thereof. As it provides useful contex-
tual appreciation of the data to the reader, it serves as a starting point for understanding where comorbidities
may signal higher diabetes risk. In this model, each individual is characterised by a vector x = (x1, . . . , xn),
where n is the number of diseases (excluding diabetes) and x is a indicator function where xi = 1 if and only
if disease i has ever been diagnosed, otherwise xi = 0. The simplistic assumptions required are: that dis-
ease i increases the probability of having diabetes by a factor γi, and that the influence of all diseases are
independent. Then the probability p(x) that an individual also has a diabetes diagnosis is:

p(x) = p(0) · ∏
i∈S(x)

γi,

where 0 = (0,0, . . . ,0), and S(x) = {i : xi = 1} is the set of diseases of this patient. Then

log p(x) = log p(0) + ∑
i∈S(x)

log(γi) = α0 + ∑
i∈S(x)

αi = α0 +
n

∑
i=1

αixi,

where α0 = log p(0) and αi = log(γi), i = 1, . . . ,n. This is a linear regression model, and the regression coeffi-
cients αi can be found from minimizing the sum-of-squares error in this approximation. If αi ≈ 0 for a given i,
it can be concluded that disease i is not significant, and so exclude it, and repeat the calculation. The results
(for all individuals in GS) are presented in Figure 9 and Table 65. Figure 9 presents the process of selection
of statistically significant subset of attributes. The final regression coefficients are presented in Table 65. It
can be seen that there are several attributes with negative coefficients. This means that the presence of these
diseases is associated with the absence of diabetes within the sample.

The simplicity of this model is beneficial in this exploratory context because it allows for clear visualization
and interpretation without the added complexity of more sophisticated methods, which may obscure the basic
relationships. However, the assumptions of the model are unlikely to hold in a real-world, multi-morbid popula-
tion. Moreover, confounding factors (e.g., age, sex, socioeconomic status) are not controlled for in this model,
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and disease interactions are not accounted for beyond simple additive effects. Therefore, readers should view
the results as illustrative rather than predictive or causal. The model can suggest areas for deeper analysis
but should not be used to draw firm conclusions about risk or policy implications without further, more rigorous
statistical modelling.

5.5 Diseases influence on mortality rates

The overall probability of death, e.g. the mortality rate, can be estimated as:

P(D) =
ND
NT

,

where: NT is the total number of individuals in the sample, and ND is the number of individuals who died during
the study period.

In GS, the overall probability of death is

P(D) = 0.158730.

For comparison, the age-averaged probability of death within the next 10 years calculated from National Life
Tables in about 0.152. The absolute difference between these estimates is marginal (< 0.007), indicating that
the mortality profile of the study cohort is highly representative of the general population. The slight deviation is
within the expected range given that the NLT cover the entire population, whereas the CPRD sample is subject
to minor variations based on the geographic distribution of participating GP practices.

To appreciate the relative increase in mortality risk for a given disease, the ratio of deaths for each disease
A can be calculated as follows:

P(D|A) =
NDA
NA

,

where: NA is a number of individuals in a sample with disease A ever diagnosed, and NDA is the number of
such individuals who died during the study period. This simple ratio provides an intuitive measure of observed
mortality among individuals with a specific diagnosis. However, it has important limitations: it does not account
for differences in age, sex, comorbidities, or follow-up time, all of which can strongly influence mortality. It also
does not imply causality or isolate the excess risk attributable to the disease itself, as confounding factors may
bias this estimate.

For example, from the GS with A set to be diabetes, the overall probability of death is much higher than the
wider GS:

P(D|A) = 0.408154.

Of course, this is partially due to the fact that individuals with diabetes are generally older.
Similarly, let

P(D|A) =
NDA
NA

,

where NA is a number of individuals in a sample for whom disease A has never been diagnosed, and NDA
is the number of such individuals who died during the study period. Then the influence of disease A on the
mortality can be estimated as the following odds ratio:

OR(A) =
P(D|A)

P(D|A)
.

Now consider two diseases, A and B. Let NAB be the number of individuals in the sample with both diseases
diagnosed, NAB - the number of individuals with disease A diagnosed but without disease B present, NAB -
the number of individuals with disease B diagnosed but without disease A present, and NAB - the number of
individuals for which neither disease A nor B have ever been diagnosed. Let NDAB be the number of individuals
with both diseases diagnosed who died during the study period, and let NDAB, NDAB and NDAB be defined
similarly.

Then the following probabilities are computed:

P(D|AB) =
NDAB
NAB

, P(D|AB) =
NDAB
NAB

, P(D|AB) =
NDAB
NAB

and P(D|AB) =
NDAB
NAB
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to enable the investigation of the following odds ratios:

OR(A|B) = P(D|AB)
P(D|AB)

, OR(A|B) = P(D|AB)
P(D|AB)

,

OR(B|A) =
P(D|AB)
P(D|AB)

, and OR(B|A) =
P(D|AB)
P(D|AB)

.

For example, OR(A|B) measures the influence of disease A on the mortality rate of individuals having disease
B. The meaning of ratios OR(A|B), OR(B|A) and OR(B|A) is similar.

Table 66 presents the above applied to GS with A =diabetes, and B = F is any other disease. The disease
with the highest probability of death, given diabetes, is heart failure; more than 73% of individuals with heart
failure and diabetes died. For comparison, approximately 70% of individuals with heart failure (diabetic or not)
died. While this suggests that diabetes adds a modest absolute risk of death once heart failure is established,
this finding aligns with the understanding that heart failure itself is the dominant driver of mortality in this
comorbidity cluster Seferović et al. (2018). However, this conditional probability analysis masks the critical
epidemiological link: the probability of heart failure being present is markedly higher for diabetic individuals
(> 17%) compared to the general sample (< 5%). This is highly consistent with established literature, including
data from the Framingham Heart Study, which demonstrated that diabetes independently increases the risk of
developing heart failure by two- to five-fold compared to age-matched controls Kannel et al. (1974).

As mentioned above, P(D|A) for A =diabetes is 0.408154. It can be seen that the combination of diabetes
with some other diseases is below that average rate. Those with chronic sinusitis and diabetes experience a
mortality rate of less than 31%. Hence, data suggest that chronic sinusitis is associated with a lower mortality
risk for diabetics. There are few other diseases with this property, see Table 66. While this suggests a sta-
tistical association with lower mortality, it should not be interpreted as a biological protective effect. Rather,
this finding likely reflects the “Healthy User Effect” or selection bias common in observational data Shrank
et al. (2011). Patients diagnosing and managing non-life-threatening conditions like sinusitis often demon-
strate higher health-seeking behavior and engagement with primary care. Furthermore, the presence of such
a code may act as a marker for a subgroup free from more severe, immediately life-limiting comorbidities (such
as heart failure or metastatic cancer) that would otherwise dominate the clinical picture.

The influence of combination pairs of diseases B, C on diabetic individuals mortality rate is analysed, by
computing P(D|ABC) where A is diabetes. The results are presented in a separate document “Diseases
influence on mortality rates”. As expected, the data shows that, for most pairs of diseases B, C, their influence
on the mortality of diabetes individuals is not independent, and therefore pairwise interactions of the diseases
should be added into the final model.

6 Model overview

6.1 Model Type

6.1.1 Aim and suitability

The aim of the research is to model the data such that, given certain input information about an individual,
the resulting model output provides an estimate of the probability of death within the next t years and provides
estimates of how that varies for each element of the input information. This mimics the underwriting process for
insurers; given a set of input information provided at the time of underwriting by an individual, the underwriters
must assess the alteration to a “standard” mortality risk posed by that individual based on that information. The
key area of interest for this research is how that varies by the disease status of diabetes.

Given this objective, a key output of the model is the probability of observing a death within a given period
of time (t), given a set of information (z). The probability of observing an event within a given period of time
and assessing the impact of a set of variables (z) upon that probability, lends itself to a Cox proportional hazard
model.

The model type selected was a Cox proportional hazards model because it is well-suited to the task of
estimating the probability of death over time while quantifying the effect of multiple covariates on that risk.
Its main advantage in our context is interpretability. The model estimates hazard ratios for each covariate,
providing a clear and interpretable measure of how each factor (e.g., presence of diabetes, age, sex, lifestyle
factors) alters the risk of death relative to a baseline or “standard” individual. This aligns with the underwriting
analogy, where insurers adjust standard mortality expectations based on individual characteristics.

21



The main limitation of the Cox model is that it assumes that all attributes have independent influence on the
mortality probability. We overcome this limitation by introducing separate attributes for pairwise interactions of
the diseases.

6.1.2 Cox proportional hazard model description

This model type evaluates how the time to an observed event varies based on a set of explanatory variables.
Here the event of interest is death. The set of explanatory variables is the input information encoded as the
vector z = (z0,z1, . . . ,zm), where m is the number of attributes, and zi is a value of attribute i, with i = 0,1 . . . ,m.

When considering the time until the event of death is observed, the cumulative probability of death over a
given period of time (t) from a given age (x) is considered. Let X be a random variable indicating the age (in
years) of death. While in the rest of the paper we define age as the number of full years of age at start of the
study, see Section 4.3.1, for the purpose of the discussion of this section, by “age” we mean exact age as a real
number – this makes the limits below well-defined. The cumulative distribution function of X, FX(x) = P(X ≤ x),
is the probability of death up to and including age x. And so, S(x) = 1 − FX(x) is the probability of survival up
to and including age x. Then the conditional probability of death for an individual, who having attained age x,
dies between age x and x + ∆x is defined as:

Px(∆x) = P(x < X < x + ∆x|X > x) =
FX(x + ∆x)− FX(x)

1 − FX(x)

When the time observed beyond age x (∆x) is limited to be infinitesimally small, the probability of death
(qx) becomes the force of mortality (µx). The force of mortality is obtained by limiting ∆x to 0 and is therefore
defined as:

µ(x) = lim
∆x→0

P(x < X < x + ∆x|X > x)
∆x

= lim
∆x→0

FX(x + ∆x)− FX(x)
∆x(1 − FX(x))

=
fX(x)
S(x)

,

where fX(x) = d
dx FX(x) is the density function of random variable X. Because fX(x) = d

dx (1− S(x)) =−S′(x),

µ(x) =
fX(x)
S(x)

= −S′(x)
S(x)

= − d
dx

lnS(x).

From the above, the probability of survival from age x to age x + t, e.g. Sx(t), is given by:

Sx(t) = exp
(
−
∫ x+t

x
µ(y)dy

)
,

and so, the probability of death from age x to x + t is Px(t) = 1 − Sx(t).
For a Cox Proportional hazard model, the instantaneous probability of the event occurring is termed the

“hazard rate”. Therefore when the event of interest is death, the hazard rate is equivalent to the force of
mortality. The hazard rate at time t for an individual with the input information defined in vector z is denoted by
λ(t,z). For a Cox proportional hazard model, the hazard rate is calculated as:

λ(t,z) = λ0(t) · exp

(
m

∑
i=0

βizi

)
, (1)

where λ0(t) is called the baseline hazard rate, and βi are Cox coefficients.
For each input information i within vector z, there is a corresponding βi coefficient which adjusts the baseline

hazard rate. The input information represents the risk factors affecting the hazard rate. Therefore, if βi > 0
the input information i (or risk factor i) increases the hazard rate, and βi < 0 decreases the hazard rate. The
absolute value |βi| therefore measures the significance of risk factor i.

In this application of the model:

• z0 is set to be the non-negative function of age;

• zi, where i is length of time since diagnosis, is also set to be the non-negative function of time; and

• all other zi are equal to either 0 or 1, as an indicator of if the risk factor i is present (zi = 1) or absent
(zi = 0).
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Given the above, (1) simplifies to9:

λ(t,z) = λ0(t)eβ0z0 · exp

(
m

∑
i=1

βizi

)
= λ0(t)eβ0z0 · exp

(
∑
i∈I

βi

)
= λ0(t)eβ0z0 ∏

i∈I
ki, (2)

where I is the set of indices i such that zi = 1 and ki = eβ
i .

The model provides estimates that are used to alter the overall hazard rate based on an individual’s input
information. For any input information (risk factor) i = 1, . . . ,m, a change in the value of zi from 0 to 1, alters
the hazard rate λ(t,z) by a factor specific to that risk factor, e.g. ki. If there is a change to more than one risk
factor, say both zi and zj from (zi,zj) = (0,0) to (zi,zj) = (1,1), then this alters the hazard rate λ(t,z) by a factor
kik j. This implies the factors i and j are acting independently. This is a key underlying assumption of the Cox
proportional hazard rate model.

For example, where factors i and j indicate the presence or absence of certain diseases then the model
provides coefficients to alter the force of mortality based on the disease states. For example, if an individual is
diabetic (D) this alters the hazard rate by a factor of kD and if the individual also has hypertension (H) this alters
it by kH. That is, an individual with both diabetes and hypertension has a hazard rate altered by factor kDkH.
It is important to note that this way of modelling is simplistic and ignores the known dynamic of a “combination
of risk factors effect”. For example, hypertension may increase the probability of death to a greater extent for
diabetic individuals than for non-diabetic individuals Bell (2008). So far in this model description, this has not
been allowed for as the model is solving for the coefficient independently.

To take account of such combination effects, the model must solve these factors independently and then
also in combination. This requires the introduction of new risk factors to represent any pair of risk factors i and
j. This new risk factor indexed as ij is such that zij = 1 if an individual has both risk factors, e.g. if zi = zj = 1;
otherwise zij = 0. Continuing the example for an individual with both diabetes and hypertension, the input
information is therefore zD = 1, zH = 1, and now, zDH = 1. Then, for an individual with only these two risk
factors, the hazard rate formulae (2) becomes:

λ(t,z) = λ0(t)eβ0z0 kDkHkDH . (3)

The interpretation of kDH is the coefficient that accounts for the mortality risk arising from the combination of
diabetes and hypertension that remains after accounting for diabetes and hypertension individually. Therefore,
the factor kD represents the alteration to baseline hazard rate for diabetes, kH for hypertension, kDH for the
alteration when both are present.

It should be noted that the model does not account for which condition pre-dates the other, which may
epidemiologically cause a variation in the force of mortality. For instance, the development of hypertension
prior to diabetes may have different clinical implications than the reverse order. However, for the purpose of
this research objective—mimicking the information available at the time of underwriting—this simplification is
considered appropriate.

In the underwriting context, risk assessment is typically based on a snapshot of available health information
at the time of application, without access to detailed longitudinal records or the precise sequence of diagnoses.
Therefore, modelling comorbid conditions as coexisting covariates, rather than in a temporally ordered fashion,
aligns with the real-world data structure and decision-making process used by insurers.

Moreover, many of the granular subgroups defined by disease order (e.g., diabetes preceding hypertension
vs. hypertension preceding diabetes) are relatively small and statistically underpowered, which limits the
reliability and interpretability of stratified hazard estimates. Attempting to model these pathways separately
could introduce instability or noise into the model, especially in population-based datasets not designed to
capture such detail robustly.

6.2 Model build

Models were built iteratively with modelling choices, detailed below with supporting rationale, made along the
way. These decisions were made in conjunction with ongoing discussions between Leicester University and
DSG. The objective of this working relationship was to ensure the output was fit for purpose for the intended
audience and as such, some decisions herein may vary from medical or epidemiological research. Namely,
risk factors are taken as the latest observation to the study start even if the risk factor would not remain static
thereafter and there is evidence that a change in that risk factor would imply a change in the mortality risk going

9For simplicity, we will ignore the length of time since diagnosis risk factor in this discussion
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forward. Therefore, it is known that there will be drift between mortality risk classification groups after the study
start date. However, this is considered appropriate for this research objective as it mimics the underwriting
process; analysing mortality risk based only on the latest observation found in the input information accessible
during the underwriting stage.

The model build was undertaken in stages, each with an objective, to reach a final model to fit. The stages
are:

• Data partitioning;

• Risk factor transformation;

• Risk factor selection.

Each stage is described in a separate subsection below.

6.2.1 Data partitioning

Sex at birth is an important factor in understanding of mortality risk Zarulli et al. (2021). Indeed, many risk
factors including the age shape of mortality risk vary by sex Wu et al. (2021). To build more accurate models,
the dataset is divided by sex and the model fit for males and females separately. This approach offers several
advantages. Stratification allows the model to capture sex-specific hazard functions and avoids the assumption
of proportionality across sexes, which may be violated if key risk factors behave differently for men and women.
It also enhances interpretability by enabling the direct comparison of risk profiles within each sex group, aligning
with clinical evidence that diabetes presents distinct risk trajectories in males and females Kautzky-Willer et al.
(2016).

6.2.2 Risk factor transformation

The following risk factors are modelled to test the statistical significance of the factor on the mortality rate. A
summary of risk factor transformation is summarised in Table 70 and the mortality statistics associated with
each risk factor is presented in Table 71.

The following risk factor transformation is introduced:

Age Age is calculated as the number of whole years at the study start and assigned the risk factor z0 in
the model. This approach uses exact single-year age rather than broader age bands. This reflects standard
practice in life insurance and actuarial modelling, where mortality assumptions are typically constructed on a
per-year-of-age basis.

Using single-year age allows for more granular modelling of the age-related variation in mortality, which is
known to change markedly even across adjacent years, particularly at older ages. Given the size and richness
of the dataset, there is sufficient statistical power to estimate risk at this fine level of resolution without the
need to aggregate into coarser categories. This avoids potential loss of information and smoothing over im-
portant inflection points in the age–mortality relationship that could influence model accuracy and underwriting
decisions. Moreover, insurers routinely rely on single-age mortality tables (NLT), and using a consistent age
definition enhances the interpretability and practical relevance of the model outputs for actuarial and underwrit-
ing audiences.

In the model, the hazard rate (e.g. force of mortality) depends on age as:

λ(t,z) ∼ eβ0z0 ,

where z0 is a function of age. To determine z0, the force of mortality as it varies with age must be assessed.
For example, the force of mortality by age for males is presented in Figure 11. It can be seen that the force of
mortality is almost linear in logarithmic coordinates. This suggests that z0 =age is already a reasonable model.

However, the fit to data can be improved by assuming that z0 is a piecewise-linear function of age. For
example, the manual splitting of age interval [17-100] into three intervals of [17-27], [28-73], and [74-100]
significantly improves the fit to data, see Figure 12. To identify intervals with the best accuracy automatic
segmentation is used. The results of this segmentation are presented in Table 72, Figure 13, and Figure 14.
Applying the Elbow rule to Figure 13 suggests that only 2 segments should be used. That is, z0 is given by the
formula:

z0 =

{
k · (age − z∗) + z∗, if age ≤ z∗

age, if age ≥ z∗,
(4)
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where z∗ and k are fit to the partitioned data, e.g. for males and females separately. As indicated in Table 72,
the optimal break point z∗ is 50 for males and 65 for females. The optimal value of k is 0.6510 for males and
0.7335 for females.

Body mass index (BMI) The latest observation of the BMI measurement at the study start is transformed
into covariates to improve model simplicity. The ranges employed are in line with those adopted by the NHS
NHS (2023b). However, the groupings are altered to improve model accuracy: specifically, the obese range
was subdivided into the 3 classes shown below, as it significantly improved model accuracy. The following risk
factor transformation is introduced:

• Underweight: zb1 = 1 if BMI< 18.5, and zb1 = 0 otherwise.

• Overweight: zb2 = 1 if BMI≥ 25.0, and zb2 = 0 otherwise.

• Obese Class 1: zb3 = 1 if BMI≥ 30.0, and zb3 = 0 otherwise.

• Obese Class 2: zb4 = 1 if BMI≥ 35.0, and zb4 = 0 otherwise.

• Obese Class 3: zb5 = 1 if BMI≥ 40.0, and zb5 = 0 otherwise.

For example, an individual with BMI 32.5 has a BMI which is both ≥ 25.0 and ≥ 30.0 and so is described by
a vector (zb1,zb2,zb3,zb4,zb5) = (0,1,1,0,0). Therefore, coordinates are not independent as, for example, if if
zb3 = 1 then zb2 = 1.

This structure reflects a cumulative threshold-based encoding that mirrors the way underwriters and actu-
aries typically think about BMI risk categories - each level of obesity builds on the previous. This encoding
captures the escalating nature of risk associated with higher BMI thresholds, which is especially useful in
underwriting, where risk loading increases progressively across weight categories.

Blood pressure (BP) Measurements for Systolic blood pressure (SBP) and diastolic blood pressure (DBP)
are used at the latest observation as at study start. The risk factor transformation introduced is shown below
and is considered in line with NHS ranges used NHS (2023a):

• Low blood pressure: zp1 = 1 if either SBP≤ 90 or DBP≤ 60. Otherwise zp1 = 0.

• Pre-hypertension: zp2 = 1 if either SBP≥ 120 or DBP≥ 80. Otherwise zp2 = 0.

• High BP (Stage 1): zp3 = 1 if either SBP≥ 140 or DBP≥ 90. Otherwise zp3 = 0.

• High BP (Stage 2): zp4 = 1 if either SBP≥ 160 or DBP≥ 100. Otherwise zp4 = 0.

In terms of insurance underwriting, blood pressure is routinely assessed at point of application, and risk as-
sessment typically involves identifying whether an individual exceeds particular thresholds that align with these
exact categories. Many underwriting manuals apply stepwise premium loadings based on these categories,
and reinsurer rating guides often treat elevated BP levels as risk multipliers, particularly in the presence of
comorbid conditions like diabetes or obesity.

Cholesterol levels (CL) Measurements for Cholesterol levels (CL) are used at the latest observation as at
study start. The risk factor transformation introduced is shown below and is informed/based on widely used
clinical guidelines Superdrug Online Doctor (2023):

• High CL: zc1 = 1 if CL> 5 mmol/l. Otherwise zc1 = 0.

• Very high CL: zc2 = 1 if CL> 6.5 mmol/l. Otherwise zc2 = 0.

• Extremely high CL: zc3 = 1 if CL> 7.8 mmol/l. Otherwise zc3 = 0.

In the underwriting context, elevated cholesterol is a known risk factor and often triggers further review or
a premium loading. While insurers may use more comprehensive lipid panels, total cholesterol remains a
common and interpretable metric. The use of the most recent value at the time of underwriting is standard
practice, as underwriters make risk assessments based on an individual’s current health status, not historical
averages or trends. The cumulative structure of the indicators (e.g., someone with CL = 8.0 mmol/L will satisfy
all three conditions) reflects the increasing risk load and provides flexibility in the model to capture marginal
effects across ranges.
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Smoking status Smoking status is based on the categorisation defined at the study start. The risk factor
transformation introduced is shown below and is informed by epidemiological and actuarial research demon-
strating the differential mortality risks associated with current, former, and never smokers Doll et al. (2004).

• Ever smoked: zs1 = 1 if an individual ever smoked. Otherwise zs1 = 0.

• Current smoker: zs2 = 1 if an individual is current smoker. Otherwise zs2 = 0.

That is to say, at the study start, (zs1,zs2) = (0,0) is an individual that never smoked, (zs1,zs2) = (1,0) an
individual who is an ex-smoker, and (zs1,zs2) = (1,1) an individual who is a smoker.

This approach is reasonable and aligns well with underwriting practices, where smoking status is a key and
typically static data point collected at application. While smoking behavior can change over time, underwriting
generally relies on smoking status reported or verified at the point of underwriting, which is assumed to be
constant for pricing and risk classification purposes.

Index of multiple deprivation (IMD) The IMD is taken as at the study start. The risk factor is transformed
using 4 variables set to either a value of 0 or 1.

• zmd1 = 1 if IMD level is at least 3, and zmd1 = 0 otherwise.

• zmd2 = 1 if IMD level is at least 5, and zmd2 = 0 otherwise.

• zmd3 = 1 if IMD level is at least 7, and zmd3 = 0 otherwise.

• zmd4 = 1 if IMD level is at least 9, and zmd4 = 0 otherwise.

In other words, IMD levels 1 and 2 are coded as (0,0,0,0), IMD 3 and 4 as (1,0,0,0), IMD 5 and 6 as (1,1,0,0),
IMD 7 and 8 as (1,1,1,0), and IMD 9 and 10 as (1,1,1,1).

From an underwriting perspective, the IMD is assumed to be a static data point, reflecting the individual’s
health or risk profile at the point of underwriting (i.e., study start). This is consistent with insurance risk as-
sessment practices where data used for pricing or risk classification is typically fixed at application. Although
individuals’ health status may change over time, underwriting decisions usually cannot account for such lon-
gitudinal variations. Additionally, using this binary stepwise transformation avoids potential issues with sparse
data if the IMD were used as a continuous variable or in very granular categories. It also simplifies interpre-
tation for underwriters and actuaries, who can associate specific IMD threshold levels with corresponding risk
adjustments.

Diabetes disease status The diabetes disease status is encoded based on diagnoses as at the study start.
A later diagnosis is not considered relevant because this approach mimics the real-world underwriting process
in insurance. In insurance underwriting, the assessment of mortality risk and premium setting is based on
the information available at the time of application, which includes the individual’s current health conditions
and medical history up to that date. Later developments or diagnoses occurring after the policy issue date
are generally not factored into the initial risk classification, as underwriting decisions and pricing are fixed at
inception. The transformation of this data item is:

• zD1 = 1 if an individual has been diagnosed Type 1 diabetes, and zD1 = 0 otherwise. Similarly,

• zD2 = 1 if an individual has been diagnosed Type 2 diabetes, and zD2 = 0 otherwise.

For example, an individual diagnosed with Type 2 diabetes in June 2010 has zD1 and zD2 of (0,0).
It is considered reasonable to model Type 1 and Type 2 diabetes separately when estimating mortality risk

because these conditions differ significantly in their pathophysiology, typical age of onset, progression, compli-
cations, and associated mortality patterns. Numerous epidemiological studies have demonstrated statistically
significant differences in mortality risk between individuals with Type 1 and Type 2 diabetes, see e.g. Genuth
et al. (2021).
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Duration since Diabetes diagnosis This risk factor is only considered for individuals with diabetes. For
an individual with Type i diabetes, i = 1,2, it measures the duration (in years) since the Type i diabetes was
diagnosed. This is computed by the formula “2009 - calendar year of the diagnosis” given the study start of
01/01/2010. For example, an individual diagnosed in June 2009 with Type 2 diabetes has a duration since
diagnosis of 2009-2009 =0. Duration therefore increases in whole numbers from 0.

Including duration since diagnosis as a risk factor is reasonable and important for mortality risk modeling
because the length of time an individual has lived with diabetes is strongly associated with the progression of
complications and overall mortality risk Wright et al. (2020).

From an underwriting perspective, while duration since diagnosis may not always be explicitly recorded, it
is often estimated or indirectly assessed through medical history or reported diagnosis dates. Incorporating
this information aligns with underwriting practices that seek to assess not only the presence of a condition but
also its chronicity and severity, which influence risk classification and pricing decisions. Assuming duration
as a static variable at study start is consistent with underwriting timelines, where risk is assessed based on
information available at application. This approach balances model complexity and practical utility, providing a
meaningful metric to enhance mortality risk prediction for individuals with diabetes.

Blood glucose (sugar) level (HbA1c) Measurements for blood glucose (sugar) level (HbA1c) are used at
the latest observation as at study start. The risk factor is transformed using the ranges defined by guidelines
such as those from the American Diabetes Association (ADA) and the World Health Organization (WHO):

• Pre-diabetes: zh1 = 1 if HbA1c≥ 6.0%. Otherwise zh1 = 0.

• Diabetes: zh2 = 1 if HbA1c≥ 6.5%. Otherwise zh2 = 0.

• Diabetes high: zh3 = 1 if HbA1c≥ 7.5%. Otherwise zh3 = 0.

• Diabetes very high: zh4 = 1 if HbA1c≥ 9.0%. Otherwise zh4 = 0.

These variables define certain HbA1c ranges. For example, an HbA1c< 6.0% is defined by (0,0,0,0), an HbA1c
between 6.0 and 6.5 by (1,0,0,0), an HbA1c between 6.5 and 7.5 as (1,1,0,0), etc.

From an underwriting perspective, HbA1c is a key biomarker routinely assessed and recorded in medical
underwriting questionnaires or clinical tests. Using the latest available value at study start reflects standard
underwriting practice, where the most recent medical data available at application is used for risk classification.
Although HbA1c can fluctuate, the latest measurement provides a practical snapshot of glycemic control and
risk status. The cumulative binary coding captures clinically meaningful cutoffs while maintaining simplicity
and interpretability for underwriting decisions. It balances granularity with data availability and aligns well with
mortality risk modeling objectives focused on diabetes-related risk stratification.

Disease status For each of the diseases listed in Section 4.1, zi is set to 1 if disease i has ever been
diagnosed at the study start and zi = 0 otherwise. Diagnoses do occur during the study period. To keep vector
z constant for each individual, the following strategy is introduced:

• If disease i has never been diagnosed then zi = 0;

• If disease i has been diagnosed before the study start, then zi = 1;

• If disease i has been diagnosed x years after the study start, then we treat the given individual as two
individuals: one with zi = 0 for x years, and one with zi = 1 for 10 − x years.

Pairwise interaction of risk factors For each pair (i, j) of risk factors discussed above, a new risk factor is
introduced zij = zizj. For example, if each zi and zj takes values in {0,1}, then zij ∈ {0,1}, and zij = 1 if and
only if zi = zj = 1.

Higher order interactions are not considered because on balance the working group prioritised having
coefficient value outputs which could be easily interpreted.
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6.2.3 Risk factor selection process

An iterative model fitting process was employed; before fitting a final model with all risk factors and meaningful
pairwise interactions, we build some simplified models with only some of the attributes included. In all models,
the coefficients βi can be computed by maximum likelihood method. An important feature of Cox proportional
hazard model is that the baseline hazard rate λ0(t) is not needed to compute βi, hence they can be computed
first. This is used here to allow for risk factor selection.

• Model A: a model without data partitioning and with no diseases and no interaction attributes. All other
risk factors described in Section 6.2.2 are included. Risk factor selection is then considered via backward
and forward feature selection process. In Model A, the data is not partitioned by sex, this ensures the
same set of risk factors are included for males and females. The objective of model A aligns with our
desire to understand the influence of “industry standard” underwriting risk factor (such as age, gender,
BMI, etc.) on the mortality risk of individuals from GS. Another objective is to have a simple but reasonable
model as a benchmark with which the more complicated models can be compared.

• Model B: a model with data partitioning, allowing for disease status independently but not in combination
(all risk factors in 6.2.2 except pairwise disease interactions). As a minimum, the model must include
“industry standard” underwriting risk factor classifications. These risk factors are protected, and are
not subject to the selection process. Other risk factor (diseases) are selected via backward and forward
feature selection process. The objective of model B is to understand the influence of various comorbidities
on the mortality risk of individuals from GS as stand-alone factors, without taking into account interaction.
Another objective is to have this model as a benchmark with which our main model (with interactions)
can be compared.

The objective of including pairwise interactions of attributes in the model is to capture non-additive effects
and synergistic relationships between risk factors—especially among comorbidities—that may jointly influence
mortality risk in ways not apparent when considered in isolation. Certain combinations of risk factors (e.g.,
cardiovascular disease and high BMI) may result in elevated or diminished hazard beyond what would be
expected from their individual effects.

Risk factor selection: backward and forward feature selection The objective of this step is to build Model
A by selecting meaningful non-desease and non-interaction risk factors, independent of sex, that have signifi-
cant influence on the mortality of individuals with diabetes.

Model A includes all risk factors listed in section 6.2.2, except the disease status and interaction risk factors.
As the data is not partitioned, a risk factor of sex is introduced to account for variation. The model is fit on
the GS data. The resulting coefficients are presented Table 76, alongside the standard errors (SE) and p-
values. Where the p-value measures the significance of the risk factor and a higher p-value indicates a lower
significance. Risk factors with a p-value greater than 0.01 are considered insignificant. Table 76 therefore
contains 7 insignificant attributes. Risk factor selection can be reviewed by starting with the full list of 20
risk factors (as above) and removing those considered insignificant via the backward feature selection (BFS)
process. The process of backward feature selection (BFS) (or dimensionality reduction) removes variables
with the greatest p-value one-by-one til there is at least one statistically insignificant variable. The results
are presented in Table 77. The model resulting from this process is presented in the right part of Table 76.
Assuming that the baseline hazard rate is given by the exponential model (8) described below, the computed
parameters are:

• a = 0.0552, b = −12.3610 for the full model (before exclusion of insignificant risk factors);

• a = 0.0553, b = −12.3236 for the reduced model (after exclusion of insignificant risk factors).

Correlation matrix between risk factors of the full model is presented in Table 78. The removed risk factors
are strongly correlated with the remaining risk factors.

Table 76 shows some risk factors with negative coefficients, that is, the presence of the corresponding
risk factor decreases the baseline force of mortality. Most risk factors with negative coefficients in the model
also exhibit a moderate to strong positive correlation with age. This suggests that their apparent protective
effect may be confounded by age: these factors become more common in older individuals, but age itself
is already a strong predictor of increased mortality. Thus, when age is controlled for in the model, these
variables may appear to lower risk simply because they are positively associated with age, not necessarily
because they are truly protective. However, the variable Cl3 is an exception. Despite having a negligible
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correlation with age (0.032), it retains a significant negative coefficient. This finding aligns with the “Cholesterol
Paradox” often observed in observational studies of chronic diseases Wang et al. (2023). In this context, the
inverse association between cholesterol and mortality is typically attributed to reverse causality, where low
cholesterol levels serve as a marker for underlying frailty, malnutrition, or chronic inflammation, rather than
higher cholesterol levels conferring a direct biological benefit.

To understand the meaning of a negative coefficient (see Table 76), a direct estimation of the force of
mortality for age bands is calculated using the GS data (we do not have enough data for mortality estimation
for each year separately). Results are presented in Tables 79-84. As you can see, in all cases negative
coefficients were explained by the supporting data. In other words, the observed negative dependence is
really present in the data, it is not an artefact of the model.

Alternatively, forward feature selection (FFS) can be employed; starting with one attribute (e.g. age), and
adding the next “most significant” (measured by p-value) risk factor one-by-one, until there are no more signif-
icant risk factors. The results are presented in Table 85 and Table 86.

The model resulting from BFS and FFS are both the same, which provides confidence in the robustness
and stability of the selected set of risk factors. This convergence suggests that the final feature set is not overly
sensitive to the choice of selection method and likely reflects genuinely important predictors within the data.

Risk factor selection: industry standard risk classification In Model B and the final output models, at-
tributes describing age, IMD, BMI, blood pressure, smoker status, and cholesterol level are classified as “in-
dustry standard” and therefore must be included in the model, irrespective of their significance. There are other
risk factors commonly used in the industry that are not included in our models. For example, family medical
history, occupation, physical activity levels are often considered in traditional underwriting are omitted due to
data availability constraints.

The exclusion of these factors presents both benefits and limitations. On the one hand, the streamlined
model may be easier to implement and explain, reducing complexity and potential biases introduced by sub-
jective or self-reported data. On the other hand, it may compromise predictive accuracy, especially for edge
cases where lifestyle or family medical history plays a crucial role. It is not possible, at this time, to test the
impact however as the data is not recorded within the available data.

Risk factor selection: disease significance considered by sex Model B partitions the data by sex and
considers all risk factors from Section 6.2.2, excluding only the disease pairwise interactions.

As explained in Section 6.2.2, diseases are diagnosed during the study period, and, to keep attribute vector
z constant for each individual, we treat the given individual as two: one without this disease from the beginning
of the study to the date of diagnosis, and another one with this disease from the date of diagnosis. In case
of several different diagnosis, an individual record can be split into more than two records. After such split of
general sample linked to ONS, we obtained a dataset with 157,143 records.

Table 87 presents the resulting Cox coefficients. There are 12 negative coefficients. Comparison of Cox
coefficients for models A and B (e.g. with and without diseases) is presented in Table 88. A notable change is
that a cholesterol observations in the “high” range (i.e. Cl) has a significant negative coefficient value in Model
B (without disease status) to a significant positive coefficient value in Model C (with diseases). This suggests
that the Cholesterol paradox is diminished somewhat after allowing for disease.

Risk factors with a p-value greater than 1% can be considered “insignificant” but may still be included where
these are considered “industry standard risk classification”. With the objective of minimising “over-fit” of the
data, other insignificant attributes can be removed one-by-one until all the remaining attributes are significant.
This process is undertaken on the partitioned data, e.g. for males and females separately. The Cox coefficients
for the models fit to the partitioned data are presented in Tables 89 and 90, for male and female respectively. In
terms of statistical significance, some notable differences emerge due to sex partitioning and disease status.
Several covariates demonstrate significance in one sex but not the other, highlighting underlying biological and
epidemiological variations. Specifically, two male-specific diseases were found to be statistically significant for
males but not for females. Conversely, seven female-specific diseases are significant only in the female cohort.
The observed variation underscores the reasonableness and necessity of sex-specific modelling approaches.
Sex-based biological differences (e.g., hormonal influences, genetic expression) and social determinants (e.g.,
healthcare access and behaviour) contribute to distinct patterns of morbidity and mortality. Incorporating these
nuances into survival models enhances both statistical robustness and appropriate understanding of risk.

Risk factor selection: pairwise interactions considered by sex To form models with interactions we con-
sider all individual attributes and all possible pairs of attributes. Initially, we have 59 individual attributes and
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59 · 58 = 1711 pairs. However, some “interactions” are duplicates10, and were therefore removed. We also
removed interactions for which there are less than 100 individuals in the dataset. After this, 1,616 attributes
remain for males and 1,573 for females.

Fitting Cox coefficients for this many attributes is not possible in one go due to insufficient memory, even
on a supercomputer. Therefore, the following procedure is employed:

(i) Start with “industry standard risk factors”, that is, attributes describing age, IMD, BMI, blood pressure,
smoker status, and cholesterol level.

(ii) Add one of several other attributes (e.g. diseases attributes or interaction attributes).

(iii) Compute Cox coefficients of the resulting model.

(iv) Remove insignificant attributes, that is, with p-value greater than 0.01. If an “industry standard risk factor”
attribute is insignificant, it can be removed unless it is the last attribute in the corresponding group. That
is, age attribute is protected and cannot be removed. Out of 4 IMD attributes, at least one should stay,
and so on.

(v) Go to step (ii) and repeat the process, until all attributes are considered.

The result of the described procedure depends on the order we add the attributes in step (ii). To make
the procedure reproducible, we must fix the order. To establish the order in which the attributes are added on
step (ii), we have used Lasso (least absolute shrinkage and selection operator) method. This method is based
on minimizing sum of squares error. It has been originally developed for regression analysis and has been
adapted for the Cox model Tibshirani (1997). It has been implemented in the glmnet package for R. The main
advantage of this method is that it works much faster than the procedure (i)-(v) above, and produces a ranking
of the attributes. The disadvantage is that the resulting rating is inaccurate (some significant interactions are
ranked low by Lasso and vice versa), and therefore cannot be used alone to build the final model. However, it
can be used to form the initial order of attributes before applying the main procedure (i)-(v).

For female and male models, the resulting list of attributes and their Cox coefficients and p-values are
presented in Tables 93 and 94, respectively.

6.3 Model fitting

6.3.1 Computing coefficients values

The coefficients βi in (1) can be computed by maximum likelihood method. We record the order in which we
have observed deaths, write down the likelihood function that individuals die in this particular order, and then
find the parameters that maximize the likelihood.

6.3.2 Computing the baseline hazard rate: Time homogenous and Exponential models

After computing the Cox coefficients, the next step is computing the base rate λ0(t). Time is measured in
years, therefore the study period corresponds to the interval t ∈ [2010,2020). We first assume that λ(t) is a
piece-wise constant function, that is, λ(t) = λj is a constant during year j, j = 2010,2011, . . . ,2019. We then
estimate each λj separately from the data.

We next consider one year of data during a specific year j. Then λ(t) = λj is a constant, and λ(t,z) in (1)
becomes λ(z), and (1) can be rewritten as:

λ(z) = λj · exp

(
m

∑
i=0

βizi

)
= λjB(z), (5)

where B(z) = exp (∑m
i=0 βizi).

We will estimate λj using method of moments. Because we need to estimate just one parameter, we can
use just the first moment – expectation. Let A = (a1, . . . , an) be the set of individuals that remained alive during
the whole year j and let D = (d1, . . . ,dk) be the set of individuals who died during the year j. Let X be the
random variable indicating the number of deaths in this sample. Then, the expected number of deaths is:

E[X] = ∑
i∈A∪D

E[Xi],

10For example, BMI4 attribute is equal to 1 if BMI≥ 35.0, BMI5 attribute is equal to 1 if BMI≥ 40.0. The “interaction” attribute equal to 1 if
and only if both BMI4 and BMI5 are 1, but this is just BMI5.
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where Xi is the number of deaths for individual i, and the summation is over the whole sample A ∪ D. As Xi
can only take values 0 or 1, the formulae becomes:

E(Xi) = 0 · P(Xi = 0) + 1 · P(Xi = 1) = P(Xi = 1) = 1 − exp(−λjB(zi)) ≈ λjB(zi),

where zi is the vector of covariates for individual i, and the last approximate equality follows from the fact that
B(zi) is typically small and, for small x, 1 − exp(−x) ≈ x. The generalized formulae therefore reads as:

E(X) = ∑
i∈A∪D

E[Xi] = ∑
i∈A∪D

(1 − exp(−λjB(zi))) ≈ λj ∑
i∈A∪D

B(zi).

If the observed number of deaths is k, then let us find λj from the assumption that the observed number is
equal to the expected. Then:

λj ≈ k

(
∑

i∈A∪D
B(zi)

)−1

. (6)

In this way we can estimate λj based on data from years j = 2010,2011, . . . 2019.

Time-homogeneous model We next consider models in which λ0(t) is a continuous function. We first
consider a time-homogeneous model, which is based on the following assumption

• Consider two individuals A and B with the same set of attributes z1, . . . ,zm but different age. Consider two
different time moments t1 and t2. Assume that the age of A at time t1 is equal to the age of B at time t2,
and this age is greater than z∗ defined in (4). Then the force of mortality of A at t1 is equal to the force of
mortality of B at t2.

In other words, the assumption states that the probability of death depends on risk factors and current age,
but not on the calendar year. For example, if individual A was born in 1940 and individual B in 1945, and
these individuals are otherwise identical, then the probability of death of A in 2010 (age 70) is the same as the
probability of death of B in 2015 (also age 70).

From (2), the mortality rate of A at t1 is:

λ0(t1)eβ0z0(A) · exp

(
m

∑
i=1

βizi

)
,

while the mortality rate of B at t2 is:

λ0(t2)eβ0z0(B) · exp

(
m

∑
i=1

βizi

)
,

where z0(A) and z0(B) are the values of attribute z0 for A and B, respectively.
Hence, the time-homogeneity assumption implies that

λ0(t1)eβ0z0(A) = λ0(t2)eβ0z0(B)

or equivalently,
λ0(t1)

λ0(t2)
= eβ0(z0(B)−z0(A)).

Because the age is greater than z∗, (4) implies that z0(A) and z0(B) are the ages of A and B, respectively,
at the study start. The difference in age is therefore, z0(B)− z0(A). Because the age of A at time t1 is equal
to the age of B at time t2, this implies that

z0(B)− z0(A) = t1 − t2.

Hence,
λ0(t1)

λ0(t2)
= eβ0(t1−t2).

The only function that satisfy this equality for every pair of real numbers t1, t2 is the function

λ0(t) = eβ0t+b (7)

for some parameter b. This parameter can be found to best fit the data λj, j = 2010, . . . ,2019 found from (6).
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Exponential model The only disadvantage of time-homogeneous model is that it ignores the improvement
of medicine over time. In reality, a 50-years old individual with cancer has a higher chance to survive in 2020
than in 1970. To incorporate this effect, we can adjust the model as:

λ0(t) = e(β0−ϵ)t+b,

where ϵ is the term responsible for medicine improvement. Denoting a = β0 − ϵ, we obtain:

λ0(t) = eat+b. (8)

Parameters a and b can then be found to best fit the data λj, j = 2010, . . . ,2019 found from (6). We will call (8)
exponential model for baseline hazard rate.

Obviously, we may also shift numeration of years, so that t is the time (measured in years) from study start.
Then t ranges in [0,10) for the study period.

In both homogeneous model (7) and exponential model (8) the hazard rate (1) has the form:

λ(t) = Azeγt,

where Az is some constant that depends on vector z of attributes, and γ is equal to β0 and a in homogeneous
and exponential models, respectively.

Then the probability S(t0, t1) to survive from time t0 to time t1 is:

S(t0, t1) = exp
(
−
∫ t1

t0

λ(t)dt
)
= exp

(
−
∫ t1

t0

Azeγtdt
)
= exp

(
− Az

γ
(eγt1 − eγt0)

)
. (9)

Once we computed the survival probability, we can easily compute any other quantities of interest. For exam-
ple, the expected survival time at time t0 is given by:

E(t0) =
∫ ∞

0
S(t0, t0 + t)dt =

∫ ∞

0
exp

(
− Azeγt0

γ
(eγt − 1)

)
dt. (10)

Having fit the model, the survival or death probability for a given set of inputs can be found using formula
(9). From this, an estimate of life expectancy can be found using formulae (10).

6.3.3 Models fit by sample

The process of building the final models with all attributes and interactions is undertaken upon the different data
samples to ensure that the models capture population-specific risk dynamics and allow for accurate estimation
of mortality across distinct subgroups. Stratifying the data in this way enables the identification of both shared
and unique predictors of mortality within and between groups, accounting for differences in sex and disease
pathology. Namely, the models are fit to the following:

• Mortality models for general population, for males and females separately.

• Mortality models for individuals with Type 1 diabetes, for males and females separately.

• Mortality models for individuals with Type 2 diabetes, for males and females separately.

Therefore, a time homogeneous and exponential model is run separately for male and females on three sam-
ples. The “final models” therefore refers to this set of 12 model runs (e.g. 2 mortality estimation methods, 2
data partitions, 3 samples).

Coefficient values & hazard rate: General Sample In order to compare the risk of diabetics to a “standard”
individual, a probability of death for the general population is required. The mortality models are fit to GS.

HbA1c attributes are not included in the model fit because most individuals in the GS will have no HbA1c
measurements given there is no diabetes diagnosis or prior investigations. All other risk factor, as discussed
in Section 6.2.2 are included, and data is partitioned by sex. The age attribute z0 is given by (4) with z∗ = 50
and k = 0.6510 for males and z∗ = 65 and k = 0.7335 for females.

First the Cox coefficient values are solved for, then to the baseline force of mortality, and finally the prob-
ability of death can be computed for a given set of input information. For female model, the resulting list of
attributes and their Cox coefficients and p-values are presented in Table 93. The baseline hazard rate λ0(t) is

32



computed, as per Section 6.3.2, via the homogeneous model (7) and exponential model (8). For the homoge-
neous model (7), the value of parameter b that best fit the data is 4.0430 · 10−7. For the exponential model, the
resulting baseline hazard rate is:

λ0(t) = exp(0.0616t − 14.3738) = Aexp(0.0616t),

where A = e−14.3738. The probability to survive from time t0 to time t1 is then given by (9):

exp
(
− Az

0.0616
(e0.0616t1 − e0.0616t0)

)
,

where Az is a constant that depends on the vector z of the attribute values.
For male model, the resulting list of attributes and their Cox coefficients and p-values are presented in Table

94. For the homogeneous model with the baseline hazard rate (7), the value of parameter b that best fit the
data is 3.8460 · 10−6. For the exponential model, the baseline hazard rate (8) is given by:

λ0(t) = exp(0.0442t − 12.1609),

while the probability to survive from time t0 to time t1 is given by (9):

exp
(
− Az

0.0442
(e0.0442t1 − e0.0442t0)

)
.

Coefficient values & hazard rate: Type 1 diabetes Next, the DS data is used to study the force of mortality
of individuals with Type 1 diabetes. All risk factors in Section 6.2.2 are included. Recall that the age attribute
z0 is given by (4) with z∗ = 50 and k = 0.6510 for males and z∗ = 65 and k = 0.7335 for females.

Models are generated in turn with the risk factor selection, as described in Section 6.2.3. The resulting Cox
coefficients for males and females are presented in Table 95 for industry standard risk classifications, Table
96 for industry standard risk classifications and disease status. A comparisons of Cox coefficients in these
models are presented in Table 97 for female models and in Table 98 for male models.

For the final model including pairwise interactions, Table 99 and 100 provides a list of risk factors, the Cox
coefficient value and p-value for females and for males, respectively.

For the homogeneous model (7) baseline hazard rate, the value of parameter b that best fit the data is
2.1956 · 10−5 for females and 1.5983 · 10−5 for males. For the exponential model (8), the the baseline hazard
rate is:

λ0(t) = exp(0.0447t − 8.9282)

for females and
λ0(t) = exp(0.0416t − 9.0859)

for males. The probability to survive from time t0 to time t1 can then be computed by (9).

Coefficient values & hazard rate: Type 2 diabetes Next, the DS data is used to study the force of mortality
of individuals with Type 2 diabetes. All risk factors in Section 6.2.2 are included. A similar process as outlined
in the section above is undertaken; fit to industry standard risk classifications, then include disease status, then
pairwise interactions. The results are presented for male and female model fits in Table 101 and Table 102,
and a comparison for female in Table 103 and for male in Table 104. Table 105 and 106 include the resulting
list of attributes and the Cox coefficient values and p-values for females and for males, respectively.

For the homogeneous model (7) baseline hazard rate, the value of parameter b that best fit the data is
1.0148 · 10−6 for females and 2.8654 · 10−6 for males. For the exponential model (8), the the baseline hazard
rate is:

λ0(t) = exp(0.0783t − 11.6993)

for females and:
λ0(t) = exp(0.0657t − 10.6501)

for males. The probability to survive from time t0 to time t1 can then be computed by (9).
The coefficients for exponential and homogeneous baseline hazard rates for different models are summa-

rized in Table 107.
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6.4 Model testing

6.4.1 Model accuracy estimation: Brier score

A standard way to estimate the accuracy of a prediction model is Brier score. If the model predicts, for each
individual i, the probability pi of some event Ai, then the Brier score is given by:

Br =
1
N

N

∑
i=1

(pi − Ii)
2,

where N is the number of individuals, and Ii is equal to 1 is the event Ai happened for i and Ii = 0 otherwise.
In our case, let Ai be the event that an individual i survived during the whole study period. Then pi is given

by (9) with t0 = 0 and t1 = 10, and

Ii =

{
1, if patient i survived
0, if patient i died.

(11)

Table 108 summarises the computed Brier score for the final models. In all cases, the time homogeneous
version of the model has a slightly bit lower score, which means that it is a slightly better model. The final
models fit to DS have a higher score than those fit to GS because of the higher overall mortality rate in that
sample.

6.4.2 Coefficient accuracy estimation: confidence intervals

If modelling Cox coefficients β1, . . . , βm in (1) as normal random variables with given variances and covariances,
then S = ∑m

i=0 βizi is also a random variable with normal distribution, whose variance can be computed as:

Var[S] =
m

∑
i=0

m

∑
j=0

zizjCov(βi, β j).

Given this information, a confidence interval [Smin,Smax] for S at any given confidence level can be computed.
Substituting values Smin and Smax instead of S = ∑m

i=0 βizi into (1), the confidence interval [λmin(t,z),λmax(t,z)]
for the mortality rate λ(t,z) can be computed. Further, substituting λmin(t,z) and λmax(t,z) in place of λ(t) in
(9), the confidence intervals for the survival probabilities can be computed. The resulting confidence intervals
depend on the input vector z, and as such there values are computed for each individual. That is to say, some
individuals can have a more accurate prediction than others. The resulting confidence intervals are included
for the final models described below.

6.4.3 Medical justification review

At all stages of our work (from attribute selection to outcome verification) we consulted with medical specialists
from Leicester Diabetes Research Centre.

There is a risk with data partitioning that risk factors where there may not be a prior expectation of reason-
able differentiation in the coefficient value by sex are included. The comparisons for Cox coefficients for both
models are presented in Tables 91 and 92. As we can see from Table 92, one attribute has different signs
for male and female: Angina is risk factor for male but reduce risk of death for female. This divergence, while
initially counter-intuitive, may reflect real-world clinical and diagnostic patterns. In males, angina is often an in-
dicator of significant underlying coronary artery disease and is more likely to be associated with acute coronary
events, thereby justifying its positive association with mortality risk. In contrast, for females, angina symptoms
are frequently less specific, often under-diagnosed or misattributed, and may lead to more conservative man-
agement or greater healthcare engagement. As a result, women with diagnosed angina may actually represent
a more health-aware, treatment-compliant subgroup, potentially explaining the observed inverse association
with mortality. Therefore, although this appears a counter-intuitive differentiation in the coefficient value by sex,
we do not think this poses issues with the data or analysis.

To ensure the models are not “over-fit” to the data, the sex-variation in coefficient values by each risk factor
(independently and in combination) is reviewed by medical experts.

Computed coefficients do not always correspond to our intuition. Some diseases that are intuitively dan-
gerous have negative influence on mortality, some attributes that are intuitively important turned out to be
insignificant, etc. Some of seemingly “paradoxical” coefficients, such as, for example, the u-shaped associ-
ation between BMI and mortality, has been confirmed by our colleagues from Diabetes Research Centre as
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meaningful and consistent with the literature. In other cases, after consulting with medical experts, the in-
fluence does not appear meaningful or consistent with the literature. For example the influence of Coronary
heart disease. These coefficients are the optimal values from a complex multidimensional optimization prob-
lem which is at the current time the best modelling that could be achieved with the data available. As stated in
Section 4.1, it is not the objective of this analysis to establish epidemiological causation, but to identify variables
that show meaningful correlations with mortality outcomes. The reader should take all results with the benefits
and limitations in mind, and be satisfied, based on multiple sources of information that the differentiators in
mortality risk are fair and evidence-based.

6.5 Model outputs

6.5.1 Summary of model output

Each of the models developed in this project are summarised on a separate tab in the Model Output tool (an
Excel document titled “Model_Output_Tool.xlsx”. There are 12 models in total covering the combination of
samples, data partitioning, and mortality estimation method, as summarized in the table below.

Sample Data partitioning Mortality Estimation Method
General Sample (GS) Male Exponential model
Type 1 Diabetes (D1T) Female Homogeneous model (Homo)
Type 2 Diabetes (D1T)

For example, D2T Male Homo is a model that estimates mortality using the homogeneous model for the
baseline force of mortality and is appropriate for an individual who is male with a Type 2 diabetes diagnosis.
This model is built and fitted based on the DS sample dataset. Models without “Homo” in the title use the
exponential model (8) for baseline hazard rate.

Within the Model Output Tool, an individual’s vector zi can be entered to the “Input Information”. Guidance
on the format and relevant period for the data is provided in the tool and is in line with Section 6.2.2.

The Model Ouput Tool transforms the input information as described in Section 6.2.2 and returns the cor-
responding risk factor or Cox coefficients values for each attributes. The final input information required is a
“Date of application”. From this set of inputs, the Model Output Tool provides the following:

• Covariate influence;

• Initial hazard influence;

• Time independent part of risk;

• Probability of death within within t-th year after application, for t = 1,2,3,4;

• Cumulative probability of death within t years after application, for t = 1,2,3,4;

• 95% confidence intervals (CIs) for each probability of death above;

• The CI multiplier: a ratio of the upper to lower value in a confidence interval; and

• Squared standard error calculated through covariance matrix: this is a variance of a normal random
variable with the given confidence interval.

The probabilities of death output by the model meets the research objective of improving the understanding of
mortality risk stratification across both the general and diabetic populations in the UK, with a particular focus
on how risk factors vary by sex and disease type. This output can be helpful to the intended audience of life
insurers, actuaries, medical underwriters, and policy advisors, as it provides:

• a new source of information based on the UK general compared to diabetic population;

• a new source of information that allows insurers to critique existing information and understanding of the
risk; and

• a data-driven basis for more tailored underwriting practices and risk stratification, supporting product
innovation and pricing refinement for individuals with diabetes.
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Both time homogeneous and time inhomogeneous models are included in the output rather than one fi-
nal preferred model because each offers distinct insights into the nature of mortality risk, and their inclusion
supports a more flexible and comprehensive analysis. Time-homogeneous models assume that the effect of
risk factors remains constant over time, offering simplicity and ease of interpretation, which can be useful for
baseline comparisons and traditional actuarial applications. In contrast, time-inhomogeneous models takes
into account the improvement of medicine over time, capturing changes in risk dynamics such as age-related
shifts in disease progression or impact of improved treatment. Commentary from the industry on the Model
Outputs and the benefit and limitations is provided within the Discussion in Section 7.

6.6 Benefits and limitations of model outputs

The final models herein have the following benefits and limitations:
Regarding data: Routinely collected data suffers from data quality issues. As detailed in Section 4, care is

taken however issues remain including but not limited to:

• The data are limited to England only, and are restricted to the study period.

• As expected, most of deaths happened for reasonably old individuals, say between age 70 and 90.
Therefore, we had not enough data for mortality of young individuals. We also have limited data about
very old individuals (say, after 90), because not many individuals survived until this age. As a result, our
mortality predictions for young individuals and for very old individuals are likely to be less accurate.

• Because we find that CPRD death information is often incorrect, we used only individuals linked to ONS.
This reduces the number of individuals. Moreover, linked data belongs to England only, not the whole
of UK. More importantly, the analysis in Table 48 shows that most of the diseases (28 out of 41) are
not independent from linkage. In conclusion, using only ONS linked individuals significantly reduces
the observed death counts in the data and the missingness is not independent of disease; this could
introduce both hazard rate and coefficient misestimation risk.

• As detailed in Section 4, missing data is imputed where possible and reasonable however imputed data
is not as informative as actual values and can introduce the risk of over confidence by coefficients.
Some risk factors such as IMD or Smoking status have a high proportion of inputted data. Some other
risk factors had such an extent of missingness that these could not be included for analysis, however
these are only considered a limitation where the risk factor usually forms an allowable insurance industry
underwriting risk factor (e.g. marital status).

• It should be noted that, many individuals who leave the UK do not inform NHS, and are still registered.
The absence of diagnoses and death records appears in the data as if these individuals are all alive and
have no new diseases. This is partially corrected by removing older individuals with no activity records
during the study period, but in general it is not possible to reliably decide for every individual whether
they are absent from observations due to migration or due to being healthy and not attending GP. Under-
observation in routinely collected data occurs for various reasons. Section 4 discusses how this is allowed
for where a death observation is missing. However other reasons for under observation, such as lax de-
registering of individuals, is not accounted for. This may introduce bias to the results in a direction that
depends on how the unobserved group differs from the remaining population. Individuals who emigrate
without notifying the NHS are disproportionately younger, healthier, and more mobile. Therefore, the bias
may be stronger in subgroups associated with higher likelihood of migration—such as younger adults,
students, recent migrants to the UK, or certain socioeconomic or ethnic groups—leading to differential
underestimation of rates by these risk factors. Consequently, hazard ratios for risk factors correlated with
migration could be biased towards the null, while comparisons involving older, less mobile groups may
be less affected.

Regarding risk factor treatment and transformation:

• Diabetes classification, as described in Section 4, is not exact. As such, there is potential that the results
are affected. Misclassification is more likely to occur in individuals diagnosed at ages near the threshold
used for classification (e.g., late-onset Type 1 or early-onset Type 2 diabetes). If some Type 2 cases are
misclassified as Type 1, the apparent incidence of Type 1 will be inflated and its association with risk
factors more typical of Type 2 (such as obesity, lower physical activity, and certain ethnic backgrounds)
may be exaggerated. Conversely, if some Type 1 cases are misclassified as Type 2, the incidence of
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Type 2 will be overestimated in younger individuals, potentially diluting associations with classic Type 2
risk factors and biasing hazard ratios towards the null. Overall, the misclassification is likely to attenuate
differences between the two Types, particularly for age and BMI.

• For dynamic risk factors such as BMI, blood pressure, or cholesterol level, we took into account only
the latest observation, not the whole time series. This is a limitation because single, most recent mea-
surements may not accurately represent an individual’s long-term exposure or trajectory. For dynamic
risk factors, values can change substantially over time, and the latest observation may reflect changes
caused by early disease symptoms, treatment, or temporal lifestyle changes, rather than the individual’s
typical baseline status. This can introduce reverse causation bias if the latest measurement is taken after
disease onset or in response to emerging health issues. It may also attenuate associations if variability
over time is ignored, particularly for risk factors that fluctuate with age, season, or life events.

• For each disease (excluding diabetes, where duration was modelled), we utilized a binary attribute indi-
cating whether the disease had ever been diagnosed. Consequently, this definition treats the condition as
a permanent risk factor, effectively ignoring the possibility of full recovery. We justify this approach based
on the chronic and progressive nature of the high-impact co-morbidities included in the model, where
“recovery” to a baseline risk state is clinically rare. For episodic or acute conditions (such as stroke or
cancer), we assume that a historical diagnosis serves as a permanent marker of physiological frailty
and elevated recurrence risk. The statistical consequence of this approach is conservative: if a subset
of “fully recovered” individuals is included in the disease group, it would dilute the association between
the disease and mortality, potentially underestimating - but not overestimating - the true severity of the
condition.

• For comorbidities, we only take into account whether a disease has been diagnosed before the start date
or not, and did not take into account the date of the diagnosis. In reality, a year-old diagnoses and a
30-years old diagnosis of the same disease may have different influence of the mortality probability.

Regarding modelling:

• Much of the existing literature investigates the effect of one specific or several attributes on diabetic
mortality risk. Here, a large number of attributes are investigated simultaneously and in combination.
However, not allow for temporal aspect means that we are effectively assuming they remain constant over
follow-up, which is rarely the case. Many risk factors—such as BMI, smoking status, blood pressure, and
treatment use—can change significantly over time, sometimes in response to early disease processes
or clinical interventions. Treating them as fixed can miss-classify exposure, dilute observed associations,
and introduce reverse causation if post-diagnosis changes are incorrectly interpreted as pre-existing risk
factors. As a result, the simultaneous modelling of many attributes may underestimate the true effects of
dynamic risk factors and overstate the stability of their relationships with diabetic mortality.

• The Cox model explicitly shows the effect of each risk factor on mortality via the Cox coefficients. Many
papers compute Cox coefficients only. Here, the baseline hazard rate is also estimated in explicit form.
Therefore, the models herein provide an estimate of mortality risk over the specified time period.

• Most of the risk factors analysed are not independent from each other. The Cox model allows a set of
attributes which are useful for estimation of mortality risk to be selected. Risk factors removed were not
significant, but this does not mean these risk factors are irrelevant. Some risk factors removed which are
not statistically significant can still be used through correlation with included attributes.

• The significance of risk factors may depend on the order in which they are removed.

• Homogeneous and non-homogeneous models were developed separately for males and females, and
separately for each sample; GS, Type 1, and Type 2 diabetes. The number of model types, fit by sample,
and extent of risk factors is more comprehensive than most of the literature.

• As discussed in Section 6.1.2, the Cox model assumes risk factors influence the hazard rate indepen-
dently. The model herein have the benefit of including pairwise interactions. Higher order interactions
were not considered to ensure the coefficient value outputs were easier to interpret. Deep learning
models which represent mortality rates as complicated functions of the risk factors were not considered
suitable, even though these can account for interactions of all orders and so potentially more accurately
estimate mortality. This is because for such models the exact influence of each attribute is not transparent
which was a necessary objective of the research.
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Regarding model output

• Modelling stages were reviewed for justification by data and medical expertise. The Cox proportional
hazards model provides coefficients that adjust a baseline hazard rate—this baseline is unspecified but
represents the hazard function for an individual with all covariates set to zero. What is considered “stan-
dard” in this context is not a predefined life, but rather a relative risk framework where individual hazard
rates are expressed as a function of covariate effects layered on top of this baseline.

7 Discussion

To provide a meaningful discussion section, it is most valuable to consider the results within the context of po-
tential application and gain the views of potential users of the research. To achieve this, the discussion section
is provided as a general industry discussion followed by an applied industry discussion. Within this discussion
section, the key discussion points from the general industry discussion roundtable event are summarised. Fi-
nally, the underwriting process is outlined to provide context for the key summary points of the applied industry
discussion.

7.1 General Industry Discussion

The IFoA Actuarial Research Centre (ARC) held a roundtable event with industry practitioners on the 10th
July 2024 to discuss the commissioned work on an analysis of diabetes. The participants were from insurers,
reinsurers, and academia to discuss the outputs of the University of Leicester model (“The Model”) from an
underwriting and actuarial perspective (“the group”). Overall, the feedback from the group was that the research
was considered important and a significant contribution to the insurance industry which provides insights into
the complex condition of diabetes for the benefit of consumers. Specific discussions were held in the following
areas and the key views summarised below.

7.1.1 The data and data item quality

There was a brief discussion on some of the features of the CPRD dataset that required significant adjustment.
Firstly, the death records on CPRD were unreliable and so data was used only when it could be linked to the
ONS death records. Secondly, the adjustment at older ages which saw individuals removed above age 80 from
1 October 2010 where the GP record had not changed for a 10-year period (“the study period”). Individuals
may move abroad or move GP practice outwith those included in the CPRD network. The group were satisfied
with how the data issues were handled but it highlights data quality issues at older ages.

The data field to indicate the Type of diabetes field within the CPRD dataset is not always populated and
so uncertain. It was therefore necessary, where this information was not available, to introduce an age related
assumption to determine the Type of diabetes. For a diabetes diagnosis below age 28 it was assumed to be
Type 1 and equal to or above 28 Type 2. The feedback from group was that this was a reasonable assumption to
make. As childhood obesity and consequently earlier ages of developing Type 2 are increasing, this assumption
could be challenged in any future iterations of the models. It is accepted this is not a perfect proxy; however it
is reasonable enough not to adversely affect The Model.

The HbA1c is a key metric used in underwriting to access the risk of the applicant applying for insurance. For
example, an individual diagnosed with diabetes 10-years ago who manages their diabetes well is considered to
have lower mortality risk than an individual diagnosed with diabetes 5-years ago who has not been able to retain
good management. NICE guidelines do recommend HbA1c is recorded at least annually within GP records;
however, the data does not reflect this frequency of recording. Based on insurance data, it was estimated that
around 50% of applicants disclosed at the time of underwriting that they did not know their HbA1c but would
characterise their diabetes management as “amazing control”, based on underwriters experience in the group.
The Model uses the last HbA1c measure recorded whereas an underwriter may look at the last 3 years of data
recorded, if available. It is expected that a recently diagnosed individual, within the last 10 years, may have
much better management of their condition, reflecting better medication and insights. Acceptable control of
HbA1c for access to insurance is key (between 6% and 8%, percentage of haemogloben in the blood that is
glysosylated), particularly for Type 1. The medical definition is different where optimal control is defined as 7%
(53 mmol/mol) or less.
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7.1.2 The variables of interest, applicability, and results

Ethnicity is an important factor for diabetes. However, it not considered within The Model as the data item is not
reliable. Further, insurance companies do not use ethnicity as a factor when setting prices in UK and Europe
to comply with the Equality Act 2010. Therefore, although ethnicity is an important risk factor for diabetes, its
absence in the modelling does not affect the usability for the intended users of the research.

Underwriters often use family history as a guide to the risk of the person applying for life insurance. Family
history was not considered as a variable within The Model. Within GP data records, family history is a free text
field and is filled in selectively for individuals with a high risk of cancer. It is more likely to be recorded where
there is a family history of stroke and heart disease, than for diabetes. If diagnosed with diabetes, family history
would be considered irrelevant for mortality risk; however, family history of stroke and heart disease would still
have a relevance when underwriting a risk.

The Group discussed the differences between Type 1 and Type 2 based on outputs from The Model:

• For a Type 2 diabetic, the number of years (duration) since diagnosis is a key consideration as the
mortality rates increase each year by about 4% for every year since diagnosis. On the other hand, for
Type 1 diabetes duration since diagnosis is less material as there is a much smaller trend from year to
year. The Model also shows that if someone has Type 2 diabetes for a long time, the mortality rate is
similar to Type 1. The Group thought this was reasonable.

• One underwriter explained that Type 1 diabetes base ratings tend to be higher than Type 2, given that
the majority of applications tend to be for individuals in their mid-30s. For Type 1, complications are likely
to have an impact at an earlier age given the individual is diagnosed at a much younger age. The only
time when Type 2 is higher is if there is poor control and significant complications from comorbidities.
Generally, a Type 2 diagnosis tends to occur over the age of 45, so the cause of death is likely to happen
in the next 35 years. The risk of developing Type 2 diabetes increases with age. Below the age of 45, it
is estimated to be 1.5% of population and above this, increasing from 8% to 20% as age increases11.

The Model results indicate gender is an important predictor of mortality risk for those living with diabetes.
With regard to the diabetes population, overall it is seen that females with Type 1 diabetes have higher mortality
than males, in contrast to the general sample. On the other hand, in Type 2 diabetes, males and females are
more aligned. Women lose their pre-menopausal cardiovascular protection with age so become closer to the
males. Younger females with Type 1 tend to have poorer control.

BMI is considered to be an important variable with relation to diabetes mortality risk. The Model produced
the expected U-shaped graph12. The exception is female with Type 1 diabetes with a BMI 20-39, which showed
a relatively flat relation to expected mortality rate by BMI category. The Group considered that the impact of
BMI is likely minimal when other health problems are not present, but The Model does indicate that BMI is
important as a factor.

Socio-economic status (SES) is considered to have a material impact on mortality risk, often Index of
Multiple Deprivation (IMD) is used as a SES proxy. Within the Model, the IMD is based on the postcode of
the individual, or the GP postcode in the over 50% of cases where individual postcode is not present. For
the diabetes population, there is a distinct increase in mortality for males with diabetes from affluent to less
affluent. This is not as apparent for female with diabetes; the mortality risk is relatively flat by IMD; however, the
confidence intervals are wide so care must be exercised in drawing any firm conclusions. The general sample
population has a slight increase by IMD. Affluent males do have lower risk, possibly due to better access to
health care services and being more aware of health issues. It was discussed why affluent females, on the
other hand, do not benefit from affluence which could be due to females being generally better engaged with
health services across socio-economic groups.

Co-morbidities are an important indicator of mortality risk for general and the diabetes population as can
be seen in the The Model results. The co-morbidity attributes in The Model are a complex area to understand
given the large number of possible co-morbidities and the interactions involved. The group’s key discussion
points are summarised below:

• Heart failure has the largest impact on the general sample followed by Type 2 and then Type 1. This is
due to the relative increase in qx for the different populations where the general sample has the lowest qx
followed by Type 2 and then Type 1.

11https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthinequalities/bulletins/
riskfactorsforprediabetesandundiagnosedtype2diabetesinengland/2013to2019

12The U-shaped curve between BMI and mortality risk, including diabetes mortality risk, is widely recognized in medical and epidemio-
logical research Di Angelantonio et al. (2016).
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• CHD does not have an impact on the general sample but does for females with diabetes. For males,
there is no impact due to the interaction with hypertension. The model does not include the severity of
the comorbidity case. As discussed, this highlights a deficiency in the model that could be improved by
pre-defining CHD as a standard condition to be modelled.

• In underwriting, a member of the group at the roundtable event anecdotally stated that about 15 − 20%
of applicants for life insurance declare a second condition, which is lower than what The Model shows.
Underwriters receive targeted reports for diabetes which may not pick up other complications and those
applicants not declaring; however, the model does utilise other factors such as BMI.

• There was interest in the accumulative impact of co-morbidities. Traditionally, some underwriters treat
BMI and diabetes separately, but data does reveal a different impact if combined. The model does allow
for pair-wise interactions. But, the model is limited in its data treatment for inter-study period disease
diagnoses and co-morbidities.

• Type 2 diabetes and BMI can be reversed but lifestyle changes are difficult and there is an epigenetic
legacy with diabetes. Remission is rarely achieved and rare to maintain.

• There was a suggestion of further research looking at the pathway from diagnosis to heart disease event,
kidney failure, etc. to inform critical illness cover.

7.1.3 The final models and practical use

In the discussion, both models homogenous and non-homogenous were discussed. The homogenous model
was considered more reliable than the non-homogenous model (includes a trend factor over time). The non-
homogenous model was based on only 10 years of data which was considered an insufficient period to estab-
lish a trend.

7.2 Applied Industry Discussion

To gain the views of potential users of the research in an applied sense, a sub-group of the roundtable dis-
cussion were asked to review a set of example applicants with diabetes profiles and share their underwriting
outcome for comparison to the final models. Fifteen pre-constructed applicants with diabetes customer profiles
(“Example Cases”) were agreed with 5 profiles for Type 1 diabetes and 10 for Type 2. The Example Cases were
derived based on realistic cases reinsurers underwrite. The sub-group from the roundtable asked to participate
in the applied industry feedback were the reinsurers present (“the participants”). This is considered indicative
of the industry as direct insurers frequently defer underwriting outcomes ratings to be based on reinsurers’
manuals. Therefore, inclusion of all members of the group at the roundtable would have lead to bias; results
duplication where one or more reinsurers’ underwriting manuals are used.

To provide context for the applied industry discussion below, first the underwriting process is outlined in
general.

• Applicants applying for insurance are subject to an underwriting process where many attributes are con-
sidered. If the applicant has diabetes, further information is requested such as: Type of diabetes; duration
since diagnosis; HbA1c; BMI; and any comorbidities (Table 109).

• The term “healthy lives” herein refers to applicants without a diabetes diagnosis and no pre-existing health
issues from the list of comorbidities conditions used in The Model. These individuals also have: a BMI in
the range 20-25, an IMD of 1 (most affluent group), Systolic/Diastolic Blood pressure in the range 90 to
120 and 60 to 80 respectively, and finally, total cholesterol level less than or equal to 5 mmol/L.

• Generally, and in simplified terms, “healthy lives” would be accepted as a result of the underwriting
process without the need for additional underwriting outcomes to be applied. When an applicant is
accepted without additional underwriting outcomes, standard rates are considered appropriate i.e. these
applicants are accepted on healthy lives expected mortality (“healthy lives qx”).

• Generally, and in simplified terms, applicants with pre-existing health issues such as a diagnosis of dia-
betes may be accepted as a result of the underwriting process with the additional underwriting outcomes
applied. When an applicant is accepted with additional underwriting outcomes, non-standard rates may
be considered appropriate i.e. these applicants are accepted with a rating above the healthy lives ex-
pected mortality (“rated lives qx”). For example, an applicant with diabetes may have a higher premium
to compensate for the higher expected mortality.

40



• Alternative terms are available but as an ultimate decision, if the mortality risk is assessed to be excessive
(for example, a rating of +300%/400% above healthy lives expected mortality) then the underwriting
outcome may be to decline the application for death insurance benefits.

The “rating” applied above the “healthy lives qx” are the underwriting outcomes the participants were asked
to share for the Examples Cases. In order to comply with competition law, the IFoA collected the information
and retained confidential information:

• Only the perceptions of additional risk posed are shared. This removes the risk of sharing either premi-
ums or health lives rates.

• The underwriting outcomes are anonymised and only shared when at least 2 participants haven’t de-
clined.

• Only the final analysis and conclusions are published.

These outcome decisions were aggregated for Example Cases to enable comparison to Model results. Where
a participant’s underwriting decision would be to accept with a rating applied, the average rating is shown and
a range in Table 110. The number of participants who would decline is shown; where the number of declines
is high then no average rating is shown (where only 1 reinsurer rating is available).

Results of the University of Leicester model (“The Model”) are applied to the Example Cases. Where
comorbidities are present, these are input to The Model where there is an option to select it. The output from
The Model is based on the following:

• A separate average ratio for males and females of the rated lives qx over healthy lives qx over a 10 and
20-year period. The qx is projected by cohort, e.g. age 27 duration 0 will be age 28 duration 1 a year
later. A weighting is applied to the rating by qx to allow for the impact of qx increasing with age.

• Only the homogenous model rather than the non-homogeneous model is used. This is appropriate as
the homogenous model has no time trend (e.g. a policyholder aged 26 and duration 0 is the same as
aged 25 duration 1 which is equivalent to age 24 duration 2, etc.).

• To calculate the rating, a general sample healthy lives (baseline with no loadings by smoker status) is
compared to The Model results for a Type 1 or Type 2 diabetes.

To enable a reasonable comparison, insured lives tend to be more affluent than the general population which
in turn means that insured lives have on average lower levels of mortality compared to the general population.
This occurs due to the well-established correlation between mortality and socio-economic determinants. This
is an important factor in explaining inequalities in life expectancy; life expectancy is significantly lower in more
deprived areas compared to less deprived areas in England. In order to allow for the discrepancy in expected
mortality and therefore proxy the expected mortality of the insured lives sample, the Index of Multiple Depriva-
tion (IMD) of 1 (scale is from 1 to 5 where 1 is the most affluent) is used in the Example Cases. This is not
precise as the population general sample used in this research as a benchmark will have different experience
compared to an insured population across different ages and genders.

7.2.1 Key summary of comparison

In general An underwriting decision is based on the health of the applicant at the time of application. The
resulting rating applied to the standard rate expected mortality is applied throughout the duration of the contract
which could be over 25 or more years. In comparison, The Model provides a projected qx which develops over
time13. Therefore, these two methods can be compared to assess how the ratio between the rated lives qx
and the healthy lives qx changes over the duration of the contract. That is, how the rating varies over time.
The outcome of The Model is that ratings tend to reduce over time as the policyholder ages. This is something
the industry could also consider as ratings are normally based on the health of the applicant at the time of
underwriting and not over the term of the life contract (up to 25 years and beyond).

13qx is the probability of death aged x.
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Specifically for Type 1 The average ratings produced by The Model for Type 1 diabetes is within range of the
underwriting ratings for cases 1, 2 and 4 where the number of declines is 0 or 1 (Table 110). Male outcomes
from the The Model tend to be at the lower end of the range compared to the average rating of the participants’
underwriting outcomes whereas female outcomes from the The Model are much higher above the upper rating.

It is also observed that the participants ratings are highly variable with a wide range, which illustrates that
each has a different view of the risk. A varying view of the risk may occur when there is a highly uncertain
estimate, or different participants have different sources of information for the basis of the risk perception.

The use of the applicant’s gender by participants in the risk assessment of diabetes is not used. This may
reflect greater sensitivities on the use of gender created by the EU Gender Directive, even though the guidance
indicating its use would be acceptable in relation to the different health outcomes. The Model rating is lower
when the comparing the 20-years average to a 10-year average. The rating for qx reduces as the applicant
gets older. The 20-year average model rating is either close or below the lower rating range for males.

For cases 3 and 5, the risk is considered high and is declined by most of the participants. In these cases,
we do have higher ratings generated by the model compared to cases 1, 2 and 4. In the Example cases with
co-morbidities (cases 3, 4 and 5), the model does not include explicitly Chronic Kidney Disease, Retinopathy,
Peripheral vascular disease, or diabetic neuropathy. The reason for this is due to high correlation of these
conditions with other co-morbidities, particularly hypertension (Table 55 and 56). A learning for future model
iterations would be to design the selection of comorbidities so the model includes these key comorbidities for
diabetes as standard. This would provide more refinement than using the broader hypertension condition.

Specifically for Type 2 The Model has much lower ratings for Type 2 diabetes compared to the participants
ratings. This is across all Type 2 diabetes Example cases from 6 through to 15.

A plausible explanation for this is due to the underwriting process. Those applicants that are successful and
go through the process to be accepted will be healthier, that is with a lower qx compared to a healthy sample
from the general population sample. The healthy sample from the population will include individuals with
diabetes and other conditions that have not been diagnosed yet through either a visit to their GP or hospital14.
The insured population will be healthier as there is a selection process to categorise lives into healthy lives,
rated lives and, where risks are too high, would be declined. This difference may explain why a small difference
is seen between a healthy general sample and a sample of Type 2 diabetes for each case for The Model
outcomes. Also, those diagnosed with diabetes will be receiving treatment and general health checkups which
may reduce the mortality15 against a general sample that includes individuals that have undiagnosed diabetes
without treatment.

However, the rating for case 6 should be near a healthy life as this life has no co-morbidities, that is the only
diagnosis is Type 2 and with good control of HbA1c. This example case is overweight with a BMI of 37, but this
variable within The Model does not lead to a predicted higher mortality at older ages. The average participants
rating is around +100%.

Another feature to explain why the resulting ratings in The Model are lower for Type 2 diabetes is to consider
the HbA1c metric. The HbA1c measure for all the Example cases is between 5.7 and 10 which reduces the
risk of mortality, compared to levels outside this range. The Model does show a typical U-shared curve where
below 5.7 and above 10 shows higher mortality. The calibration of the Model could be more refined as it
categorises diabetes as follows: ≤ 5.7, 5.7 to 6.5, 6.5 to 7, 7 to 10 and ≥ 10. The category “7 to 10” could be
unevenly distributed with good risks closer to 7 and poorer risk closer to 10.

Most participants declined Example Cases 10, 13, 14 and 15. This is predominantly due to the serious
comorbidities associated with these cases and the HbA1c readings were toward the higher range. The model
here gives a result that is close to a 0 rating. This highlights a deficiency in the model in that the comorbidities
are based on a single average factor based on the data using a proportional cox model, so refinements such
as the severity of the co-morbidity are not captured. The model is also based on the latest readings and not
an average that can provide more information on the variability for certain measures such as HbA1c. Other
factors that will have a significant influence on the results is the individual pathway for comorbidities, such as
treatments and drugs. These factors are not captured by the model.

14https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthinequalities/bulletins/
riskfactorsforprediabetesandundiagnosedtype2diabetesinengland/2013to2019

15https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthandwellbeing/articles/
riskfactorsforundiagnosedhighbloodpressureinengland/2015to2019
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7.3 Further work since discussion

There were some significant challenges made to the findings:

• Ratings for females are very high compared to males for Type 1 diabetes; and

• Rating for Type 2 that resulted in negative loadings where there are potentially very serious co-morbidities
/ complications present.

Further work was carried out to address the later point. A simplified model was created, exploring a noted
limitation to the model; namely, the ordering of risk factors when fitting the model. In this exploratory work,
the order in which co-morbidities are added into the model was altered, and we only included important co-
morbidities for individuals with diabetes. The order we proposed was as follows: CHD, Stroke, Chronic Kidney
Disease, Peripheral vascular disease, Diabetic neuropathy, Retinopathy, Hyperlipidemia, Amputation and Hy-
pertension.

The purpose of this exploratory modelling was to check the significance of this limitation, as well as the
significance of these diseases for mortality prediction without other comorbidities. This additional modelling
does suggest that of the co-morbidities tested, all are significant including CHD, Stroke, MVD, Blindness,
Amputation and then finally Hypertension.

Therefore, when fitting the model there are significant important model design choices in terms of which co-
morbidities are included and the ordering of the risk factors. We would suggest having co-morbidities retained
that are most relevant for individuals with diabetes and factored into the model in the order of importance for
individuals with diabetes.

This exploratory model is an initial step and further work in the model designed would be required to
overcome the challenges made.

7.4 Conclusion

The general industry and applied industry discussions provided a context to the results through the Example
cases based on typical cases underwritten where the applicant has diabetes.

The following insights where discussed:

• BMI exhibited a U-shape which is aligned with what underwriters would expect to see.

• IMD exhibited a different pattern for males compared to female, where male has a much stronger increase
in mortality rates as IMD goes from affluent to less affluent but on the other hand the pattern for females
was not well defined, however, confidence intervals were wide.

• A useful insight provided by the reinsurer loadings is the variation in ratings between the reinsurers based
on a different view of the risk.

• It was also interesting that the model loadings depend on the period the rating is applied for, as the rating
tends to reduce over time as the population ages.

• The model results for Type 1 were within range from the underwriting results, except female where it is
much higher. This was challenged but underwriters typically use gender neutral ratings so a benchmark
was not possible.

• Type 2 results were challenged as some of the more serious co-morbidities were not adhering to prior
expectations. Further exploratory modelling work suggested the order and the sequence of the key
co-morbidities for diabetes is important.

• Overall, the patterns between different factors were aligned with expectations.

The modelling was appreciated in the general discussion but there are many complications such as the
quality of the data and how to handle co-morbidities correctly. Building a general model that covers Type 1
and Type 2, and all the different co-morbidities was ambitious. We understand this is the first time that has
been done. The general feedback was that creating a model based on CPRD data was worthwhile as an initial
approach that can be improved in future based on the feedback from practitioners. This research therefore
provides a useful discussion point and an additional data-driven source of information for the intended audience
but it is not yet a sole source of the understanding of diabetes mortality risk.
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Seferović, P. M., Petrie, M. C., Filippatos, G. S., Anker, S. D., Rosano, G., Bauersachs, J., Paulus, W. J.,
Komajda, M., Cosentino, F., De Boer, R. A. et al. (2018), ‘Type 2 diabetes mellitus and heart failure: a position
statement from the heart failure association of the european society of cardiology’, European journal of heart
failure 20(5), 853–872.

Shrank, W. H., Patrick, A. R. and Alan Brookhart, M. (2011), ‘Healthy user and related biases in observational
studies of preventive interventions: a primer for physicians’, Journal of general internal medicine 26(5), 546–
550.

Song, T., Jia, Y., Li, Z., Wang, F., Ren, L. and Chen, S. (2021), ‘Effects of liraglutide on nonalcoholic fatty liver
disease in patients with type 2 diabetes mellitus: A systematic review and meta-analysis’, Diabetes Therapy
pp. 1–15.

Stamler, J., Vaccaro, O., Neaton, J. D., Wentworth, D., Group, M. R. F. I. T. R. et al. (1993), ‘Diabetes, other
risk factors, and 12-yr cardiovascular mortality for men screened in the multiple risk factor intervention trial’,
Diabetes care 16(2), 434–444.

46

https://www.nhs.uk/tests-and-treatments/blood-pressure-test/
https://www.nhs.uk/conditions/obesity/


Superdrug Online Doctor (2023), ‘Cholesterol levels’, https://onlinedoctor.superdrug.com/
cholesterol-levels.html. Accessed: 2025-08-09.

Tancredi, M., Rosengren, A., Svensson, A.-M., Kosiborod, M., Pivodic, A., Gudbjörnsdottir, S., Wedel, H.,
Clements, M., Dahlqvist, S. and Lind, M. (2015), ‘Excess mortality among persons with type 2 diabetes’,
New England Journal of Medicine 373(18), 1720–1732.

Tate, A. R., Dungey, S., Glew, S., Beloff, N., Williams, R. and Williams, T. (2017), ‘Quality of recording of
diabetes in the uk: how does the gp’s method of coding clinical data affect incidence estimates? cross-
sectional study using the cprd database’, BMJ open 7(1), e012905.

Thomas, N. J., Jones, S. E., Weedon, M. N., Shields, B. M., Oram, R. A. and Hattersley, A. T. (2018), ‘Fre-
quency and phenotype of type 1 diabetes in the first six decades of life: a cross-sectional, genetically strati-
fied survival analysis from uk biobank’, The lancet Diabetes & endocrinology 6(2), 122–129.

Tibshirani, R. (1997), ‘The lasso method for variable selection in the Cox model’, Statistics in medicine
16(4), 385–395.

Wahid, A., Manek, N., Nichols, M., Kelly, P., Foster, C., Webster, P., Kaur, A., Friedemann Smith, C., Wilkins,
E., Rayner, M. et al. (2016), ‘Quantifying the association between physical activity and cardiovascular dis-
ease and diabetes: a systematic review and meta-analysis’, Journal of the American Heart Association
5(9), e002495.

Wang, T.-Y., Chang, W.-L., Wei, C.-Y., Liu, C.-H., Tzeng, R.-C. and Chiu, P.-Y. (2023), ‘Cholesterol paradox
in older people with type 2 diabetes mellitus regardless of lipid-lowering drug use: a cross-sectional cohort
study’, Nutrients 15(14), 3270.

Weykamp, C. (2013), ‘Hba1c: a review of analytical and clinical aspects’, Annals of laboratory medicine
33(6), 393.

Wilmot, E. G., Edwardson, C. L., Achana, F. A., Davies, M. J., Gorely, T., Gray, L. J., Khunti, K., Yates, T. and
Biddle, S. J. (2012), ‘Sedentary time in adults and the association with diabetes, cardiovascular disease and
death: systematic review and meta-analysis’, Diabetologia 55(11), 2895–2905.

Wright, A. K., Suarez-Ortegon, M. F., Read, S. H., Kontopantelis, E., Buchan, I., Emsley, R., Sattar, N.,
Ashcroft, D. M., Wild, S. H. and Rutter, M. K. (2020), ‘Risk factor control and cardiovascular event risk in
people with type 2 diabetes in primary and secondary prevention settings’, Circulation 142(20), 1925–1936.

Wu, Y.-T., Niubo, A. S., Daskalopoulou, C., Moreno-Agostino, D., Stefler, D., Bobak, M., Oram, S., Prince, M.
and Prina, M. (2021), ‘Sex differences in mortality: results from a population-based study of 12 longitudinal
cohorts’, Cmaj 193(11), E361–E370.

Zarulli, V., Kashnitsky, I. and Vaupel, J. W. (2021), ‘Death rates at specific life stages mold the sex gap in life
expectancy’, Proceedings of the National Academy of Sciences 118(20), e2010588118.

Zhou, B., Lu, Y., Hajifathalian, K., Bentham, J., Di Cesare, M., Danaei, G., Bixby, H., Cowan, M. J., Ali, M. K.,
Taddei, C. et al. (2016), ‘Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based
studies with 4· 4 million participants’, The Lancet 387(10027), 1513–1530.

47

https://onlinedoctor.superdrug.com/cholesterol-levels.html
https://onlinedoctor.superdrug.com/cholesterol-levels.html


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

London 
1-3 Staple Inn Hall · High Holborn · London · WC1V 7QJ 
Tel: +44 (0) 20 7632 2100 · Fax: +44 (0) 20 7632 2111 

Edinburgh 
Space · 1 Lochrin Square · 92-94 Fountainbridge · Edinburgh · EH3 9QA 
Tel: +44 (0) 20 7632 2100 

Oxford 
1st Floor · Park Central · 40/41 Park End Street · Oxford · OX1 1JD 
Tel: +44 (0) 1865 268 200 · Fax: +44 (0) 1865 268 211 

Beijing 
Level 14 · China World Office · No.1 Jianguomenwai Avenue · Chaoyang District · Beijing, China 100004 
Tel: + +86 (10) 6535 0248 

Hong Kong 
1803 Tower One · Lippo Centre · 89 Queensway · Hong Kong 
Tel: +11 (0) 852 2147 9418  

Singapore 
5 Shenton Way · UIC Building · #10-01 · Singapore · 068808 
Tel: +65 8778 1784 

 

www.actuaries.org.uk 

© 2025 Institute and Faculty of Actuaries 

http://www.actuaries.org.uk/

	diabetes_paper (004)
	Foreword by the Diabetes Steering Group on behalf of the Institute and Faculty of Actuaries
	Introduction
	Background
	Overview of this research project
	Comparison with the existing literature

	Data structure
	Data collection
	CPRD data
	Data from linked sources

	Data treatment and missing data analysis
	Information required for mortality risk analysis
	Data for outcome of interest
	Data for mortality risk factors of interest
	Static data items
	Regularly recorded data items


	Direct data analysis
	Mortality rates
	Diseases probabilities
	Relative information gain
	Diabetes morbidity rates
	Diseases influence on mortality rates

	Model overview
	Model Type
	Aim and suitability
	Cox proportional hazard model description

	Model build
	Data partitioning
	Risk factor transformation
	Risk factor selection process

	Model fitting
	Computing coefficients values
	Computing the baseline hazard rate: Time homogenous and Exponential models
	Models fit by sample

	Model testing
	Model accuracy estimation: Brier score
	Coefficient accuracy estimation: confidence intervals
	Medical justification review

	Model outputs
	Summary of model output

	Benefits and limitations of model outputs

	Discussion
	General Industry Discussion
	The data and data item quality
	The variables of interest, applicability, and results
	The final models and practical use

	Applied Industry Discussion
	Key summary of comparison

	Further work since discussion
	Conclusion

	References

	Sessional paper - An analysis of diabetes mortality risk



