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Abstract

We consider the pricing of maturity guarantees for insurance contracts in a
regime-switching lognormal market model. Regime-switching models have been
empirically shown to fit long-term stockmarket data better than many other
models. As the market is incomplete, there is no unique price for a maturity
guarantee. We extend the good-deal pricing bounds idea to the regime-switching
lognormal market model. This allows us to obtain a reasonable range of prices
for the maturity guarantee, by excluding those prices which imply a Sharpe
Ratio which is too high. As an illustration, we calculate the good-deal pricing
bounds for maturity guarantees of various maturities.
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Chapter 1

Introduction

Maturity guarantees are a common addition to many life insurance policies. The
policyholder is given a guarantee by the life insurance company that the proceeds
of the policy at the maturity date is subject to a minimum value. Ensuring that
the guarantee is properly valued is of concern to the life insurance company,
since it is a potential threat to the solvency of the company. When investment
market returns are depressed, the company’s investments are reduced in value
but this is precisely the time when the guarantee is likely to bite. Thus the
financial burden of the guarantee on the company is exacerbated.

Suppose that a policy is sold today for a single premium of £1000. The
insurance company invests the premium in the stockmarket and, in 10 years
time, it pays the proceeds to the policyholder, if he is still alive. In order to
make the policy more attractive, the company guarantees that the amount paid
to the policyholder at maturity will not be less than 75% of the premium. Thus
the policyholder is guaranteed to receive at least £750 at the maturity date.

The inclusion of a minimum payout at maturity is called an embedded op-
tion. It is embedded into the insurance contract in the sense that it cannot
be traded separately. There are many types of embedded options, such as sur-
render options, minimum return guarantees and annuity rate guarantees. All
embedded options have an intrinsic value. Moreover, since insurance contracts
are of a long-term nature, the economic conditions at the maturity date of a
policy can be very different to those prevailing when the policy was issued. The
implication is that an embedded option which may have had negligible worth
at the outset of the policy can become very valuable by the time the policy
matures.

The risks of embedded options must also be carefully accounted for, since
the potential payout on a portfolio of policies with the same embedded option
becomes larger when the number of policies in the portfolio increases. To il-
lustrate this, suppose an insurance company sells 5000 single-premium policies
which pay after 10 years the invested proceeds to any surviving policyholders.
The risk that the insurance company bears is that more policyholders survive
than expected. By the law of large numbers, this risk should decline as more
policies are sold. Compare this to the insurance company selling 5000 of the
above policies, but including a maturity guarantee of £750. The insurance com-
pany still bears the mortality risk. However, if after 10 years the proceeds are
only £700 then the insurance company must pay each surviving policyholder an
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additional £50. This is a binary outcome, where either all the policies generate
claims or none do. With the maturity guarantee, there is a risk factor which
is common to all policies and, unlike mortality risk, it is not reduced by selling
more of the same policies.

To begin to quantify the risks inherent in an embedded option, we must
value them appropriately. The primary aim of this paper is to obtain a method
for the reasonable valuation of maturity guarantees within a model which is
appropriate for the long-term nature of the guarantees. To explain how we do
this, we need to introduce a model of the market and some ideas from financial
economics.

It is well-known that maturity guarantees have the same payoff as a Eu-
ropean put option (for example, see Boyle and Hardy (1997)). To show this,
denote the maturity date of an insurance contract by T and suppose that the
guaranteed benefit is amount K at time T . If the amount payable before the
minimum guarantee is applied is S(T ) at time T , then the policyholder receives
max[K,S(T )] at time T . This means that the insurance company is liable to
pay an additional amount of K−S(T ) to the policyholder if the guarantee bites
at the maturity date. We can write this mathematically as

max [K − S(T ), 0] .

The above cost to the insurer is recognised as the payoff of a European put
option with strike price K and maturity date T . Thus valuing the maturity
guarantee is equivalent to valuing a European put option.

To value the maturity guarantee, we use ideas from financial economics which
require a model of the financial market. We assume a model of the stockmar-
ket called a regime-switching lognormal (“RSLN”) model. Regime-switching
market models are a way of capturing discrete shifts in market behavior. These
shifts could be due to a variety of reasons, such as changes in market regulations,
government policies or investor sentiment. In particular, RSLN are effective at
capturing the long-term behaviour of the stock market. This is an extremely ap-
pealing feature if we are valuing maturity guarantees since often the guarantees
are applied after many years. First introduced by Hamilton (1989), regime-
switching models have been shown in various empirical studies to be better at
capturing market behavior than their non-regime-switching counterparts (for
example, see Ang and Bakaert (2002), Gray (1996) and Klaassen (2002)).

An example of regime-switching market is one in which there are only two
regimes: a bear market regime and a bull market regime. Suppose the market
starts in a bull market regime, in which prices are generally rising. It stays
in this regime for a random length of time before switching to a bear market
regime, in which prices are generally falling. It then stays in the bear market for
another random length of time before switching back to the bull market. This
cycle continues ad infinitum. We explain more about RSLN models in Chapter
2.

Unlike the classical Black-Scholes model, the RSLN model is not complete,
which means that not all payoffs can be replicated. This has immediate conse-
quences for the valuation of any option in the model, in that there is no longer
a unique price for it. Instead, there is a range of prices called the no-arbitrage
bounds that spans all of the possible market prices. As these bounds are too
wide to be practically useful, various suggestions have been made on how to
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price options in incomplete markets. They can be separated into two camps:
the selection of either a single price, chosen according to some criteria, or a
narrow subset of the no-arbitrage bounds.

At some point, we require a single price - for example, to quote a price for
selling a contract with a maturity guarantee. However, we also recognise that
our chosen price may not agree with the market price, even if the market model
is correct. How do we know that our chosen price is reasonable compared to
what the market is likely to choose? To try to answer this, we construct a range
of reasonable prices, which are tighter than the no-arbitrage bounds. We deem
our chosen price as reasonable if it lies in this range.

To construct the narrower range of prices, we use the good-deal bound idea.
First proposed by Cochrane and Saá Requejo (2000), the good-deal bound idea
is based on the Sharpe Ratio, which is the excess return on an investment per
unit of risk. The essential idea is to exclude the option prices which are deemed
unreasonable, in that they arise in markets in which the Sharpe Ratio is too
high, meaning that the option price is “too good to be true”.

The good-deal bound idea was streamlined and extended to jump-diffusion
markets by Björk and Slinko (2006). However, as it has not yet been extended
to regime-switching diffusion models, we must extend it to RSLN model, which
we do in Chapter 3. This involves techniques from stochastic control theory
but ultimately we obtain a partial integro-differential equation which can be
evaluated on a computer.

There have other suggestions as to how to narrow the range of possible prices.
In Bayraktar and Young (2008), Sharpe Ratios are also used to price options
in incomplete markets. However, the perspective is that of an individual seller
of one option, rather than that of the entire market. The seller of an option
decides the option price via his own risk preferences, as expressed by his own
chosen Sharpe Ratio. In other words, the seller of the option chooses the risk-
neutral martingale measure under which he prices the option. It is shown in
Bayraktar and Young (2008) that the upper and lower good-deal bounds of
Cochrane and Saá Requejo (2000) can be obtained; in that case, the seller’s
chosen risk-neutral martingale measure coincides with the martingale measure
which gives the upper good-deal bound. The lower good-deal bound is obtained
in Bayraktar and Young (2008) by considering the buyer of the option.

A utility-based approach to the good-deal bound idea is found in C̆erný
(2003), and extended in Klöppel and Schweizer (2007). An alternative approach
based on the gain-loss ratio, which is the expectation of an asset’s positive excess
payoffs divided by the expectation of its negative excess payoffs, is found in
Bernardo and Ledoit (2000).

In summary, the aim of the paper is to obtain a range of reasonable values
for maturity guarantees within a RSLN market model by using the good-deal
bound idea. For simplicity, we ignore mortality and focus on the financial aspect
of the valuation.
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Chapter 2

The market model

We introduce a market model in which there is one stock and a risk-free asset.
An example of a risk-free asset is a bank account and typical examples of stocks
are equities, bonds or a pooled fund. To provide a suitable comparison, we begin
by introducing the classical Black-Scholes model for the stock price process,
before describing a regime-switching model.

We assume that all the processes introduced below are defined on the same
complete probability space (Ω,F ,P). As we are only interested in finite time
horizons, we consider only the time interval [0, T ], for some fixed T ∈ (0,∞).

2.1 The classical Black-Scholes model

The classical Black-Scholes model is a standard model to model stock returns,
in which the stock price follows a geometric Brownian motion. Denoting the
stock price at time t by S(t), then the classical Black-Scholes assumes that

dS(t)

S(t)
= µdt+ σ dW (t). (2.1.1)

Here, W is a 1-dimensional standard Brownian motion. The market parameter
µ is the mean rate of return and σ is the volatility process of the stock price.
The stock price return up to time t is lognormally distributed, with mean µt
and variance σ2t, that is

ln
S(t)

S(0)
∼ N(µt, σ2t).

Due to this lognormal distribution, we describe a classical Black-Scholes model
as a lognormal (“LN”) model. If the classical Black-Scholes model has market
parameters µ and σ, then compactly we denote it by LN(µ, σ). A realisation
for a stock with parameters µ = 0.12 and σ = 0.15 is shown in Figure 2.1.

The classical Black-Scholes model is popular for a few reasons. It captures
the small-scale random fluctations observed in real stock market data. It is also
quite simple and tractable. The parameters µ and σ can be estimated using
maximum likelihood estimation; the estimates are the mean and variance of the
log returns. These are all very attractive features for a model.
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Figure 2.1: Sample path of a stock price which follows the Black-Scholes model.

The main drawback is that it fails to capture extreme price movements. Em-
pirical studies of actual stock price movements show that extreme price move-
ments are more common than the classical Black-Scholes model suggests. This
means that the probability of observing very large price movements, whether
positive or negative, is small in the classical Black-Scholes model. Another draw-
back is that it doesn’t capture the empirically observed phenomenon of volatility
clustering, where there are periods of high volatility followed by periods of low
volatility.

2.2 The regime-switching lognormal model

In a regime-switching market model, the market switches between a fixed num-
ber of different regimes. Within each regime, the market is in a certain state,
for example a state in which prices are generally rising, or in which the price
volatility is high. Regime-switching models were first introduced by Hamilton
(1989). In that paper, the market followed an autoregressive (“AR”) model
within regimes. Hamilton and Susmel (1994) studied regime-switching mod-
els where the market follows an autoregressive conditional heteroskedasticity
(“ARCH”) model within each regime.

We focus on a simple regime-switching market model called the regime-
switching lognormal (“RSLN”) model. In the RSLN model, the market follows
an LN model within each regime. If the RSLN model has K regimes then we
denote it by RSLN(K).

In order to have a mathematical description of the RSLN model, we define
the process which drives the regime-switching. Denote by α(t) the regime that
the market is in at time t. We assume that the process α is a Markov chain.

Definition 2.2.1. A Markov chain is a process α = {α(t); t ∈ [0, T ]} defined

6



on a countable set I which satisfies the Markov property

P [α(tn) = j |α(t1) = i1, . . . , α(tn−1) = in−1] = P [α(tn) = j |α(tn−1) = in−1] ,

for all j, i1, . . . , in−1 ∈ I and any sequence t1 < t2 < · · · < tn of times.

In the RSLN model, the price process S = {S(t), t ∈ [0, T ]} of the stock
satisfies

dS(t)

S(t)
= µ(α(t−)) dt+ σ(α(t−)) dW (t), ∀t ∈ [0, T ], (2.2.1)

with the initial value S(0) being a fixed, strictly positive constant. The param-
eters µ(i) and σ(i) are constants and we assume further that σ(i) is non-zero
for each i ∈ I. We assume that the Markov chain starts in a fixed state i0 ∈ I,
so that α(0) = i0, almost surely.

Thus when α(t−) = 1 then the mean rate of return is µ(1) and the volatility
is σ(1). The use of α(t−) rather than α(t) ensures that the market parameters
are predictable, which is a technical condition.

In order to complete the RSLN model, we need to specify the rates at which
the Markov chain switches between states, or regimes. In continuous time, the
evolution of the Markov chain is described by a matrix G called the generator of
the chain. The generator is a D ×D matrix G = (gij)

D
i,j=1 with the properties

gij ≥ 0, ∀j 6= i and gii = −
∑
j 6=i

gij .

The interpretation of the off-diagonal element gij of the generator is as the
instantaneous rate of transition from state i to state j.

The stock price dynamics (2.2.1) look very similar to the dynamics (2.1.1) in
the classical Black-Scholes model except that the parameters µ and σ, instead of
being constants, are now functions of the Markov chain α(t). This has a visible
effect on the typical stock price dynamics in the RSLN model.

As an example, consider Figure 2.2 which illustrates a realisation from an
RSLN(2) model. In this example, regime 1 corresponds to a low volatility envi-
ronment with a positive mean rate of return. Regime 2 corresponds to a high
volatility environment with a negative mean rate of return. Figure 2.2(a) shows
a possible path of the Markov chain α. We see for this particular path that
there are three changes in market regime. Figure 2.2(b) shows a possible path
of the stock price, corresponding to the sample path of the Markov chain. The
initial regime is regime 2, and the Markov chain stays in this regime until about
time t = 0.12. During this time, the stock price is distributed as LN(µ(2), σ(2));
notice the volatility of the stock price in Figure 2.2(b) up to about t = 0.12.
Around time t = 0.12, the market switches to regime 1 and stays in this regime
until about time t = 0.45. The stock price is distributed as LN(µ(1), σ(1)) dur-
ing this time period. See how the volatility decreases and there is a clear upward
trend in the stock price. Around t = 0.45, the market regime switches back to
regime 2, and then the stock price is once more distributed as LN(µ(2), σ(2)).
Here the stock price volatility is seen to increase and there is a clear downward
trend.
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(a) A sample path of a Markov chain.

(b) The corresponding sample path of a stock price which follows the RSLN(2) model.

Figure 2.2: Sample paths for an RSLN(2) model.
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2.3 The RSLN model

The RSLN model allows us to overcome some of the drawbacks of the classical
Black-Scholes model, namely that it fails to capture extreme price movements,
while retaining some of the tractability. In Hardy (2003, Chapter 3 and page
226), statistical tests suggest that for data from the S&P 500, TSE 300 and
FTSE All-Share Total Return Index over the years 1956-2001, an RSLN(2)
model provides a better fit than a range of other models, including the LN,
AR(1), ARCH, GARCH and regime-switching AR(1) model. This strongly
suggests that for models of long-term stockmarket behaviour, an RSLN model
should be considered.

The price of this better fit is the need to estimate more parameters. For
example, in a RSLN(2) model, we need to estimate 6 parameters: µ(1), µ(2),
σ(1), σ(2), g11 and g22. Compare this with the LN(µ, σ) model, where we needed
to estimate only 2 parameters. However, given the improved fit to the data, this
is not unduly onerous.

We use the RSLN model to describe the price dynamics of the stock. This
means that the stock price process S satisfies (2.2.1). We assume that there are
D market regimes. The market-switching between market regimes is modelled
by a Markov chain α which takes values in a finite state space I = {1, . . . , D}.
and has generator G = (gij)

D
i,j=1.

In the market model there is also a risk-free asset. Consistent with the stock
price dynamics, we assume that the risk-free asset price process B satisfies

dB(t)

B(t)
= r(α(t−)) dt, ∀t ∈ [0, T ], B(0) = 1.

We call r the risk-free rate of return. The above equation can also be solved
explicitly to find

B(t) = exp

{∫ t

0

r(α(s−)) ds

}
,

for all t ∈ [0, T ].

Remark 2.3.1. It is straightforward to generalise the above market model to
include a finite number N of risky assets. It is also straightforward to further
generalise the market parameters r, µ and σ to be of the form

r(t) = r(t, S(t), α(t−)), µ(t) = µ(t, S(t), α(t−)), σ(t) = σ(t, S(t), α(t−)).

However, for the sake of clarity, it is preferable to keep to the model we have
outlined above.

2.4 Summary

The aim of the paper is to price maturity guarantees within the framework of
the RSLN model. The RSLN model provides a better fit to long-term financial
market data and hence it should be considered as model for the pricing of
maturity guarantees, which often apply after many years have elapsed since the
policy was first purchased. However, as we see in the next chapter, the pricing
method is neither as straightforward nor as standard as in the classical Black-
Scholes model. This reflects the difficulty in pricing in incomplete markets (of
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which the RSLN model is one) and the current uncertainty in the literature
in what is the best method of pricing in incomplete markets. On the latter
point, there are several choices of methodology. We apply a technique, called
the good-deal bound, to the pricing of maturity guarantees in the RSLN model.
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Chapter 3

Pricing options

The approach that we use to price options is rooted in the theory of finance.
Beginning with the seminal ideas on option pricing of Black, Merton and Scholes,
the growth of financial derivatives has been paralleled by developments in the
field of mathematical finance. The reason is that the economic ideas of Black,
Merton and Scholes can be translated into a mathematical framework, using
the tools of stochastic calculus and martingale theory. Mathematics allows the
derivative market participants to price and hedge products.

Given a model of the market, the first requirement is that there is an ab-
sence of arbitrage strategies. An arbitrage strategy is a trading strategy which,
starting from zero wealth, generates profits without any risk. From the absence
of arbitrage, it follows that the value of a derivative is the value of a trading
strategy that replicates the derivative’s payoffs (called the replicating portfolio).
This consequence must hold, for otherwise there is an arbitrage strategy. To see
this, suppose the price of the derivative is greater than the price of the replicat-
ing portfolio. Then we can sell the derivative and buy the replicating portfolio,
leaving us with a positive amount of cash attained without incurring any risk.

Therefore, valuing a derivative in an arbitrage-free model amounts to finding
and valuing the replicating portfolio. However, it is not always possible to find
a replicating portfolio. In such models, of which the RSLN model is one, we
need to find alternative approaches to value a derivative.

We have based the introduction to the financial theory of option pricing in
Sections 3.1-3.3 on material from Björk (2009) and Hunt and Kennedy (2004).

3.1 Incomplete markets

To illustrate the idea of an incomplete market, we use a very simple market
model in discrete time. Suppose that we are given a market model with only
one traded asset S, with price S0 at time 0. At time 1, the market can be in
one of two possible states: either state ω1 with probability p or state ω2 with
probability 1 − p. At time 1, the price of the asset is S1(ω1) in state ω1 and
S1(ω2) in state ω2. This setup is shown in Figure 3.1.

We wish to price a derivative X which pays amount X1(ωi) at time 1 when
the market is in state ωi, for i = 1, 2. An example of a derivative is a European
put option with strike price K and maturing at time 1. The European put
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Figure 3.1: The possible states of the market and the possible prices of asset S.

option gives the buyer the option to sell the underlying stock at price K at time
T . This means that at time 1,

• if S1 > K then the seller pays nothing to the buyer; and

• if S1 ≤ K then the seller pays K − S1 to the buyer.

The task is to calculate the time-0 price X0 of the derivative. We do this by
constructing a replicating portfolio. Denote the number of units held of asset S
by φ. If we can find φ satisfying

φS1(ωi) = X1(ωi), for i = 1, 2, (3.1.1)

then we call φ a replicating portfolio for the derivative X. Holding φ units of
asset S at time 0 means that the time-1 payoff of the derivative is replicated,
regardless of the state of the market. If such a portfolio φ exists then the fair
price of the derivative at time 0 is the cost of the replicating portfolio, that is

X0 = φS0.

However, what if there is no replicating portfolio φ? Indeed, there is no reason
why such a portfolio should exist in this simple model; we see from (3.1.1)
that the one unknown φ must satisfy two equations. In that case, we say that
the market is incomplete since there are payoffs (such as the time-1 payoffs of
derivative X) that are not entirely determined by the prices of traded assets (for
example, the price of asset S). This means that in an incomplete market there
is an uncertainty about the value of these payoffs. In contrast, in a complete
market all payoffs are entirely determined by the prices of traded assets and
hence the values of all payoffs are known.

In real life, financial markets are incomplete. There are various possible
sources of incompleteness, such as a lack of traded assets relative to the payoffs
that an investor wishes to replicate; examples of these are temperature deriva-
tives and catastrophe bonds. Market frictions, such as transaction costs and
constraints on the investor’s portfolio, can also cause incompleteness.
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Given the reality, it appears more realistic to use an incomplete market model
since this allows us to model the uncertainty arising from the incompleteness.
However, while the theory of derivative pricing in complete markets is very
well understood, there is still no sound, comprehensive framework for derivative
pricing in incomplete markets. The problem in incomplete markets is that,
applying the approach in complete markets to do pricing, there is no unique
price for derivatives. Rather, a range of possible prices is obtained and various
suggestions made on how to obtain either a single price or a narrower range of
prices for each derivative.

When the incompleteness arises from a lack of traded assets, one suggestion
is to make the market model into a complete one by a process called fictional
completion. The idea is to introduce more assets into the model, and these new
assets cannot be replicated by the existing assets. If we do this until there exists
a replicating portfolio for every possible derivative of the assets (both existing
and new) in the market, then we have completed the market. If we use the
completed market model to price derivatives, then we obtain unique prices.

While the notion of completing the market is an attractive one, it does not
solve the original problem. The assets that we use to complete the market are
not traded in the market we seek to model, which means that we cannot observe
their prices in the real world. The uniqueness of the derivative prices is based on
the prices of these assets, and we are not certain what these asset prices should
be since there is no objective way of determining them within the model. All
we have done is hidden the uncertainty arising from the lack of traded assets in
the prices of the assets used to complete the market, rather than expressing it
openly in the prices of the derivatives.

There have been other suggestions made on derivative pricing in incomplete
markets, but as they revolve around the notion of risk-neutral measures (as does
our approach), we begin by explaining the latter concept.

3.2 Risk-neutral pricing

To explain risk-neutral pricing, we expand the simple market model above to
include a second asset B. We assume that the time-0 price of B is B0 and the
time-1 price is B1(ωi), for i = 1, 2. This expanded market model is shown in
Figure 3.2.

We wish again to price a derivative X which pays amount X1(ωi) at time
1, depending on the state ωi of the market. The task is to calculate the time-0
price X0 of the derivative.

Denote by φS and φB the number of units held in asset S and B, respectively.
We call (φS , φB) a portfolio.

Definition 3.2.1. A derivative X is said to be attainable if there exists a
portfolio (φS , φB) such that

φSS1(ωi) + φBB1(ωi) = X1(ωi), for each i = 1, 2.

We call (φS , φB) a replicating portfolio for the derivative X. If all derivatives are
attainable then the market is said to be complete. Otherwise, it is incomplete.

Next we introduce a key concept which is important both in determining
whether or not the model is arbitrage-free and in valuing derivatives.
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Figure 3.2: The possible states of the market.

Definition 3.2.2. A pricing kernel Z = (Z1, Z2) is any strictly positive vector
with the property that

S0 =

2∑
i=1

ZiS1(ωi) and B0 =

2∑
i=1

ZiB1(ωi). (3.2.1)

We see that the pricing kernel relates the time-1 prices to the time-0 prices.
Each component Zi corresponds to a state of the market ωi.

Theorem 3.2.3. The model is arbitrage-free if and only if there exists a pricing
kernel.

Theorem 3.2.4. Suppose the model is arbitrage-free and let X be an attainable
derivative. Then the time-0 value of X is given by

X0 = φSS0 + φBB0,

where (φS , φB) satisfies

φSS1(ωi) + φBB1(ωi) = X1(ωi), for each i = 1, 2.

Furthermore, if Z is some pricing kernel for the model then X0 can also be
represented as

X0 =

2∑
i=1

ZiX1(ωi). (3.2.2)

Theorem 3.2.4 tells us that if we have a pricing kernel Z (which means by
Theorem 3.2.3 that the model is arbitrage-free) then we can price any attain-
able derivative using the pricing kernel. We don’t need to find the replicating
portfolio for each derivative.

The usual interpretation of the pricing kernel is as a change of measure. To
see this, without loss of generality suppose that the asset B is a bank account
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which pays interest at a continuously compounded rate of r. Further suppose
that

B0 = 1 ⇒ B1(ω1) = B1(ω2) = er.

We solve (3.2.1) to find

Z1 = e−r
S1(ω1)− erS0

S1(ω1)− S1(ω2)
and erZ2 = 1− erZ1. (3.2.3)

Defining
q := erZ1,

we see from (3.2.3) and the strict positivity of the pricing kernel that 0 < q ≤ 1.
We also find that 1− q = erZ2. Substituting for q into (3.2.2), we get

X0 = e−r
2∑
i=1

erZiX1(ωi) = e−r (qX1(ω1) + (1− q)X1(ω2)) .

Interpreting q as a probability, we write this concisely as

X0 = e−rEQ (X1) , (3.2.4)

where we use EQ to denote expectation with respect to the measure Q which
assigns probability q to state ω1 and probability 1−q to state ω2. We call Q the
risk-neutral measure. It does not depend on the risk preferences of the investor
and it is in this context that the term “risk-neutral” should be understood; the
measure Q is neutral with respect to risk preferences. We also call the formula
(3.2.4) a risk-neutral valuation formula.

Equation (3.2.4) gives the fair value of the derivative as its time-1 expectation
calculated using the risk-neutral measure Q and discounted to time-0. This
means that under the measure Q, the discounted asset price is a martingale.

Definition 3.2.5. In discrete-time, a martingale is a stochastic process Y =
{Yn;n = 0, 1, . . .} such that

E (Yn |Fm) = Ym, ∀m ≤ n,

where Fm denotes the information available at time m.

For this reason, the measure Q is also called a martingale measure. We can
now state the no-arbitrage condition as follows.

Theorem 3.2.6. The model is arbitrage-free if and only if there exists a mar-
tingale measure Q.

What is most suprising about the risk-neutral valuation formula is that it
does not involve the measure P which assigns probability p to state ω1 and
probability 1− p to state ω2. We call P the real-world measure. It is under the
measure P that we observe the asset prices; for example, with probability p we
observe asset S’s price at time 1 to be S1(ω1).

The only role of the measure P is to determine which events are possible and
which are impossible. The martingale measure Q changes the probability of
these events, but it must agree with the measure P on which events are impossi-
ble. If an event is impossible under measure P (that is, the event has probability
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zero) then it must also be impossible under measure Q. More abstractly, the
measure P determines a class of equivalent probability measures, which we see
more of later.

Thus when we calculate the arbitrage-free price of a derivative, we do this
in a risk-neutral world regardless of our actual risk preferences. The calculation
holds for all investors. However, it must be remembered that the measure Q is
an artificial construct which has no interpretation in the real-world. It is simply
a means of obtaining the fair price of a derivative.

So far, we have not said anything about the uniqueness of the martingale
measure.

Theorem 3.2.7. Suppose the model is arbitrage-free. Then it is complete if
and only if the martingale measure Q is unique.

In summary, Theorems 3.2.6 and 3.2.7 tell us that the model is complete and
arbitrage-free if and only if there exists a unique martingale measure Q, that
is a measure under which the discounted asset price is a martingale. Hence,
while the measure Q has no interpretation in the real-world, its existence and
uniqueness have very important implications for the model. In particular, if it
is unique then (3.2.4) has a unique solution. If it is not unique, then there are
multiple possible solutions to (3.2.4) and thus multiple possible prices for the
derivative X.

Now we have reviewed the important concepts in a one period model, we
turn to the continuous time model that is of most interest to us. We re-state the
concepts in the continuous time model and the reader will see that the results
carry over unchanged. The main difficulty in moving to continuous time is in
the technical details. We omit many of these, but the interested reader can
find them in many books, such as Björk (2009), Hunt and Kennedy (2004) and
Karatzas and Shreve (1998).

3.3 Pricing in continuous time

We place the results from the previous section in a continuous time setting, for
which it is essential to have a more probabilistic approach. Suppose we are given
a market model with one traded asset (a stock) and one risk-free asset, and all
processes are defined on a complete probability space (Ω,F ,P). We assume that
the stock price process S = {S(t), t ∈ [0, T ]} follows the RSLN model, so that
it satisfies

dS(t)

S(t)
= µ(α(t−)) dt+ σ(α(t−)) dW (t), ∀t ∈ [0, T ], (3.3.1)

with the initial value S(0) being a fixed, strictly positive constant, and we
assume that the price dynamics of the risk-free asset satisfy

dB(t)

B(t)
= r(α(t−)) dt, ∀t ∈ [0, T ], B(0) = 1.

The above price process dynamics are under the real-world measure P.
The information available to the investors in the market at time t is the

history of the Markov chain and Brownian motion up to and including time t.
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Mathematically, this is represented by the filtration

Ft := σ{(α(s),W (s)), s ∈ [0, t]} ∨ N (P), ∀t ∈ [0, T ], (3.3.2)

where N (P) denotes the collection of all P-null events in the probability space
(Ω,F ,P). We assume that F = FT .

Remark 3.3.1. The Markov chain and the Brownian motion are defined on the
same filtered probability space (Ω,F ,P, {Ft}) and, as a mathematical conse-
quence of this, they are independent processes (this is a result of Jacod (1979,
Proposition 14.36, page 463)). Relating these processes to economic reality, we
might think of the Brownian motion as modeling short-term, micro-economic
changes in the market, whereas the Markov chain models long-term, macro-
economic changes. With this interpretation, the implicit assumption in the
RSLN model that these economic changes are independent is a reasonable ap-
proximation to reality. For practical implementation, this means that the num-
ber and specification of the market regimes should reflect this interpretation.

3.3.1 No-arbitrage and incompleteness

Definition 3.3.2. A contingent claim with maturity date T is a random variable
X ∈ FT . A contingent claim X is called simple if it is of the form

X = Φ(S(T ), α(T )),

for some given deterministic, measurable function Φ.

The technical requirement that X ∈ FT means that at time T we have
enough information to determine the amount of money that should be paid
out. We only consider the valuation of simple contingent claims, which includes
derivatives such as European options.

A portfolio is specified by the {Ft}-predictable stochastic process φ = (φS , φB),
where φS is the amount invested in the stock and φB is the amount invested in
the bank account. The value of the portfolio at time t is denoted V φ(t).

Definition 3.3.3. A portfolio φ with value V φ(t) at time t is called self-
financing if

dV φ(t) = φS(t) dS(t) + φB(t) dB(t)

that is, a self-financing portfolio is a portfolio with no external infusions or
withdrawals of money.

Definition 3.3.4. A contingent claim X with maturity date T is attainable if
there exists a self-financing portfolio φ such that

V φ(T ) = X, P-a.s.

We call φ a replicating portfolio for the contingent claim. The model is complete
if all contingent claims are attainable and otherwise it is incomplete.

Before stating the no-arbitrage condition, we define precisely two terms
which have already been introduced.
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Definition 3.3.5. Given a measure P, another probability measure Q on the
same measurable space (Ω,F) is equivalent to P if

P[A] > 0 ⇐⇒ Q[A] > 0, ∀A ∈ F .

Definition 3.3.6. A stochastic process Y = {Y (t), t ∈ [0, T ]} is a martingale
under the measure Q if EQ|Y (t)| <∞ for all t ∈ [0, T ] and

EQ (Y (t) | Fs) = Y (s), ∀s ∈ [0, t].

Definition 3.3.7. A martingale measure is a measure Q equivalent to P such
that the discounted stock price process e−

∫ t
0
r(s) dsS(t) is a martingale under Q.

Theorem 3.3.8. The market model is free of arbitrage if and only if there exists
a martingale measure.

Theorem 3.3.9 (Risk-neutral valuation formula). Suppose the model is arbitrage-
free. Then the fair price process for a contingent claim X with maturity date T
is

Π(t) = EQ
(
e−

∫ T
t
r(s) dsX | Ft

)
,

where Q is a martingale measure.

Remark 3.3.10. The risk-neutral valuation formula in continuous time is more
complicated than in the one-period, discrete time model. However, it is inter-
preted the same way. To find the fair price for a contingent claim X, we discount
the time-T payoff of the contingent claim back to time t. Then we condition
on the information known at time t, as encapsulated by the notation Ft, and
find the expectation. Of course, this is done from the perspective that we are
currently at time 0. We do not know exactly what information will be known
at time t, so the filtration Ft is composed of all the events which could take
place from time 0 to time t. For this reason, the price Π(t) at time t is not a
constant but a random variable, whose value depends on the events which could
take place up to time t.

Theorem 3.3.11. Suppose the model is arbitrage-free. Then it is complete if
and only if the martingale measure Q is unique.

The latter theorem exactly parallels Theorem 3.2.7, which applies in discrete
time.

3.3.2 Incomplete market pricing

As we show shortly, the RSLN is incomplete. There have been various solutions
proposed to cope with the non-uniqueness of derivative prices in incomplete
markets. Here we review briefly some of the most well-known ones.

Obtaining a single price

As we have seen, in incomplete markets there does not generally exist a self-
financing portfolio for every contingent claim X. Any portfolio which replicates
the claim X will incur a cost, due to the hedging error arising from incom-
pleteness. The portfolio which minimises the cost at every instant, among all
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possible replicating portfolios, is called a locally risk-minimising portfolio. Such
portfolios can be characterized by a particular choice, called the minimal mar-
tingale measure, from the set of martingale measures. This idea was introduced
by Follmer and Schweizer (1991). From a mathematical viewpoint, the minimal
martingale measure is the measure which disturbs the structure of the proba-
bility space as little as possible, when moving from the real-world measure P.
From a financial viewpoint, it can be viewed as the measure which assigns a
price of zero to the unhedgeable risk; in the RSLN model the unhedgeable risk
is the risk of the Markov chain jumping between states.

Variations of the minimal martingale measure include the minimal entropy
martingale measure, which is the martingale measure that minimises the relative
entropy with respect to the real-world measure. Details can be found in Fritelli
(2000).

While the minimal martingale measure is a popular pricing measure for
financial mathematicians, the Esscher transform has been utilised as a means of
pricing by some actuaries. The Esscher transform, a form of exponential tilting,
of the logarithm of the stock price is used to select the Esscher measure. This
option pricing method was introduced by Gerber and Shiu (1994) and it can be
justified by the maximization of the power utility function of a representative
agent.

There have been many other martingale measures proposed to select a single
price in an incomplete market. We must remember, however, that it is the
market who decides the price and not the individual investor. The market
decides the martingale measure used for pricing, and it may be very different to
the one we choose. However, if we can find a range of prices that the market price
may reasonably be expected to lie in, we can analyse how much our chosen price
can differ from the possible market prices. We can also use the range of prices
as a guide to the reasonableness of our price from the market’s perspective.

Narrowing the range of prices

To obtain a narrower range of pricing bounds than the no-arbitrage bounds,
Bernardo and Ledoit (2000) considered the ratio of the expected value of posi-
tive payoffs to the expected value of negative payoffs, where the expectation is
calculated with respect to a martingale measure, which they called the gain-loss
ratio. They excluded measures which resulted in a gain-loss ratio which was too
high.

The approach that we develop in the context of an RSLN model is the good-
deal bound approach. Cochrane and Saá Requejo (2000) calculated the Sharpe
Ratio of the assets in the market and excluded those martingale measures which
implied a Sharpe Ratio which is too high. Essentially, they excluded those prices
which imply an extreme compensation for the risks undertaken. The good-deal
bound approach is attractive since historical data can be examined to determine
which Sharpe Ratio is unreasonable (for example, Sharpe Ratios above 2 are
unusual). This means that we can be more objective about the range of possible
prices.

Ultimately, though, for contracts such as maturity guarantees we must choose
a single price. The choice of the single price will depend on our attitudes to risk.
However, as we mentioned above, the range of prices obtained through methods
such as the good-deal bound approach can be used to guide our choice, for ex-
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ample by enabling us to avoid unreasonable prices. It also allows us to examine
the sensitivity of the price to changes in the market attitude to risk, as expressed
through the Sharpe Ratio in the case of the good-deal bound approach. It is
for these reasons that we develop the good-deal bound approach in the RSLN
market model.

3.4 Pricing in the RSLN model

Now that we have presented the fundamental theorems on asset pricing, we
consider how they apply to the particular case of the RSLN model. First, the
RSLN is free of arbitrage, which we can show concretely. Set

h(t) := −µ(t)− r(t)
σ(t)

and define the likelihood process as the process L with dynamics

dL(t) = L(t)h(t) dW (t)

L(0) = 1.

The solution is

L(t) = exp

{∫ t

0

h(s) dW (s)− 1

2

∫ t

0

|h(s)|2 ds

}
.

Finally, define a new measure Q by the recipe

Q[A] =

∫
A

L(T ) dP, ∀A ∈ F . (3.4.1)

Now that we have concretely defined a measure Q, we are in a position to
determine the Q-dynamics of the discounted stock price process. First consider
the (non-discounted) stock price process, which has P-dynamics

dS(t)

S(t)
= µ(α(t−)) dt+ σ(α(t−)) dW (t), ∀t ∈ [0, T ],

To switch to Q-dynamics, we apply the Girsanov theorem. This allows is to
switch between Brownian motion under P-measure and Q-measure, using the
relation

dW (t) = h(t) dt+ dWQ(t),

where WQ is a standard Brownian motion under Q-measure (recall that W is
a standard Brownian motion under P-measure). Substituting for dW (t) in the
stock price dynamics results in

dS(t)

S(t)
= µ(t) dt+ σ(t)

(
h(t) dt+ dWQ(t)

)
= (µ(t) + σ(t)h(t)) dt+ σ(t) dW (t)

= r(t) dt+ σ(t) dWQ(t).
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We apply the stochastic version of integration-by-parts to determine the dy-
namics of the discounted stock price process under Q-measure.

d
(
e−

∫ t
0
r(s) dsS(t)

)
= e−

∫ t
0
r(s) dsS(t)σ(t) dWQ(t).

Thus the discounted stock price process is a martingale under Q-measure. Since
the method we used to define the measure Q in (3.4.1) necessarily means that
Q is equivalent to P, we can apply Theorem 3.3.8 to conclude that

the RSLN model is arbitrage-free.

Next, we consider if the RSLN model is complete. Heuristically, the RSLN
model has two sources of randomness - the Brownian motion and the Markov
chain - but only one traded asset (the risk-free asset is not considered a traded
asset). From this perspective, we do not expect the RSLN model to be complete.
An example of a simple contingent claim which is not attainable is a contingent
claim X with maturity date T which pays one unit if the Markov chain is in
state 1, and otherwise zero units, that is

X =

{
1 if α(T ) = 1
0 if α(T ) 6= 1.

(3.4.2)

Here, the payoff of X depends on the Markov chain and there is no replicating
portfolio.

Theorem 3.3.11 tells us that if we can find more than one martingale mea-
sure then the RSLN model is incomplete. In Subsection 3.4.2 we construct the
set Q of martingale measures for the RSLN model. However, to do that we
require the martingales associated with the Markov chain; these are introduced
in Subsection 3.4.1. For the moment, we simply state that

the RSLN model is incomplete,

since the martingale measure Q is not unique. This means that there is an
interval (

inf
Q∈Q

EQ
(
e−

∫ T
t
r(s) dsX | Ft

)
, sup
Q∈Q

EQ
(
e−

∫ T
t
r(s) dsX | Ft

))
of arbitrage-free prices for a contingent claim X. The end-points of this interval
are called the no-arbitrage bounds. It is from the above range of prices that we
choose either a single price - corresponding to one particular Q ∈ Q - or a range
of prices - corresponding to a subset Q̃ ⊂ Q - for the contingent claim.

3.4.1 Markov chain martingales

To specify the set Q of martingale measures, we need a set of martingales corre-
sponding to the Markov chain. We already have the martingales corresponding
to the Brownian motion: the Brownian motion itself. Although the Markov
chain α is not a martingale, we can find a set of canonical martingales which is
associated with it. For each pair of distinct states (i, j) in the state space of the
Markov chain, there is is a point process, or counting process,

Nij(t) :=
∑

0<s≤t

1{α(s−)=i} 1{α(s)=j}, ∀t ∈ [0, T ], (3.4.3)
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where 1 denotes the zero-one indicator function. The process Nij(t) counts the
number of jumps that the Markov chain α has made from state i to state j
up to time t. A realisation of Nij(t) is shown in Figures 3.3(b)-3.3(c), which
corresponds to a realisation of the Markov chain shown in Figure 3.3(a).

Define the intensity process

λij(t) := gij 1{α(t−)=i}. (3.4.4)

If we compensate Nij(t) by
∫ t

0
λij(s) ds, then the resulting process

Mij(t) := Nij(t)−
∫ t

0

λij(s) ds (3.4.5)

is a martingale (see Rogers and Williams (2006, Lemma IV.21.12)). A realisation
of the process Mij(t) is shown in Figures 3.3(d)-3.3(e). We refer to the set of
martingales {Mij ; i, j ∈ I, i 6= j} as the P-martingales of α.

3.4.2 Martingale measures

We determine the set Q of martingale measures for the RSLN model. To do
this, fix Q ∈ Q and define the likelihood process corresponding to the measure
Q in the usual way as

L(t) := E

(
dQ
dP

∣∣∣∣Ft) , ∀t ∈ [0, T ].

The standard notation dQ
dP denotes the Radon-Nikodym derivative of Q with

respect to P. It can be thought of as a random variable which allows us to
switch between Q and P.

We can assume that L(t) is a positive {Ft}-martingale under the measure
P (see Rogers and Williams (2006, Theorem IV.17.1)) with L(0) = 1, P-a.s.
Recalling that the filtration {Ft} is generated by both the Brownian motion W
and the Markov chain α, we can apply an appropriate martingale representation
theorem (for example, see Elliott (1976, Theorem 5.1)) to obtain predictable and
suitably integrable stochastic processes (h,ηηη), for ηηη := {ηij ; i, j = 1, . . . , D, i 6=
j}, satisfying

dL(t)

L(t−)
= h(t) dW (t) +

D∑
i=1

D∑
j=1,
j 6=i

ηij(t) dMij(t), ∀t ∈ [0, T ]. (3.4.6)

Applying Protter (2005, Theorem 37, page 84) and using some algebra to find
that the solution to the above equation is the stochastic exponential

L(t) = exp

{∫ t

0

h(s) dW (s)− 1

2

∫ t

0

|h(s)|2 ds

}

· exp


D∑
j=1,
j 6=i

∫ t

0

ηij(s)λij(s) ds


∏
s∈[0,t]

∏
j 6=i

(1 + ηij(s)∆Nij(s)) ,
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(a) A sample path of a 2-state Markov chain.

(b) Sample path of the jump processN12

associated with a 2-state Markov chain.
(c) Sample path of the jump process N21

associated with a 2-state Markov chain.

(d) Sample path of the martingale pro-
cess M12 associated with a 2-state
Markov chain.

(e) Sample path of the martingale pro-
cess M21 associated with a 2-state
Markov chain.

Figure 3.3: A sample path of a 2-state Markov chain and its associated jump
processes and martingale processes.
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where ∆Nij(s) = 1 if there is a jump in the Markov chain from state i to state
j at time s, and otherwise ∆Nij(s) = 0. It is clear from the expression above
that for L(t) to be positive, the product must be positive which results in the
requirement

ηij(t) ≥ −1, ∀j 6= i, ∀t ∈ [0, T ].

We call (h,ηηη) a Girsanov kernel process.

Remark 3.4.1. Given a Girsanov kernel (h,ηηη) process, we can generate the
corresponding martingale measure Q as follows. Using (3.4.6) to define the
likelihood process L(t), we can recover the measure Q from (3.4.1). We say that
the measure Q is generated by the Girsanov kernel process (h,ηηη). Thus the set
Q of martingale measures for the RSLN model are those measures generated by
the set of Girsanov kernel processes.

3.4.3 Changes of measure

The model tells us the price dynamics of the traded asset, the risk-free asset and
the Markov chain under the measure P. For the good-deal bound approach, we
need to switch between the dynamics of the Brownian motion and the Markov
chain’s martingales under P and Q. To do this, we use the Girsanov theorem.
We have already come across the Girsanov theorem in Subsection 3.3.1 when
we changed from a P-Brownian motion to a Q-Brownian motion. Now we need
to apply the Girsanov theorem to the P-martingales of the Markov chain. This
gives us their dynamics under Q and relates it to their dynamics under P. While
the version of the Girsanov theorem which applies to Brownian motion is well-
known, to apply it to the Markov chain’s martingales we need the theorem’s
general form. This can be found, for example, in Protter (2005, Theorem 40,
page 135).

Suppose we are given a Girsanov kernel process (h,ηηη). Generating a mar-
tingale measure Q, we apply the Girsanov theorem to obtain the relationship

dW (t) = h(t) dt+ dWQ(t), (3.4.7)

where WQ is a Q-Brownian motion. This means that W is no longer a Brownian
motion when we consider it under the measure Q; it is only a Brownian motion
under the measure P. For the P-martingales of the Markov chain, the Girsanov
theorem tells us that

dMij(t) = ηij(t)λij(t) dt+ dMQ
ij(t), (3.4.8)

where the process MQ
ij is a Q-martingale, for each j 6= i. Substituting for Mij

from (3.4.5), we find

MQ
ij(t) = Nij(t)−

∫ t

0

(1 + ηij(s))λij(s) ds, ∀t ∈ [0, T ]. (3.4.9)

The set of martingales {MQ
ij ; i, j ∈ I, i 6= j} are the Q-martingales of α.

Remark 3.4.2. Compare the Q-martingales of α to (3.4.5), which defines the
P-martingales of α. The point process Nij is unaffected by the measure change.

However, its compensator is
∫ t

0
(1 + ηij(s))λij(s) ds under Q, compared with
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being
∫ t

0
λij(s) ds under P. Recalling the definition of λij(t) from (3.4.4), this

means that the generator of the Markov chain under the measure Q is the D×D
matrix

GQ(t) = (gij (1 + ηij(t)))
D
i,j=1,

where we define the diagonal elements to be

ηii(t) := −
∑
j 6=i

gij
gii

(1 + ηij(t))− 1.

As the Girsanov kernel process (h,ηηη) generating Q satisfies ηij(t) ≥ −1, for
all j 6= i, and we already have the relations

gij ≥ 0, ∀j 6= i and gii = −
∑
j 6=i

gij ,

we can conclude

gij (1 + ηij(t)) ≥ 0, ∀j 6= i and gii (1 + ηii(t)) = −
∑
j 6=i

gij (1 + ηij(t)) .

This means that, under Q-measure, we cannot say that α is a Markov chain
since its Q-generator of α is a stochastic process. What we can say is that α is
a Markov process, which means that it retains the Markov property.

3.4.4 Admissible Girsanov kernel processes

Here we develop restrictions on the Girsanov kernel processes that ensure the
generated measure is a martingale measure.

Let Q be the measure generated by the Girsanov kernel process (h,ηηη). Con-
sider an arbitrary asset in the market, with price process Π = {Π(t); t ∈ [0, T ]}.
Note that this asset is not restricted to the traded risky asset or risk-free asset,
but it could be any derivative or self-financing strategy based on them and the
Markov chain α. We know from Theorem 3.3.9 that the discounted price process
of this arbitrary asset is an {Ft}-martingale under the martingale measure Q,
that is

e−
∫ t
0
r(s) dsΠ(t) = EQ

(
e−

∫ T
0
r(s) dsΠ(T ) | Ft

)
.

As the filtration {Ft} is generated by both the Brownian motion and the Markov
chain (recall (3.3.2)), we apply a suitable martingale representation theorem
(such as Elliott (1976, Theorem 5.1)) to express this {Ft}-martingale as the sum
of a stochastic integral with respect to the Q-Brownian motion and a stochastic
integral with respect to the Q-martingales of the Markov chain. To find the
P-dynamics, we use (3.4.7) and (3.4.8) to obtain the general P-dynamics

dΠ(t)

Π(t−)
= µΠ(t) dt+ σΠ(t) dW (t) +

D∑
i=1

D∑
j=1,
j 6=i

γΠ
ij(t) dMij(t). (3.4.10)

The processes µΠ, σΠ and γΠ
ij are suitably integrable and measurable with the

condition, in order to avoid negative asset prices, that γΠ
ij(t) ≥ −1. At first, the

form of the price process may seem surprising since they include a stochastic
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integral with respect to the P-martingales of the Markov chain. However, if we
consider an arbitrage asset which has terminal value which depends only on the
Markov chain (for example, as in (3.4.2) then the inclusion of these martingales
are natural. Note that if the asset is not the traded asset then the processes
µΠ, σΠ and γΠ

ij depend on the choice of the risk-neutral measure through the
corresponding Girsanov kernel process.

Apply (3.4.7) and (3.4.8) to (3.4.10) to obtain the price dynamics Π of the
arbitrarily chosen asset under the measure Q:

dΠ(t)

Π(t−)
=

µΠ(t) + σΠ(t)h(t) +

D∑
i=1

D∑
j=1,
j 6=i

γΠ
ij(t)ηij(t)λij(t)

 dt

+ σΠ(t) dWQ(t) +

D∑
i=1

D∑
j=1,
j 6=i

γΠ
ij(t) dMQ

ij(t).

(3.4.11)

The measure Q is a martingale measure if and only if the local rate of return of
the asset under the measure Q equals the risk-free rate of return r. This follows
from Theorem 3.3.8. Thus we obtain the following martingale condition, which
is a condition on a potential Girsanov kernel process which ensures that it really
does generate a martingale measure Q.

Proposition 3.4.3. Martingale condition The measure Q generated by the Gir-
sanov kernel process (h,ηηη) is a martingale measure if and only if

ηij(t) ≥ −1, ∀j 6= i, (3.4.12)

and for any asset in the market whose price process Π has P-dynamics given by
(3.4.10), we have

r(t) = µΠ(t) + σΠ(t)h(t) +

D∑
i=1

D∑
j=1,
j 6=i

γΠ
ij(t)ηij(t)λij(t), ∀t ∈ [0, T ]. (3.4.13)

We refer to a Girsanov kernel process (h,ηηη) for which the generated measure
Q is a martingale measure as an admissible Girsanov kernel process.

Remark 3.4.4. From (3.4.13) we have the following economic interpretation of
an admissible Girsanov kernel process (h,ηηη): the process −h is the market price
of diffusion risk and −ηij is the market price of jump risk, or regime change
risk, for a jump in the Markov chain from state i to state j.

Suppose we are given a Girsanov kernel process (h,ηηη) for which the gener-
ated measure Q is a martingale measure. The price dynamics under P of the
underlying risky stock are as in (2.2.1), that is

dS(t)

S(t)
= µ(t) dt+ σ(t) dW (t), ∀t ∈ [0, T ].

By Proposition 3.4.3, we must have that

b(t) + σ(t)h(t) = r(t), ∀t ∈ [0, T ].
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This means that the market price of diffusion risk −h is determined by the price
dynamics of the underlying risky asset. However, as there is no traded asset
in the market which is based on the Markov chain α, we cannot say anything
about the market price of jump risk −ηij .
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Chapter 4

Good-deal bounds

In this chapter, we apply the good-deal bound idea, first proposed by Cochrane
and Saá Requejo (2000), to the RSLN model. The good-deal bound approach
is a means of narrowing the no-arbitrage bounds, which can be too wide to
be practically useful. The idea is to exclude those martingale measures which
imply a Sharpe Ratio that is too high.

4.1 The Sharpe Ratio

4.1.1 The Sharpe Ratio of an arbitrary asset

We define a Sharpe Ratio process for an arbitrarily chosen asset, with P-dynamics
as in (3.4.10). Broadly, the Sharpe Ratio is the excess return above the risk-free
rate of the asset per unit of risk. We make this definition precise in the RSLN
model. As µΠ is the local mean rate of return of the asset under the measure
P, we begin by defining the risk premium process R as

R(t) := µΠ(t)− r(t). (4.1.1)

Next, we define a volatility process ν for the asset by

d〈Π,Π〉(t) = Π2(t−)ν2(t) dt, (4.1.2)

where 〈·, ·〉 is the angle-bracket quadratic variation process, which can be inter-
preted as the variation of the process Π. Substituting for Π from (3.4.10), we
obtain

d〈Π,Π〉(t) = Π2(t−)

|σΠ(t)|2 +

D∑
i=1

D∑
j=1,
j 6=i

|γΠ
ij(t)|2 λij(t)

 dt (4.1.3)

Comparing (4.1.2) and (4.1.3), we see that the squared volatility process satisfies

ν2(t) = |σΠ(t)|2 +

D∑
i=1

D∑
j=1,
j 6=i

|γΠ
ij(t)|2 λij(t).
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Recalling that the state space of the Markov chain α is denoted by I = {1, . . . , D}
and the intensity process λij(t) given by (3.4.4), define the norm ‖·‖λ(t) in the
Hilbert space L2(I × I, λ(t)) by

‖γγγ(t)‖2λ(t) :=

D∑
i=1

D∑
j=1,
j 6=i

|γij(t)|2 λij(t).

Then we can write
ν2(t) = |σΠ(t)|2 + ‖γγγΠ(t)‖2λ(t).

Defining the Hilbert space

H := R× L2(I × I, λ(t)), (4.1.4)

and denoting by ‖·‖H the norm in the Hilbert space H, we can also express the
volatility process as

ν(t) = ‖
(
σΠ(t), γγγΠ(t)

)
‖H. (4.1.5)

Finally, we are in a position to define the Sharpe Ratio process (SR) for the
arbitrarily-chosen asset as

(SR)(t) :=
R(t)

ν(t)
. (4.1.6)

The Sharpe Ratio process depends on the chosen asset’s price process. We seek
a bound that applies to all assets’ Sharpe Ratio processes. To do this, we use the
extended Hansen-Jagannathan inequality, which is derived in Björk and Slinko
(2006) and is an extended version of the inequality introduced by Hansen and
Jagannathan (1991).

4.1.2 An extended Hansen-Jagannathan Bound

Björk and Slinko (2006, Theorem A.1) extended the Hansen-Jagannathan Bound
to a jump-diffusion market. We follow their proof to show that a similar result
holds in the RSLN market model.

Lemma 4.1.1 (An extended Hansen-Jagannathan Bound). Recall the Hilbert
space H in (4.1.4). For every admissible Girsanov kernel process (h,ηηη) and for
any asset in the market whose price process Π has P-dynamics given by (3.4.10)
and, consequently, whose Sharpe Ratio process (SR) is given by (4.1.6), the
following inequality holds.

|(SR)(t)| ≤ ‖(h(t), ηηη(t))‖H,

that is

|(SR)(t)|2 ≤ |h(t)|2 +

D∑
i=1

D∑
j=1,
j 6=i

|ηij(t)|2 λij(t), (4.1.7)

where we recall the definition of the intensity process λij(t) from (3.4.4).
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Proof. Fix an admissible Girsanov kernel process (h,ηηη) and an asset in the
market whose price process Π has P-dynamics given by (3.4.10). From (3.4.13),
the martingale condition is

r(t) = µΠ(t) + σΠ(t)h(t) +

D∑
i=1

D∑
j=1,
j 6=i

γΠ
ij(t)ηij(t)λij(t), ∀t ∈ [0, T ].

Recalling the risk premium process is R(t) = µΠ(t) − r(t), we can write the
martingale condition as

−R(t) = σΠ(t)h(t) +

D∑
i=1

D∑
j=1,
j 6=i

γΠ
ij(t)ηij(t)λij(t), ∀t ∈ [0, T ].

As H is a Hilbert space, it has an inner product which we denote by 〈· , · 〉H. We
recognize the right-hand side of the equation above as an inner product, that is

−R(t) = 〈(σΠ(t), γγγΠ(t)), (h(t), ηηη(t))〉H.

From the Cauchy-Schwarz inequality, it is immediate that

|R(t)| ≤ ‖(σΠ(t), γγγΠ(t))‖H · ‖(h(t), ηηη(t))‖H. (4.1.8)

Next, from (4.1.6),

|(SR)(t)| = |R(t)|
|ν(t)|

.

Substituting from (4.1.5) and (4.1.8), we get the desired result:

|(SR)(t)| ≤ ‖(σ
Π(t), γγγΠ(t))‖H · ‖(h(t), ηηη(t))‖H

‖(σΠ(t), γγγΠ(t))‖H
= ‖(h(t), ηηη(t))‖H.

From Lemma 4.1.1, we see that we can bound the Sharpe Ratios of all assets
in the market by bounding the right-hand side of (4.1.7) by a constant.

4.2 The general problem

We consider the valuation of a simple contingent claim with maturity date T in
the RSLN model. Denote the contingent claim by Z so that

Z := Φ(S(T ), α(T )), (4.2.1)

for a deterministic, measurable function Φ. As we have observed in Subsection
3.3.1, there is no unique martingale measure in the market and hence there
is no unique price for the contingent claim. Rather than choosing one partic-
ular martingale measure to price the contingent claim, via some criteria, we
seek instead to find a reasonable range of prices by excluding those martingale
measures which imply Sharpe Ratios which are too high.
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4.2.1 The good-deal bound

The key idea is that to restrict the set of martingale measures by way of the
Sharpe Ratio, we use the Hansen-Jagannathan bound. Rather than bounding
the Sharpe Ratios directly, we bound the right-hand side of (4.1.7) by a constant.
We call the constant a good-deal bound.

Condition 4.2.1. There exists B0 ∈ R such that

B0 = sup
t∈[0,T ]

|h(t)|2, a.s.

Definition 4.2.2. A good-deal bound is a constant B ≥ B0.

Remark 4.2.3. Now we can see how a good-deal bound B is applied to bound
the Sharpe Ratio process (SR) of any asset in the market:

|(SR)(t)|2 ≤ |h(t)|2 +

D∑
i=1

D∑
j=1,
j 6=i

|ηij(t)|2 λij(t) ≤ B.

In other words, |(SR)(t)| ≤
√
B. The economic interpretation is that, under the

good-deal bound approach,
√
B is the highest achievable instantaneous Sharpe

Ratio in the market and −
√
B is the lowest achievable instantaneous Sharpe

Ratio.
The good-deal bound, though, is actually a bound on the price −ηij of

regime change risk, since the price −h of diffusion risk is determined by the
traded asset. Thus

D∑
i=1

D∑
j=1,
j 6=i

|ηij(t)|2 λij(t) ≤ B − |h(t)|2. (4.2.2)

4.2.2 The good-deal bound price processes

We consider the problem of finding the upper and lower good-deal bounds on
the range of possible prices of the contingent claim Z. We begin by finding the
upper good-deal price process. To determine the price process, we utilise the
risk-neutral pricing formula of Theorem 3.3.9. Instead of using the formula to
calculate the price over all times t ∈ [0, T ] for a fixed martingale measure, we
find at each time t the supremum over the martingale measures which satisfy
the good-deal bound. Thus the upper good-deal price process does not corre-
spond to one particular martingale measure, but depends on all of the possible
martingale measures. The lower good-deal price process is similarly determined,
except that we take the infimum rather than the supremum.

Definition 4.2.4. Suppose we are given a good-deal bound B. The upper good-
deal price process V for the bound B is the optimal value process for the control
problem

sup
(h,ηηη)

EQ
(
e−

∫ T
t
r(τ) dτΦ(S(T ), α(T ))

∣∣∣∣Ft) , (4.2.3)
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where the predictable processes (h,ηηη) are subject to the constraints

h(t) = − (σ(t))
−1

(b(t)− r(t)) , (4.2.4)

ηij(t) ≥ −1, ∀j 6= i, (4.2.5)

and

|h(t)|2 +

D∑
i=1

D∑
j=1,
j 6=i

|ηij(t)|2 λij(t) ≤ B, (4.2.6)

for all t ∈ [0, T ].

Definition 4.2.5. The lower good-deal price process V is defined as in Definition
4.2.4 except that “sup” in (4.2.3) is replaced by “inf”.

Remark 4.2.6. The risk-neutral valuation formula in (4.2.3) implies that the
local rate of return of the price process corresponding to the contingent claim
Z = Φ(S(T ), α(T )) equals the risk-free rate r under the measure Q. The equality
constraint (4.2.4) ensures that h is consistent with the market price of jump risk.
Together with the constraint (4.2.5), these ensure that the measure Q generated
by (h,ηηη) is a martingale measure, as in Proposition 3.4.3. Note that, due to the
constant bound on (h,ηηη) in the constraint (4.2.6), the measure Q generated by
(h,ηηη) is a martingale measure, and not just a local martingale measure.

4.3 Stochastic control approach

To find the upper and lower good-deal bounds, we use stochastic control tech-
niques. This requires that the problem has a Markovian structure which is
imposed through the following condition.

Condition 4.3.1. The supremum in (4.2.3) is taken over Girsanov kernel pro-
cesses (h,ηηη) of the form

h(t) = h(t, S(t), α(t−)) and ηij(t) = ηij(t, S(t), α(t−)), ∀j 6= i,

and ηii(t) = 0, for all t ∈ [0, T ].

The condition ensures that the Markovian structure is preserved under a
measure change to the martingale measure Q generated by the Girsanov kernel
processes (h,ηηη).

Remark 4.3.2. We note from the constraint (4.2.4) that the process h is com-
pletely determined by the market parameters r(t), b(t) and σ(t). This means
that the requirement h(t) = h(t, S(t), α(t−)) is really a requirement that the
market parameters are of the form

r(t) = r(t, S(t), α(t−)), b(t) = b(t, S(t), α(t−)) and σ(t) = σ(t, S(t), α(t−)).

However, as we have already assumed that the market parameters are of a
simpler form, the requirement that h(t) = h(t, S(t), α(t−)) is already satisfied.
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4.3.1 The good-deal functions

Under Condition 4.3.1, the optimal expected value in (4.2.3) can be written
as V (t, S(t), α(t−)) where the deterministic mapping V : [0, T ] × R × I → R
is known as the optimal value function. From general dynamic programming
theory (for example, see Björk (2009, Chapter 19)), the optimal value function
satisfies the following Hamilton-Jacobi-Bellman equation

∂V

∂t
+ sup

(h,ηηη)

{
A(h,ηηη)V

}
− rV = 0 (4.3.1)

V (T, x, i) = Φ(x, i),

where the supremum in (4.3.1) is subject to the constraints (4.2.4) and (4.2.5).
To expand the infinitesimal operator A(h,ηηη), we need a version of Itô’s formula,
which is given by Lemma 4.3.3.

Lemma 4.3.3. Given a process x satisfying

dxt = b(t, x(t−), α(t−)) dt+ σ(t, x(t−), α(t−)) dW (t)

x(t) = x0 ∈ R
(4.3.2)

and functions V (·, ·, i) ∈ C2([0, T ]× R) for i = 1, . . . , D, we have

V (t) = V (0) +

∫ t

0

(
Vt(s−) + Vx(s−)b(s−) +

1

2
Vxx(s−)σ2(s−)

)
ds

+

D∑
j=1

∫ t

0

(V (s, x(s), j)− V (s−, x(s−), α(s−))) gαs− ,j
ds

+

∫ t

0

Vx(s−)σ(s−) dW (s)

+
∑
j 6=i

∫ t

0

(V (s, x(s), j)− V (s−, x(s−), i)) dMij(s).

(4.3.3)

Proof. Denote the triple (t, xt, αt) by (t) and denote the triple (t−, xt− , αt−) by
(t−). Using xc to denote the continuous part of a process x, apply Itô’s formula
(for example, see Protter (2005, Theorem V.18, page 278)) to the function V :

V (t) = V (0) +

∫ t

0

Vt(s−) ds+

∫ t

0

Vx(s−) dx(s) +

∫ t

0

Vα(s−) dα(s)

+
1

2

∫ t

0

Vxx(s−) d[xc, xc](s) +

∫ t

0

Vxα(s−) d[xc, αc](s)

+
1

2

∫ t

0

Vxx(s−) d[αc, αc](s) +
∑

0<s≤t

(V (s)− V (s−)− Vα(s−)∆α(s)) .

(4.3.4)

Since α is constant between jumps, we have both [αc, αc](t) = 0 and [xc, αc](t) =
0 for all t ∈ [0, T ]. Moreover, since α is purely discontinuous, we have:∫ t

0

Vα(s−) dα(s) =
∑

0<s≤t

Vα(s−)∆α(s).
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These two observations allow us to cancel out four terms on the right-hand side
of (4.3.4), leaving

V (t) = V (0) +

∫ t

0

Vt(s−) ds+

∫ t

0

Vx(s−) dx(s)

+
1

2

∫ t

0

Vxx(s−) d[xc, xc](s) +
∑

0<s≤t

(V (s)− V (s−)) .
(4.3.5)

Consider the last term in the above equation.∑
0<s≤t

(V (s)− V (s−))

=
∑
j 6=i

∑
0<s≤t

(V (s, x(s), j)− V (s−, x(s−), i)) 1{αs−=i}1{αs=j}

=
∑
j 6=i

∑
0<s≤t

(V (s, x(s), j)− V (s−, x(s−), i)) ∆Mij(s),

where we used the fact that ∆Mij(s) = 1{αs−=i}1{αs=j} in the last line. The

last sum can then be written as an integral, replacing ∆Mij(s) by d[Mij ](s), to
give ∑

0<s≤t

(V (s)− V (s−))

=
∑
j 6=i

∫ t

0

(
V (s, xs, j)− V (s−, xs− , i)

)
d[Mij ](s)

=
∑
j 6=i

∫ t

0

(V (s, x(s), j)− V (s−, x(s−), i)) d (Mij(s) + 〈Mij〉(s))

=
∑
j 6=i

∫ t

0

(V (s, x(s), j)− V (s−, x(s−), i)) dMij(s)

+

D∑
j=1

∫ t

0

(V (s, x(s), j)− V (s−, x(s−), α(s−))) gαs− ,j
ds

We plug this last expression for the sum
∑

0<s≤t (V (s)− V (s−)) and the dy-
namics of x from (4.3.2) into (2.2.1) to get

V (t) = V (0) +

∫ t

0

Vt(s−) ds+

∫ t

0

Vx(s−) (b(s−) ds+ σ(s−) dW (s))

+
1

2

∫ t

0

Vxx(s−)σ2(s−) ds+
∑
j 6=i

∫ t

0

(V (s, x(s), j)− V (s−, x(s−), i)) dMij(s)

+

D∑
j=1

∫ t

0

(V (s, x(s), j)− V (s−, x(s−), α(s−))) gαs− ,j
ds.

(4.3.6)
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Rearranging, we obtain

V (t) = V (0) +

∫ t

0

(
Vt(s−) + Vx(s−)b(s−) +

1

2
Vxx(s−)σ2(s−)

)
ds

+

D∑
j=1

∫ t

0

(V (s, x(s), j)− V (s−, x(s−), α(s−))) gαs− ,j
ds

+

∫ t

0

Vx(s−)σ(s−) dW (s)

+
∑
j 6=i

∫ t

0

(V (s, x(s), j)− V (s−, x(s−), α(s−))) dMij(s).

(4.3.7)

The above lemma applied to the stock price process S, with P-dynamics
given by (2.2.1), gives the infinitesimal operator A(h,ηηη) as

A(h,ηηη)V (t, x, i)

= r(t, x, i)x
∂V

∂x
(t, x, i) +

1

2
σ2(t, x, i)x2 ∂

2V

∂x2
(t, x, i)

+

D∑
j=1

gij(1 + ηij(t)) (V (t, x, j)− V (t, x, i)) ,

(4.3.8)

for all (t, x, i) ∈ [0, T ]× R× I.
Having imposed Condition 4.3.1, we can re-cast the definitions of the good-

deal bound price processes (Definitions 4.2.4 and 4.2.5) in the following form
which is more amenable to solution.

Definition 4.3.4. Given a good-deal bound B, the upper good-deal function
for the bound B is the solution to the following boundary value problem

∂V

∂t
(t, x, i) + sup

(h,ηηη)

{
A(h,ηηη)V (t, x, i)

}
− r(t, i)V (t, x, i) = 0 (4.3.9)

V (T, x, i) = Φ(x, i),

where A(h,ηηη) is given by (4.3.8) and the supremum is taken over all functions
(h,ηηη) subject to Condition 4.3.1 and satisfying

h(t, x, i) = − (σ(t, x, i))
−1

(b(t, x, i)− r(t, x, i)) , (4.3.10)

ηij(t, x) ≥ −1, ∀j 6= i, (4.3.11)

and

|h(t, x, i)|2 +

D∑
j=1,
j 6=i

gij |ηij(t, x)|2 ≤ B, (4.3.12)

for all (t, x, i) ∈ [0, T ]× R× I. We denote the solution to (4.3.9) by V upper.

Definition 4.3.5. The lower good-deal function is the solution to (4.3.9) but
with the supremum replaced by an infimum, subject to Condition 4.3.1 and the
constraints (4.3.10) - (4.3.12). We denote this solution by V lower.
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Thus, finding the upper good-deal bound reduces to solving the boundary
value problem of (4.3.9) subject to the constraints. However, rather than at-
tempting to solve (4.3.9) directly, we reduce it to two deterministic problems
which we solve for each fixed triple (t, x, i) ∈ [0, T ]× R× I.

Moreover, as h is completely determined by (4.3.10), we need to solve only
for the optimal ηηη. Therefore, given h satisfying (4.3.10), we do the following.

1. Solve the static optimization problem of finding the optimal η̄ηη in

sup
(h,ηηη)

{
A(h,ηηη)V (t, x, i)

}
,

subject to the constraints (4.3.11) and (4.3.12).

2. Using the optimal η̄ηη found above, solve the partial integro-differential
equation (“PIDE”)

∂V

∂t
+ A(h,η̄ηη)V − rV = 0 (4.3.13)

V (T, x, i) = Φ(x, i). (4.3.14)

for V . The upper good-deal bound for the contingent claim Z is then
given by the value V (0, S(0), α(0)), where S(0) is the initial stock price
and α(0) is the initial state of the Markov chain (corresponding to the
initial market regime).

The lower good-deal bound is found similarly, but with the supremum in the
first step replaced by an infimum.

For the static optimization problem, we consider in more detail how to solve
it in the next subsection. Having solved for the optimal η̄ηη, we can then use
numerical (computational) methods to solve the PIDE. A concrete example of
this, where we calculate the good-deal bounds for a European put option (which
is equivalent to a maturity guarantee), can be found in Chapter 5.

4.3.2 The static optimization problem

As we have seen above, the static optimization problem associated with the
upper good-deal function of Definition 4.3.4 is to find for each triple (t, x, i) ∈
[0, T ]× R× I the optimal η̄ηη that attains the supremum of

A(h,ηηη)V (t, x, i)

= r(t, x, i)x
∂V

∂x
(t, x, i) +

1

2
σ2(t, x, i)x2 ∂

2V

∂x2
(t, x, i)

+

D∑
j=1

gij(1 + ηij(t, x)) (V (t, x, j)− V (t, x, i)) ,

(4.3.15)

subject to the constraints

ηij(t) ≥ −1, ∀j 6= i and

D∑
j=1,
j 6=i

gij |ηij(t)|2 ≤ B − |h(t, x, i)|2, (4.3.16)
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for h given by (4.3.10).
As the only term in (4.3.15) which involves ηηη is the last one, we can equiva-

lently consider the problem of finding the optimal η̄ηη which attains the supremum
of

D∑
j=1

gij(1 + ηij(t, x)) (V (t, x, j)− V (t, x, i)) , (4.3.17)

subject to the constraints in (4.3.16). This is a linear optimization problem
with both linear and quadratic constraints. Such problems are standard in
optimization theory and, if it is too time-consuming to find the analytic solution,
an algorithm can be used to calculate the solution numerically.

However, we are typically only interested in the cases when the number of
regimes is small, i.e. only two or three regimes. In particular, when there
are only two states of the Markov chain, we can find an analytic solution by
considering the sign of V (t, x, j)−V (t, x, i) in (4.3.17), subject to the constraints
in (4.3.16).

Lemma 4.3.6. For the RSLN(2) model, define for i = 1, 2,

B̃(t, x, i) :=

√
B − |h(t, x, i)|2

−gii
.

Then the solution to the static optimization problem associated with the upper
good-deal function of Definition 4.3.4 is

η̄ij(t, x) =

{
B̃(t, x, i) if V (t, x, j)− V (t, x, i) > 0

−min
[
1, B̃(t, x, i)

]
if V (t, x, j)− V (t, x, i) ≤ 0,

and the solution to the static optimization problem associated with the lower
good-deal function of Definition 4.3.5 is

η̄ij(t, x) =

{
−min

[
1, B̃(t, x, i)

]
if V (t, x, j)− V (t, x, i) > 0

B̃(t, x, i) if V (t, x, j)− V (t, x, i) ≤ 0.

Proof. Suppose i = 1. The static optimization problem for the fixed triple
(t, x, 1) is to find the supremum of

g12(1 + η12(t, x)) (V (t, x, 2)− V (t, x, 1)) , (4.3.18)

subject to the constraints

η12(t) ≥ −1, and g12|η12(t)|2 ≤ B − |h(t, x, 1)|2.

As g12 = −g11, the second constraint gives the inequality

−B̃(t, x, 1) ≤ η12(t) ≤ B̃(t, x, 1).

Combining this with the first constraint η12(t) ≥ −1, we get

−min
[
1, B̃(t, x, 1)

]
≤ η12(t) ≤ B̃(t, x, 1). (4.3.19)
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Now consider maximising (4.3.18). As g12 > 0 then we need only consider
the sign of V (t, x, 2)− V (t, x, 1). If V (t, x, 2)− V (t, x, 1) > 0 then we maximise
1+η12(t, x) subject to the constraint (4.3.19). This immediately leads to η12(t) =
B̃(t, x, 1). If V (t, x, 2)− V (t, x, 1) ≤ 0 then we minimise 1 + η12(t, x) subject to
the constraint (4.3.19). This gives η12(t) = −min[1, B̃(t, x, 1)].

For the lower good-deal function, we consider minimising (4.3.18). If V (t, x, 2)−
V (t, x, 1) > 0 then we minimise 1 + η12(t, x) subject to the constraint (4.3.19).
This gives η12(t) = −min[1, B̃(t, x, 1)]. If V (t, x, 2)−V (t, x, 1) ≤ 0 then we max-
imise 1 + η12(t, x) subject to the constraint (4.3.19), whence η12(t) = B̃(t, x, 1).

By symmetry, we find the corresponding results for the fixed triple (t, x, 2).
Hence we have solved the static optimization problem for both the upper and
lower good-deal functions when there are only two market regimes.

4.4 Minimal martingale measure

Here we leave aside the good-deal bounds and consider the minimal martingale
measure, which was introduced by Follmer and Schweizer (1991). Recall from
Remark 3.4.4 that −ηij is the market price of regime change risk, for a change
in regime from i to j corresponding to a jump in the Markov chain from state
i to state j. In the RSLN model, the market price of regime change risk is not
determined by the traded asset. It is the martingale measure used for pricing
which decides the market price of regime change risk and the minimal martin-
gale measure assigns it value zero. For this reason, we consider the minimal
martingale measure as a benchmark measure for pricing any derivative in the
RSLN market.

Definition 4.4.1. The minimal martingale measure is the measure Qmin gen-
erated by (hmin, ηηηmin), where (hmin, ηηηmin) is the Girsanov kernel process which
minimizes

|h(t)|2 +

D∑
i=1

D∑
j=1,
j 6=i

|ηij(t)|2 λij(t)

subject to the constraint

b(t) + σ(t)h(t) = r(t), ∀t ∈ [0, T ].

It is immediate that the minimal martingale measure Qmin is generated by

hmin(t) := −σ−1(t) (b(t)− r(t)) and ηmin
ij (t) := 0, ∀j 6= i,

for all t ∈ [0, T ]. As ηmin
ij (t) ≥ −1, we have that (hmin, ηηηmin) is an admissible

Girsanov kernel process.

Remark 4.4.2. Under the measure Qmin, the process α is a Markov chain with
the same generator matrix G = (gij)

D
i,j=1 as under the measure P. In particular,

this means that the measure Qmin preserves the martingale property of the
process Mij(t) defined by (3.4.5), so that the P-martingales of α are also its
Qmin-martingales.
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Notice that (hmin, ηηηmin) minimizes the right-hand side of (4.1.7) over the
set of admissible Girsanov kernel processes. Moreover, by Definition 4.2.2, any
good-deal bound B satisfies B ≥ B0. This means

B ≥ B0 = sup
t∈[0,T ]

|h(t)|2 = sup
t∈[0,T ]

|
(
hmin(t), ηηηmin(t)

)
|2.

Thus (hmin, ηηηmin) is a Girsanov kernel process which satisfies the good-deal
bound constraint in (4.3.12).

Denote the solution to the PIDE

∂V

∂t
+ A(hmin,ηηηmin)V − rV = 0 (4.4.1)

V (T, x, i) = Φ(x, i) (4.4.2)

by V min. Then as (hmin, ηηηmin) is a Girsanov kernel process which satisfies the
good-deal bound constraint in (4.3.12), it is clear from this and Definitions 4.3.4
and 4.3.5 that the following relation holds:

V lower ≤ V min ≤ V upper.

When we determine the good-deal bounds for the example in Chapter 5, we see
the empirical evidence of the latter inequality.
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Chapter 5

Numerical examples

In Chapter 4, we developed the good-deal bound approach in the context of
a RSLN model. The next question which naturally arises is: are they of any
use? Perhaps they are still too wide to be practically useful. In this chapter, we
calculate the good-deal bounds for a maturity guarantee. We ignore mortality
but this could be easily included by multiplying the upper and lower good-
deal bounds by the probability of survival from the policy issue date until the
maturity date.

5.1 Setup

RSLN market model

For the numerical examples, we use an RSLN(2) market model, so that there
are two market regimes. We assume that time is measured in years. In Hardy
(2003, page 226), a regime-switching model was fitted to data from the FTSE
All-Share Total Return Index from 1956 to 2001. Based on these figures, we use
the market parameters for the risky asset in Table 5.1 and we take the generator
of the Markov chain to be

G =

(
g11 g12

g21 g22

)
=

(
−0.15 0.15

2 −2

)
.

From the generator, we see that the average time spent in regime 1 is about
6.7 years and the average time spent in regime 2 is 6 months. For the risk-free
rate of return r, we use the average of the Bank of England bank base rate over
the time 1956 to 2001, and we do not distinguish between market regimes. The
reason is that the risk-free interest rate should not be strongly dependent on

Table 5.1: Market parameters

Regime i r(i) µ(i) σ(i)
1 0.085 0.155 0.15
2 0.085 -0.155 0.46

40



the stock market regimes (though we may expect some dependence, we ignore
this for simplicity).

For this market model, the market price of diffusion risk is

h(1) = 0.467 and h(2) = −0.522,

varying with the market regime.

Maturity guarantee

We consider the problem of finding the upper and lower good-deal bounds for a
maturity guarantee. As we saw in Chapter 1, guaranteeing the maturity value
of a contract by an amount K is equivalent to the insurer selling an embedded
European put option with strike price K. At the maturity date, the payout
from the insurer is

max [K − S(T ), 0] .

Therefore, we seek to calculate the upper and lower good-deal bounds for a
T -year European put option with strike price K for a good-deal bound B. We
consider values of T ∈ {3, 5, 10} and a fixed strike price K = 100. Any good-
deal bound B must satisfy the constraint (recall Condition 4.2.1 and Definition
4.2.2)

B ≥ B0 = max[h2(1), h2(2)] = max[(0.467)2, (−0.522)2] = 0.272.

Calculating the good-deal price bounds

Recall from Section 4.3 that to find the upper and lower good-deal bounds 4.3.5
we

• solve the associated static optimization problem, and then

• numerically solve the PIDE (4.3.13)-(4.3.14) using the solution to the
static optimization problem.

We have already solved the static optimization problem for an RSLN(2) model,
with the solution given by Lemma 4.3.6. Then it remains to numerically solve
the PIDE

∂V

∂t
(t, x, i) + r(i)x

∂V

∂x
(t, x, i) +

1

2
σ2(i)x2 ∂

2V

∂x2
(t, x, i)− r(i)V (t, x, i)

−gii(1 + η̄ij(t, x)) (V (t, x, j)− V (t, x, i)) = 0
(5.1.1)

V (T, x, i) = max[K − x, 0],

using the optimal values η̄ij given by Lemma 4.3.6. We outline the fully implicit
finite difference method that we used to solve the PIDE in the Appendix.

Denoting the solution to the PIDE by V upper for the upper good-deal bound
and by V lower for the lower good-deal bound, the good-deal price range for the
T -year European put option with strike price K is (V lower(0), V upper(0)).
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5.2 Results

We consider three European put options, each with strike price K = 100 and
with maturities of 3, 5 and 10 years.

Fixed choice of the good-deal bound B

We began the study by choosing the good-deal bound B = 0.3. The choice
corresponds to considering only those martingale measures which imply a Sharpe
Ratio in the range [−

√
0.3,
√

0.3] ≈ [−0.55, 0.55] for all the assets in the economy.
It also corresponds to the market price of regime change risk satisfying the
bounds

−0.739 ≤ η12(t, x) ≤ 0.739 and − 0.117 ≤ η21(t, x) ≤ 0.117,

where the numbers have been obtained by consideration of (4.2.2). We calculate
the upper and lower good-deal price bounds for the European put options for
various initial stock prices, as well as the minimal martingale measure price
(recall that the minimal martingale measure assigns price zero to the market
price of regime change risk and is the benchmark price).

The results for the 3-year put option are shown in Table 5.2. The first two
columns give the initial conditions, consisting of the stock price and the market
regime at time 0. In the next three columns are the good-deal price bounds
and the minimal martingale measure (“MMM”) price. The last three columns
give the width of the good-deal price bounds and their ratio to the minimal
martingale measure price.

We begin by making some general observations, which are not specific to the
good-deal bound approach. The first thing to notice is the impact of the initial
market regime on the prices. Comparing the prices for a fixed initial stock price
S(0), they are lower when the market starts in regime 1 (the regime-1 price)
than when the market starts in regime 2 (the regime-2 price). This can be
explained by the average time that the market spends in each regime and the
market parameters of each regime. The average time spent in regime 1 is 6.7
years, so if the market starts in regime 1 then, after 3 years, it is likely to still
be in regime 1. Under regime 1, the terminal stock price S(T ) is likely to have
increased, since the mean rate of return of the traded asset is positive (recall
the market parameters in Table 5.1). This means that there is less chance of a
payout being made for the put option. Suppose now that the market starts in
regime 2. As it spends on average 6 months in regime 2, then we expect that
after 3 years the market has exited the starting regime 2 and is now in regime
1, where it spends around 6.7 years. As the mean rate of return of the traded
asset is negative in regime 2, we expect that the terminal stock price S(T ) is
lower than if the market had started in regime 1. The end result is that there
is a higher chance of a payout for the option and, hence, a higher put option
price.

Next we notice that for a fixed initial market regime, the put option prices
decrease as the initial stock price increases. When the initial stock price is below
the strike price (that is, it is in-the-money), the chance of the option being
exercised, and hence having a positive payoff, is increased. This is reflected in
the option prices. When the initial stock price is above the strike price (that is,
it is out-of-the-money), there is less chance of the option being exercised and so

42



Table 5.2: Three year European put option, K = 100, B = 0.3
Initial Initial Lower Upper Good-deal Lower Upper
stock market good-deal MMM good-deal bound / /
price regime price price price width MMM MMM

75 1 9.5559 10.5803 11.6317 2.0758 0.903 1.099
80 1 7.3208 8.3786 9.4639 2.1431 0.874 1.130
85 1 5.5361 6.5909 7.6762 2.1401 0.840 1.165
90 1 4.1420 5.1639 6.2211 2.0791 0.802 1.205
95 1 3.0735 4.0403 5.0481 1.9746 0.761 1.249
100 1 2.2672 3.1644 4.1082 1.8410 0.716 1.298
105 1 1.6667 2.4862 3.3573 1.6906 0.670 1.350
110 1 1.2239 1.9627 2.7572 1.5333 0.624 1.405
115 1 0.8997 1.5587 2.2762 1.3766 0.577 1.460
120 1 0.6636 1.2462 1.8887 1.2251 0.532 1.516
125 1 0.4919 1.0030 1.5743 1.0824 0.490 1.570
75 2 12.9527 13.9403 14.9639 2.0112 0.929 1.073
80 2 10.8309 11.8497 12.9051 2.0742 0.914 1.089
85 2 9.0377 10.0632 11.1272 2.0895 0.898 1.106
90 2 7.5352 8.5466 9.5993 2.0641 0.882 1.123
95 2 6.2842 7.1484 8.2902 2.0060 0.879 1.160
100 2 5.2472 6.1847 7.1702 1.9230 0.848 1.159
105 2 4.3897 5.2753 6.2121 1.8224 0.832 1.178
110 2 3.6811 4.5094 5.3914 1.7103 0.816 1.196
115 2 3.0952 3.8633 4.6868 1.5916 0.801 1.213
120 2 2.6098 3.3167 4.0800 1.4702 0.787 1.230
125 2 2.2063 2.8525 3.5554 1.3491 0.773 1.246

43



there is less chance of a positive payoff. Thus the option prices decrease as the
put option moves from being in-the-money to at-the-money (when the initial
stock price equals the strike price) to out-of-the-money.

As expected, the minimal martingale measure price always lies between the
lower and upper good-deal price bounds. It is approximately halfway between
the lower and upper good-deal price bounds; the minimal martingale measure
assigns zero price to the regime change risk ηij(t) whereas in the calculation of
the good-deal bounds, the martingale measures considered can assign positive
or negative prices, as long as the good-deal bound is obeyed (recall (4.2.2)).

Now we examine the good-deal price bounds, beginning with the regime-1
prices. When the initial stock price is 75, so that the option is deeply in-
the-money, the good-deal price bounds are about 10% below and above the
minimal martingale measure price of 10.5803. As the initial stock price rises,
these ratios increase to approximately 30% of the minimal martingale measure
price of 4.1082 when the option is at-the-money. The ratios continue to increase
as the option moves to being out-of-the-money, reaching a peak of 51% above
and 57% below the minimal martingale measure price of 1.5743 when the initial
stock price is 125. In comparison, from the third-last column, we see in that
the absolute width of the good-deal price bound roughly decreases. This can be
interpreted as follows. When the option is deeply in-the-money, so that a payout
is more likely, the market price of regime change risk has a greater effect on the
option price. This is reflected in a large absolute width of the good-deal price
bounds. However, due to the high prices of the option, the width relative to
the minimal martingale price is smaller. Conversely, when the option is deeply
out-of-the-money, so that a payout is much less likely, the impact of the market
price of regime change risk on the option prices is diminished. This is reflected
in a smaller absolute width of the good-deal price bounds but, as the option
prices are correspondingly small, the relative width is larger.

For the regime-2 prices, we see a similar pattern emerging. The absolute
width of the regime-2 good-deal price bounds are slightly higher than the corre-
sponding regime-1 good-deal price bounds. However, due to the higher option
prices, the ratios of the good-deal price bounds to the minimal martingale mea-
sure prices are lower.

We also calculated the good-deal price bounds for a five year European put
option and a ten year European put option; these results are shown in Table 5.3
and Table 5.4. The comments made for the three year option apply to both these
longer-dated contracts. By comparing the values in all three tables for a fixed
initial market regime and initial stock price, we notice that as the maturity
increases, the option prices decrease. As the time to maturity increases, the
market is more likely to have spent time in regime 1, in which the traded asset
has a positive mean rate of return. Thus the probability of a payout decreases,
as do the prices. However, the variation of the width of the good-deal pricing
bounds is not as clear-cut: it is widest for the five year option, then mostly it
is next widest for the three year option. This is probably a result of the lower
prices at longer maturities being offset by the price of the regime change risk
imposed by the good-deal bound.

For a fixed initial stock price, as the maturity increases the regime-1 and
regime-2 prices start to converge. This reflects the Markov chain which models
the regime-switching tending towards its stationary distribution. We would
expect that for much higher maturities, for example 15 year contracts, the
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Table 5.3: Five year European put option, K = 100, B = 0.3
Initial Initial Lower Upper Good-deal Lower Upper
stock market good-deal MMM good-deal bound / /
price regime price price price width MMM MMM

75 1 5.7616 7.0608 8.3833 2.6217 0.816 1.187
80 1 4.4912 5.7514 7.0430 2.5518 0.781 1.225
85 1 3.4899 4.6889 5.9284 2.4385 0.744 1.264
90 1 2.7073 3.8299 5.0026 2.2953 0.707 1.306
95 1 2.0992 3.1366 4.2331 2.1339 0.669 1.350
100 1 1.6286 2.5771 3.5920 1.9634 0.632 1.394
105 1 1.2655 2.1247 3.0563 1.7908 0.596 1.438
110 1 0.9856 1.7578 2.6066 1.6210 0.561 1.483
115 1 0.7698 1.4590 2.2272 1.4574 0.528 1.527
120 1 0.6031 1.2144 1.9053 1.3022 0.497 1.569
125 1 0.4741 1.0130 1.6306 1.1565 0.468 1.610
75 2 8.2432 9.4778 10.7430 2.4998 0.870 1.133
80 2 6.8956 8.1109 9.3616 2.4660 0.850 1.154
85 2 5.7738 6.9520 8.1714 2.3976 0.831 1.175
90 2 4.8422 5.9702 7.1455 2.3033 0.811 1.197
95 2 4.0693 5.1380 6.2598 2.1905 0.792 1.218
100 2 3.4281 4.4318 5.4937 2.0656 0.774 1.240
105 2 2.8955 3.8310 4.8291 1.9336 0.756 1.261
110 2 2.4522 3.3186 4.2507 1.7985 0.739 1.281
115 2 2.0823 2.8710 3.7454 1.6631 0.725 1.305
120 2 1.7725 2.5030 3.3022 1.5297 0.708 1.319
125 2 1.5120 2.1776 2.9118 1.3998 0.694 1.337
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Table 5.4: Ten year European put option, K = 100, B = 0.3
Initial Initial Lower Upper Good-deal Lower Upper
stock market good-deal MMM good-deal bound / /
price regime price price price width MMM MMM

75 1 1.8759 2.9151 4.0134 2.1375 0.644 1.377
80 1 1.5002 2.4515 3.4738 1.9736 0.612 1.417
85 1 1.2044 2.0691 3.0144 1.8100 0.582 1.457
90 1 0.9707 1.7521 2.6213 1.6506 0.554 1.496
95 1 0.7852 1.4878 2.2832 1.4980 0.528 1.535
100 1 0.6375 1.2664 1.9909 1.3534 0.504 1.572
105 1 0.5192 1.0799 1.7370 1.2178 0.481 1.608
110 1 0.4241 0.9220 1.5155 1.0914 0.460 1.644
115 1 0.3472 0.7876 1.3214 0.9742 0.441 1.678
120 1 0.2848 0.6727 1.1506 0.8658 0.423 1.710
125 1 0.2338 0.5740 0.9998 0.7660 0.407 1.742
75 2 2.8312 3.8939 5.0062 2.1750 0.727 1.286
80 2 2.3728 3.3655 4.4173 2.0445 0.705 1.313
85 2 1.9967 2.9185 3.9073 1.9106 0.684 1.339
90 2 1.6870 2.5386 3.4637 1.7767 0.665 1.364
95 2 1.4307 2.2143 3.0761 1.6454 0.646 1.389
100 2 1.2177 1.9360 2.7358 1.5181 0.629 1.590
105 2 1.0398 1.6962 2.4357 1.3959 0.613 1.436
110 2 0.8906 1.4886 2.1701 1.2795 0.598 1.458
115 2 0.7648 1.3079 1.9338 1.1690 0.585 1.479
120 2 0.6582 1.1500 1.7228 1.0646 0.572 1.498
125 2 0.5674 1.0113 1.5336 0.9662 0.561 1.516

regime-1 and regime-2 prices are almost identical since the initial market regime
becomes much less important.

Figures 5.1 - 5.3 show graphically the upper and lower good-deal bounds for
the fixed choice of good-deal bound B = 0.3, as well as the minimal martingale
measure prices, for each of the options. Note the difference in scales; for example,
the width of the bounds for the 10-year option is less than for the other two
options. Figures 5.4 - 5.6 show the good-deal bounds expressed as a ratio relative
to the minimal martingale measure price.

Varying the good-deal bound B

The next step is to examine the sensitivity of the good-deal price bounds to the
choice of the good-deal bound. The upper and lower good-deal price bounds
for the three European put options as a function of the good-deal bound B are
shown in Figures 5.7-5.9, for an initial stock price of 100. All the plots show
that as we increase the good-deal bound B, the good-deal price bounds on the
put option price widen. As we increase the good-deal bound B, we increase
the range of values that the market price of regime change risk can take. This
results in a wider range of prices. However, we notice in the plots where the
market starts in regime 1 that the lower good-deal bound becomes constant. In
this particular model with market parameters given by Table 5.1, the solution
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Table 5.5: Black-Scholes Prices for European put options with strike price 100.
Black-Scholes price

Maturity 3-year 5-year 10-year
Market with regime 1 parameters 1.9631 1.3109 0.4422
Market with regime 2 parameters 17.5398 17.6373 14.3189

to the static optimization problem for the lower good-deal function is always
η̄12(t, x) = −1 when starting in regime 1, no matter what the value of the good-
deal bound B. Plugging η̄12(t, x) = −1 into the PIDE, we see immediately
that the last term (5.1.1) vanishes. Thus the PIDE reduces to the classical
Black-Scholes formula for a European put option in a non-regime-switching
market with market parameters r(1), b(1) and σ(1). These latter prices, and
for completeness their counterparts for the non-regime-switching market with
market parameters r(2), b(2) and σ(2), are shown in Table 5.5.

The graphs show how wide the pricing bounds can become as the good-deal
bound B is increased. For example, the upper price bound for the 10-year put
option increases from 2 at B = 0.3 to 8 at B = 2. As an aside, as these pricing
bounds are all subsets of the no-arbitrage bounds, it illustrates why the latter
are not considered useful in practice.

Conclusion

Adopting the good-deal bound approach, we have examined the resulting price
bounds on three European put options of varying maturities. These bounds can
be used as a guide to pricing maturity guarantees, by excluding those prices
which imply a compensation which is too high for the risks undertaken. The
overall message from the numerical example is that the pricing bounds are tight
enough to be useful.

If the life insurance company has calculated a single price for a maturity
guarantee then the good-deal pricing bounds can indicate whether or not a
chosen price is reasonable. By choosing a Sharpe Ratio which reflects historical
data to calculate the good-deal bound, it places the company’s choice of a
price in the context of what the market might reasonably choose as a price. It
thus gives the company a reference point for pricing which is, to some degree,
objective.

They can also be used directly for pricing. Once a life insurance company
has picked the range of Sharpe Ratios that they consider reasonable, the cor-
responding good-deal pricing bounds can be calculated. The upper good-deal
pricing bound can be viewed as the highest price at which the company will
sell the maturity guarantee and the lower good-deal pricing bound as the lowest
price.
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(a) Good-deal price bounds for a 3-year European put option starting
in regime 1.

(b) Good-deal price bounds for a 3-year European put option starting
in regime 2.

Figure 5.1: The upper and lower good-deal price bounds for a 3-year European
put option with strike price 100 as a function of the initial stock price. The
good-deal bound B = 0.3. The top plot assumes that the market is in regime 1
at time 0 and the bottom plot assumes that the market is in regime 2 at time 0.
The plots show the upper and lower good-deal price bounds, with the minimal
martingale measure price represented by the middle line.
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(a) Good-deal price bounds for a 5-year European put option starting
in regime 1.

(b) Good-deal price bounds for a 5-year European put option starting
in regime 2.

Figure 5.2: The upper and lower good-deal price bounds for a 5-year European
put option with strike price 100 as a function of the initial stock price. The
good-deal bound B = 0.3. The top plot assumes that the market is in regime 1
at time 0 and the bottom plot assumes that the market is in regime 2 at time 0.
The plots show the upper and lower good-deal price bounds, with the minimal
martingale measure price represented by the middle line.
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(a) Good-deal price bounds for a 10-year European put option starting
in regime 1.

(b) Good-deal price bounds for a 10-year European put option starting
in regime 2.

Figure 5.3: The upper and lower good-deal price bounds for a 10-year European
put option with strike price 100 as a function of the initial stock price. The good-
deal bound B = 0.3. The top plot assumes that the market is in regime 1 at
time 0 and the bottom plot assumes that the market is in regime 2 at time 0.
The plots show the upper and lower good-deal price bounds, with the minimal
martingale measure price represented by the middle line.
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(a) Ratio of good-deal price bounds for a 3-year European put option
starting in regime 1.

(b) Ratio of good-deal price bounds for a 3-year European put option
starting in regime 2.

Figure 5.4: The ratio of the upper and lower good-deal price bounds to the
minimal martingale measure price for a 3-year European put option with strike
price 100 as a function of the initial stock price. The good-deal bound B = 0.3.
The top plot assumes that the market is in regime 1 at time 0 and the bottom
plot assumes that the market is in regime 2 at time 0.
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(a) Ratio of good-deal price bounds for a 5-year European put option
starting in regime 1.

(b) Ratio of good-deal price bounds for a 5-year European put option
starting in regime 2.

Figure 5.5: The ratio of the upper and lower good-deal price bounds to the
minimal martingale measure price for a 5-year European put option with strike
price 100 as a function of the initial stock price. The good-deal bound B = 0.3.
The top plot assumes that the market is in regime 1 at time 0 and the bottom
plot assumes that the market is in regime 2 at time 0.
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(a) Ratio of good-deal price bounds for a 10-year European put option
starting in regime 1.

(b) Ratio of good-deal price bounds for a 10-year European put option
starting in regime 2.

Figure 5.6: The ratio of the upper and lower good-deal price bounds to the
minimal martingale measure price for a 10-year European put option with strike
price 100 as a function of the initial stock price. The good-deal bound B = 0.3.
The top plot assumes that the market is in regime 1 at time 0 and the bottom
plot assumes that the market is in regime 2 at time 0.
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(a) Good-deal price bounds for a 3-year European put option starting
in regime 1.

(b) Good-deal price bounds for a 3-year European put option starting
in regime 2.

Figure 5.7: The upper and lower good-deal price bounds for a 3-year European
put option with strike price 100 and initial stock price 100 as a function of the
good-deal bound B. The top plot assumes that the market is in regime 1 at
time 0 and the bottom plot assumes that the market is in regime 2 at time 0.
On each plot, the minimal martingale measure price is the horizontal line in the
middle.
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(a) Good-deal price bounds for a 5-year European put option starting
in regime 1.

(b) Good-deal price bounds for a 5-year European put option starting
in regime 2.

Figure 5.8: The upper and lower good-deal price bounds for a 5-year European
put option with strike price 100 and initial stock price 100 as a function of the
good-deal bound B. The top plot assumes that the market is in regime 1 at
time 0 and the bottom plot assumes that the market is in regime 2 at time 0.
On each plot, the minimal martingale measure price is the horizontal line in the
middle.

55



(a) Good-deal price bounds for a 10-year European put option starting
in regime 1.

(b) Good-deal price bounds for a 10-year European put option starting
in regime 2.

Figure 5.9: The upper and lower good-deal price bounds for a 10-year European
put option with strike price 100 and initial stock price 100 as a function of the
good-deal bound B. The top plot assumes that the market is in regime 1 at
time 0 and the bottom plot assumes that the market is in regime 2 at time 0.
On each plot, the minimal martingale measure price is the horizontal line in the
middle.
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Chapter 6

Conclusion and outlook

We have applied the good-deal bound idea of Cochrane and Saá Requejo (2000)
to a regime-switching lognormal market using the approach of Björk and Slinko
(2006). The good-deal pricing bounds can be used as a guide to what constitutes
a reasonable price for a maturity guarantee. We illustrated the approach with
a numerical example, demonstrating that the resulting pricing bounds are tight
enough to be useful in practice. It should be noted that, while the good-deal
pricing bounds exclude extreme compensation for the risks undertaken, they do
not exclude the possibility of extreme events. Thus events such as the recent
financial crisis are not captured by the pricing bounds.

There are many interesting avenues for future research. The first is to ex-
amine how the many approaches to option pricing in the literature compare to
one another. For example, how does the Esscher transform price compare to
the minimal entropy martingale measure price, and how do these all compare
to the good-deal pricing bounds?

Another line of research is to find approximations for the good-deal pricing
bounds, instead of having to numerically solve the PIDE each time. This is
currently been tackled by Björk and Slinko for jump-diffusion models (however,
there does not appear to be a published paper yet), but nothing has been done
yet for regime-switching models.

We have examined option pricing in the RSLN model and the flipside of
this is hedging. What is a good-deal hedging strategy? To date, no work has
appeared on this difficult problem on any incomplete market model but it is one
of the challenges to be overcome in order to complete the good-deal approach.
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Appendix A

Fully implicit finite
difference method

Here we detail the method we used to solve numerically the PIDE (4.3.13)-
(4.3.14) involved in the good-deal bound approach. There are various general
techniques which can be implemented and we have chosen one - the fully implicit
finite difference method - for its accuracy, rather than its speed. Our main
reason for doing this is that no-one else has calculated the good-deal bounds
in a RSLN model and thus we have no way of assessing the accuracy of the
chosen method. Therefore, we prefer to err on the side of caution. However,
there is no reason why a faster method could not be implemented; for example,
Seydel (2009) details various methods for tackling PIDEs, although they must
be modified to deal with the RSLN model.

We describe how we have implemented the fully implicit finite difference
method in a general RSLN(D) model. Suppose that we have solved the static
optimization problem, so that we know the values η̄ij(t). The next step is to
solve the PIDE

∂V

∂t
(t, x, i) + r(i)x

∂V

∂x
(t, x, i) +

1

2
σ2(i)x2 ∂

2V

∂x2
(t, x, i)

−r(i)V (t, x, i) +

D∑
j=1

gij(1 + η̄ij(t, x)) (V (t, x, j)− V (t, x, i)) = 0.

for each fixed triple (t, x, i). Note that η̄ij(t) may depend on the sign of
V (t, x, j)− V (t, x, i). Fix (t, x), set

λ(i,j)(t, x) := gij(1 + η̄ij(t, x)), i 6= j, (A.0.1)

and consider the solution (f (i)) to the system of equations

∂f (i)

∂t
+ r(i)x

∂f (i)

∂x
+

1

2
σ2(i)x2 ∂

2f (i)

∂x2
− r(1)f (1) +

D∑
j=1

λ(i,j)(f (j) − f (i)) = 0,

(A.0.2)
for i = 1, . . . , D. To solve this system, we construct a grid of the stock price
against time. The grid is divided into N time points and M stock price points.
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Denoting the terminal time by T and the maximum stock price by Smax, this
results in a grid size in the time direction of ∆t := T/N and in the stock
price direction of ∆x := Smax/M . Thus the time t := ν∆t and the stock price
S := k∆x correspond to (ν, k) on the grid.

Denote the value of f (i) at point (ν, k) on the grid by f
(i)
ν,k, and similarly

denote the value of λ(i,j) at point (ν, k) by λ
(i,j)
ν,k . The aim is to determine the

time-0 values (f
(i)
0,k) for k = 0, 1, . . . ,M . These are the time-0 prices of the put

option when the initial stock price is S(0) = k∆x and the initial market regime

is i. This is done by evaluating (f
(i)
ν,k) at each point (ν, k) on the grid, working

backwards from the terminal time values (corresponding to the points (N, k))
to time 0 values (corresponding to the points (0, k)).

To begin, we discretize the system of equations (A.0.2) using the first-order
approximations

∂f
(i)
ν,k

∂t
≈
f

(i)
ν+1,k − f

(i)
ν,k

∆t
,

∂f
(i)
ν,k

∂x
≈
f

(i)
ν,k+1 − f

(i)
ν,k−1

2∆x
,

∂2f
(i)
ν,k

∂x2
≈
f

(i)
ν,k+1 − 2f

(i)
ν,k + f

(i)
ν,k−1

(∆x)
2 .

Substituting the approximations into (A.0.2) and setting x = k∆x, we rearrange
to find

f
(i)
ν+1,k = ∆t

(
1

2
kr(i)− 1

2
k2σ2(i)

)
f

(i)
ν,k−1

+
(
1 + ∆t

(
k2σ2(i) + r(i)

))
f

(i)
ν,k

+ ∆t

(
−1

2
kr(i)− 1

2
k2σ2(i)

)
f

(i)
ν,k+1

−
D∑
j=1

λ
(i,j)
ν,k ∆t

(
f

(j)
ν,k − f

(i)
ν,k

)
.

To write this more compactly, set

a
(i)
k := ∆t

(
1

2
kr(i)− 1

2
k2σ2(i)

)
b
(i)
k :=

(
1 + ∆t

(
k2σ2(i) + r(i)

))
c
(i)
k := ∆t

(
−1

2
kr(i)− 1

2
k2σ2(i)

)
d

(i,j)
ν,k := −λ(i,j)

ν,k ∆t.

(A.0.3)

so that we have the following system of D(M + 1) simultaneous equations

f
(i)
ν+1,k = a

(i)
k f

(i)
ν,k−1 + b

(i)
k f

(i)
ν,k + c

(i)
k f

(i)
ν,k+1 +

D∑
j=1

d
(i,j)
ν,k

(
f

(j)
ν,k − f

(i)
ν,k

)
, (A.0.4)

for i = 1, . . . , D, ν = 0, 1, . . . , N and k = 0, 1, . . . ,M .
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As we seek the value of a European put option, we use the following boundary
conditions:

f
(i)
N,k = max[K − S(T ), 0], f

(i)
ν,0 = Ke−r(N−ν)∆t, f

(i)
ν,M = 0. (A.0.5)

To solve (A.0.4) for each pair (ν, k), we work backwards from the final time

T = N∆t to time zero. From the boundary conditions, the values (f
(i)
N,k) are

known for each k = 0, 1, . . . ,M . We set ν = N − 1 in (A.0.4), solving to find

(f
(i)
N−1,k) for each k = 0, 1, . . . ,M . However, note from the boundary conditions

that we know both (f
(i)
N−1,0) and (f

(i)
N−1,M ), so in fact we need only solve for

D(M − 1) unknowns. Next we set ν = N − 2 in (A.0.4) and use the solutions

from the previous time step to find (f
(i)
N−2,k) for each k = 1, 2, . . . ,M − 1. We

continue working backwards like this through each of the time nodes until we
reach time zero.

To see this more clearly, we write the system of D(M − 1) simultaneous
equations at time step ν in matrix form. Define the matrices (M −1)× (M −1)
matrices

Ai :=



b
(i)
1 c

(i)
1 0 0 · · · 0

a
(i)
2 b

(i)
2 c

(i)
2 0 · · · 0

0 a
(i)
3 b

(i)
3 c

(i)
3

...
. . .

. . .
. . .

0 a
(i)
M−2 b

(i)
M−2 c

(i)
M−2

0 · · · 0 a
(i)
M−1 b

(i)
M−1


and

Hij(ν) :=



d
(i,j)
ν,1 0 · · · 0

0 d
(i,j)
ν,2

...
. . .

...

d
(i,j)
ν,M−2 0

0 · · · 0 d
(i,j)
ν,M−1


for i, j = 1, . . . , D. Define the (M − 1)-column vectors

f
adj(i)
ν+1 :=



f
(i)
ν+1,1 − a

(i)
1 f

(i)
ν,0

f
(i)
ν+1,2

...

f
(i)
ν+1,M−2

f
(i)
ν+1,M−1 − c

(i)
M−1f

(i)
ν,M


, f (i)

ν :=


f

(i)
ν,1
...

f
(i)
ν,M−1



and

f (i,j)
ν :=


f

(j)
ν,1 − f

(i)
ν,1

...

f
(j)
ν,M−1 − f

(i)
ν,M−1
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Then, adjusting for the boundary conditions at k = 0 and k = M (see (A.0.5)),
the system of equations can be written in matrix form as

f
adj(1)
ν+1

...

f
adj(D)
ν+1

 =


A1f

(1)
ν

...

ADf
(D)
ν

+


∑D
j=1H1j(ν)f

(1,j)
ν

...∑D
j=1HDj(ν)f

(D,j)
ν

 . (A.0.6)

In most examples, d
(i,j)
ν,k (which form the diagonal entries of the matrix Hj)

depends on the sign of f
(j)
ν,k−f

(i)
ν,k (this is where the good-deal bound enters). This

means that we cannot directly invert the right-hand side of (A.0.6). Instead, we

must guess some initial values of f
(j)
ν,k and f

(i)
ν,k and then use an iterative technique

to find the solution. Most mathematical software have inbuilt programs which
can do this (for example, we used the inbuilt function fsolve in MATLAB to
solve (A.0.6)).

For the results in Chapter 5, the calculations were done on a grid with values

∆t = 0.01, ∆S = 0.5, Smin = 0, Smax = 200,

where ∆t is the grid step-size in the time direction (measured in years), ∆S is
the grid step-size in the stock price direction and [Smin, Smax] is the grid range
in the stock price direction. The grid range in the time direction is [0, T ], where
T is the maturity of the put option, in years.
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