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Abstract

The dissertation shows how the age-period-cohort model can be used to estimate, select
models and make distriburion forecasts in resering. The dissertation includes a joint pa-
per with Prof Bent Nielsen titled Generalized Log-Normal Chain-Ladder. In this paper,
we propose an asymptotic theory for distribution forecasting from the log-normal chain-
ladder model. The theory overcomes the difficulty of convoluting log-normal variables
and takes estimation error into account. The results differ from that of the over-dispersed
Poisson model and from the chain-ladder based bootstrap. We embed the log-normal
chain-ladder model in a class of infinitely divisible distributions called the generalized
log-normal chain-ladder model. The asymptotic theory uses small o asymptotics where
the dimension of the reserving triangle is kept fixed while the standard deviation is as-
sumed to decrease. The resulting asymptotic forecast distributions follow t distributions.
The theory is supported by simulations and an empirical application.

KEYWORDS chain-ladder, infinitely divisibility, over-dispersed Poisson, bootstrap, log-
normal.
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Chapter 1

Foreword

This chapter is written to ensure that this dissertation fulfils the specific passing criteria
of subject SAO. This chapter references and assumes knowledge of the joint paper
presented as Chapter 2 and 3 of this dissertation.



1.1 Declaration

This dissertation contains a joint paper with Prof. Bent Nielsen. My supervisor Bent
Nielsen is the main contributor of the asymptotic theories of the joint paper and have
guided me through out my SAO project. I have contributed to the following areas of
work independently:

e [ recognized the importance of the Log-Normal model in practice and recom-
mended to extend the asymptotic distribution forecast theories of the over-dispersed
Poisson work by Harnau & Bent (2017) to the log-normal model.

e [ decided what to show in the key exhibits in the empirical illustration section that
are most important in practice. For example the forecast error trends by accident
years, the 1 in 200 values and the standard deviation by mean values.

e I extended the current apc package for R by Nielsen (2015) to the log-normal
model. T wrote all the code for the empirical and simulation studies independently.

e [ collected and analysed the Lloyd’s data independently. I fitted and compared
the log-normal results with the over-dispersed Poisson and bootstrap results. 1
presented the findings to the Lloyd’s actuarial team. I sought feedback from the
actuaries at Lloyd’s and added model selections analysis to model stability testing
work for the paper.

e [ searched for datasets which can be used in the paper for publication purposes.
The datasets used in the paper are representations of when a log-normal model is
more suitable than the traditional over-dispersed Poisson model.

e [ studied Harnau and Nielsen (2017)’s paper independently and came up with
an initial draft of the theories and proofs for the Generalized Log-Normal Chain-
Ladder paper.

e [ have coded and produced all tables and figures for the Generalized Log-Normal
Chain-Ladder paper.

e [ drafted an initial, 80-page version of the dissertation before sitting down with
Prof. Bent Nielsen to select results and to write the main body of the paper
together. I have written the first chapter of the dissertation and the conclusion of
the joint paper independently.



1.2 Evaluation of achievement of research objectives

The dissertation illustrates applications of the age-period-cohort models to insurance
data and produces reserve forecast distributions as set out in the approved research
outline submitted to the IFoA in October 2016 (see section 3.3 in the appendix). It
provides a thorough literature review of the age-period-cohort model and its application
in insurance as set out in the introduction section of the joint paper.

Results from the majority of the methods of investigation in the research outline are
included in this dissertation. These include generalized linear model, likelihood analysis,
statistical tests, chain ladder method, bootstrap method and simulation as set out in the
research outline 4.1 and best estimates and forecast distributions from the commonly
used over-dispersed Poisson model, the boostrap method and the proposed log-normal
model on real insurance data as set out in research outline 4.2 and 4.3.

The over-dispersed Poisson model is used frequently by practitioners but is not fully
understood. The dissertation revisits the over-dispersed Poisson model and it proposed
a new forecast method, the log-normal chain-ladder via an asymptotic approach. The
proposed methods will improve the actuarial process which is an important objective
in the research outline. I also performed analysis on the Lloyds data and presented the
results to Lloyds internally however due to data confidentiality am unable to present
the full results in this dissertation. A summary of findings of the datasets I have studied
in this project is contained in the conclusion of the dissertation and a publicly available
dataset is used in the joint paper for illustration purposes.

Investigations were also carried out using methods 4.4 and 4.5 and although they
resulted in some results in this dissertation they did not end up being fully explored
and hence are included as suggestions for future research. This is reasonable as they are
relatively less important to the project objectives than 4.1, 4.2 and 4.3 which describe
how practitioners can set their reserve in the first place. A summary of the work carried
out regarding 4.4 and 4.5 is as follows:

For 4.4, T studied the working paper by Margraf & Nielsen (2018). This paper
describes the new Bornhuetter-Ferguson method which allows actuaries to adjust the
relative ultimates for the Poisson model. Similar linear constraints can be used in the
generalized log-normal model proposed in my joint paper with Nielsen in Chapter 2. In-
stead of analyzing a restricted Poisson likelihood described in Margraf & Nielsen (2018),
the Bornhuetter-Ferguson method can be implemented by analyzing the restricted least
squares in a generalized log-normal model, which leads to t and F statistics as described
in Chapter 2 of my dissertation, with an empirical example in section 2.4.1.

Section 2.4.4 of this dissertation is a result of investigation using method 4.5, in
which the mean and variance of different parts of the reserving triangle are compared at
the same time using the GLM package in R for both the over-dispersed Poisson model
and the generalized log-normal model. This allows actuaries to select an appropriate
distribution to forecast reserves. Additionally an example of interpretation of the trend
based on the canonical parameterization for the apc model is given in section 2.4.1 of
this dissertation. Some investigation was carried out into other parts of 4.5 including
estimation of correlations between triangles, however useful results were not obtained
and so do not appear in this dissertation.



1.3 Discussion of data used in this project

The reserving process starts with business plan estimates and will typically be revised
quarterly until settlement. Reserve forecasts are required because there are delays be-
tween business being written, accident occurrence, accident reporting, claims handling
and the final settlement. Reserve forecasts become more accurate with time as policies
become more mature and more accidents related to the origin year are observed.

To model this delay, the reserving data is typically collected in a triangular format
as shown in Figure 1.3.1 below. This is called the run-off triangle. Rows represent the
origin years (accident years, underwriting years or reporting years depending on type of
policies) and columns represent the development periods (monthly, quarterly or yearly
etc.). Past information is stored in the upper triangle and the future reserves are in the
lower triangle.
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Figure 1.3.1: Incremental RSA UK Motor paid triangle

Organising the data in the run-off triangle is useful as it shows how claims develop
through time in different origin years. The chain-ladder method assumes claim develop-
ments are identical for different origin years. It estimates the past development rate and
applies it to the future to obtain reserves.If the data is homogeneous the run-off triangle
method is a useful form to present it. We can calculate the average development trend
from the run off triangle and use it to project into the future. Aggregating data into
the triangular format has the benefit of reducing data error due to allocation between
currencies, risk groups etc.

Similar to the chain-ladder method, the age-period-cohort models incremental trian-
glular data. It takes account of trends along the origin years, development years, as well
as calendar year. The calendar year trend can be significant if inflation is prominent in
the data.

A triangle free approach in Parodi (2012) has received much interest. The author
argues data is lost when aggregated into the triangular format. This approach is credible
for heteogenous data, for example, for large and unusual claims. In which case additional
policy and claims information and expert adjustments can be made at a case by case
level to ensure more accurate forecasts. For attritional claims, the traditional triangular
approach could be more stable due to the aggregations. The triangle method is robust to
data errors which is hard to avoid in reserving. The level of granularity is an important
decision in reserving and a number of factors should be taken into consideration:



e Are data available and of sufficient quality for granular reserving? Are they cor-
rect? How can we best use the data to tell us what we want to know?

e How homogeneous are the data? Are the data we want to combine together likely
to have the same trends and volatility?

e What is the purpose of the work? Do we need to report reserves at aggregate level
(for example to calculate the balance sheet for an insurance company) or more
granular level (for example to price a particular product or to assess performance
of a particular class of business for underwriters)?

e How material is it? Would more granular reserving improve results? Larger or
uncertain claims are likely to receive more attention, which may be worth the
extra work.

Often actuaries uses more than one types of data in setting reserve, including paid
and incurred, count and amount data.

The benefit of using incurred data is that it includes the case estimates and provides
additional information than the pure paid data. The incurred data is useful when
evaluating short tail classes such as property claims, in particular catastrophic losses.
These classes can be verified quickly and the case estimates are generally more accurate
and easy to determine. Incurred data may be less useful for long tail business such as
casualty lines and financial lines, where case estimates are not so reliable and the size
of the case reserves rely on the judgement of claims handlers.

The paid data records the actual payments so it involves less judgements and esti-
mates on the ultimate amount. The incremental paid data is less likely to be negative
than the incurred data as we expect curmulative payment to increase, while incurred
data could have reserve releases when case estimates are over-estimated.

Claim number triangles are particularly useful for long tail business where inflation
is important as claims take a long period to settle. Inflation effect can be different from
the amount and number of claims. This can be modelled by a deterministic method,
the average cost per claim (ACPC) method. A stochastic method, the Double Chain
Ladder method by Martinez-Miranda et al. (2011) is a simulation based approach to
forecast the distribution of aggregate claims.

The age-period-cohort models described in this dissertation uses trianglular data. We
look at two distributions of the age-period-cohort models, the log-normal and the over-
dispersed Poisson. For these distributions, paid data is more suitable than incurred
data as these distributions assume incremental payments are positive. In particular,
the log-normal only takes positive values, while the over-dispersed Poisson can model
claims with few negative values as long as the cumulative values are positive. The
frequency claims triangles are less suitable to be modelled by the log-normal and the
over-dispersed Poisson distributions as they are continous distributions, with exception
when the dispersion of the over-dispersed Poisson is 1. Both the log-normal and over-
dispersed Poisson models are infinitely divisible, which means they are sum of many
independently identically distributed distributions. In particular the underlying data
generation process for the over-dispersed Poisson model is a Compound Poisson Pro-
cess. The Compound Poisson Process is a summation of non-negative independently
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identical distributions where the number in the summation follows a Poisson distribu-
tion. Therefore they are suitable in modelling the aggregate claims data.

Although the models in this paper can be applied to both triangular data gross
and net of reinsurance, it is better for gross data as generally less negative incremental
claims are in the gross data. The net triangles could have some recoveries income in late
development years which results in negative incremental claims. The log-normal model
cannot handle negative claims and the over-dispersed Poisson model can handle some
negative incremental claims as long as the row sum and column sums of the claims are
positive.

In practice we cannot avoid negative incremental claims, they are generally present
in many triangles, particularly net of reinsurance claims triangles and in non casualty
lines of business due to salvages and subrogations. Some practitioners remove negative
claims or use a shifted distribution in modelling. There have been little theorectical
bases for this approach. How to deal with negative incremental claims remains an open
research area for the log-normal and over-dispersed Poisson modelling.

[ analyzed the high level classes of business data from Lloyd’s. I have chosen the net of
reinsurance data from Lloyd’s so that I can compare the fitted trends by the age-period-
cohort models to the Lloyd’s selected trends easily. Lloyd’s internal parameterisations
are done on the net data as Lloyd’s do not model reinsurance contracts of the whole
market in detail.

The Lloyd’s data is relatively stable as it is a pool of the all syndicates data. This
makes it more suitable for analysis as the parameters estimates from the age-period-
cohort models are reflective of underlying trends and not caused by changes in reporting
or recording the data. Moreover the asymptotic theory developed for the over-dispersed
Poisson model by Harnau & Nielsen (2017) and the log-normal model in this dissertation
work best when the aggregate claims are large and the underlying standard deviation
is small. For a given class, business placed through Lloyd’s tends to be more specialist
in nature, leading to more volatile claims experience. This volatility of the Lloyd’s
claims data contributes to less accurate forecasts from the age-period-cohort models.
By aggregating the market data, it also has the benefit of limiting negative values in the
triangle which are more suitable for the over-dispersed Poisson and log-normal model
fits.

Due to data confidentiality, I cannot present detailed analysis results of the Lloyd’s
data. Hence the data analysed in the paper in Chapter 2 comes from a publically
available source. There is little publicly available commercial historic loss data and
much of the available data seems to come from a group of multinational Bermuda-
domiciled insurers perhaps because of regulatory disclosure requirements. Many of these
companies have similar profiles and XL Catlin’s data is selected for use in this paper
on account of their relatively large size and good quantity of historic data. The specific
data used is gross paid traingulations from XL Catlin’s US Casualty class. I chose the
US Casualty class as it is suitable to illustrate how estimation, specification tests and
distribution forecasts can be done in practice. The volatility trend forecasts for the
XL Catlin are similar to those from the Lloyd’s data. There is already an example
of when the over-dispersed Poisson model and the bootstrap method work better than
the log-normal model in Harnau & Nielsen (2017). The XL Catlin data chosen in this
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dissertation is an example of when the proposed log-normal model performs better than
the traditional over-dispersed Poisson and bootstrap methods.
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1.4 Discussion of various models

We compare log-normal forecast with the existing methods, including the Mack’s method
by Mack (1999), the bootstrap method by England & Verrall (1999) and England (2002)
and the over-dispersed Poisson model proposed by Harnau & Nielsen (2017).

1.4.1 Mack’s method

The benefit of Mack’s method is that it is a formula-based method, it is easy to calculate
and practictioners find it relatively stable in comparison to the bootstrap method. The
disadvantage of this method is that it does not provide a full distribution of reserves.
While the 1 in 200 values are very important the Mack’s method only provides the first
two moments of the reserve forecast errors.

1.4.2 Bootstrap method

The bootstrap method is widely used. The benefit is that it is a simulation based method
which is easily understood by practitioners. The algorithm is chain ladder method based.
It can be applied to a wide range of triangular data, paid and incurred, number and
amount, gross and net. It offers flexibilities for practictioners to fine tune their results
by using different definitions of residuals, for example a different standard deviation can
be used for different development columns when calculating residuals. The disadvantage
is that it is easily distored by large values of residuals when there are outliers. It is hard
to justify removal of residuals to get sensible results and it produces results which only
suitable for the over-dispersed Poisson model.

1.4.3 Asymptotic approach for the over-dispersed Poisson model

The asymptotic approach for the over-dispersed Poisson model recommended by Harnau
and Nielsen (2017) provides a formula for the chain ladder reserve distribution which
are similar to the boostrap method. The benefits of this method are that it tends to
be more robust to large residuals as it does not involve calculating and randomising the
residuals and that it is formula based so does not require a simulation engine. It can be
easily implemented in the apc package by Nielsen (2015). The disadvantage of this is
that practitioners may find it less intuitive to understand.

1.4.4 Asymptotic approach for the generalized log-normal model

The log-normal model developed in the joint paper in this dissertation provides an al-
ternative toolset to the over-dispersed Poisson model. The benefit of the log-normal
model is that it is recognized in practice as being a good choice for modelling reserves
and attritional losses. The log-normal model is currently used by many practictioners,
especially in simulating reserve risk in capital modeling. While the over-dispersed Pois-
son model is useful in modelling aggregate claims as a Compound Poisson process, the
infinite divisibility property of the log-normal model proved by Thorin (1979) shows the
log-normal model is just as useful in modelling aggregate claims. The asymptotic theory
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developed in the joint paper in this dissertation provides a formula for the log-normal
forecast distribution which can be easily calculated by practitioners. We find good sta-
bility of the log-normal distribution forecasts in different reserving years in the empirical
data analysis. While the over-dispersed Poisson model generally produces a decreasing
volatility trend by origin years, the log-normal model produces a flatter trend. The
log-normal volatilities are also generally larger in respect to their expected forecasts in
comparison to the over-dispersed Poisson model.

We performed statistical tests and find that although the log-normal model is suitable
to be used on some insurance data, the majority of the data are better suited to be
modelled by the over-dispersed Poisson model. Out of 15 empirical data analyses I
studied I found three data sets where the log-normal fits better than the over-dispersed
Poisson model, two of the three datasets are casualty business. This could be due to
casualty business being long tail. The volatility trend relative to the expected reserve
appear to be flatter than short tail classes due to slow recognition of size and number
of claims. The log-normal model assumes the standard error is proportional to the
expected reserves, while the over-dispersed Poisson assumes variance proportional to
the expected reserve. Therefore the log-normal model produces a flatter trend and
could be more suitable for long tail classes. However specification tests show the log-
normal model does not fit all casualty classes I have studied. Practitioners are therefore
advised to perform the model specification tests described in the joint paper in this
dissertation to test the log-normal and over-dispersed Poisson model fitness and decide
what should be appropriate to use for different data.

14



1.5 Actuarial process

The age-period-cohort model puts the chain-ladder and bootstrap methods into a statis-
tical framework, with a consistent process in estimation, point forecast and distribution
forecast, therefore a consistent process in reserving and capital modelling can be devel-
oped. Standard statistical theories can also be applied. This allows users to perform
model specification tests which provides statistical evidence of model fitness. An age-
period-cohort modelling process which actuaries can follow is described below:

e Collect and check data and decide the granularity to model. If there are abnor-
mal entries investigate source of possible errors. If there are negative develop-
ments present, consider whether to remove or adjust them for log-normal analysis
or whether to use alternative data, so that the log-normal model and the over-
dispersed Poisson model can fit.

e Perform model specification tests to check the log-normal and over-dispersed Pois-
son model fitness. This involves checking the mean and variance structure are the
same in different parts of the triangle. Examples of specification tests are F-test
and Bartlett test as shown in Table 2.4.5. The over-dispersed Poisson and the log-
normal should cover most of the reserving classes. Select a suitable model which
fits the data based on the model specification tests.

e Estimate the parameters and the associated errors of the parameter estimates
using the apc package in R by Nielsen (2015) as in Table 2.4.2. Interpret trends
in the parameters estimates.

e Check significance of the parameters and decide if the model benefits from drop-
ping insignificant parameters via t-tests as in Table 2.4.2. F-statistics can also be
calculated to check if the model can be reduced. An example of the F-statistics
to check the signifiance of calendar year effect is shown in Table 2.4.1. Practi-
tioners are advised to look at the results from both t-test and F-test in deciding
if the model can be reduced. For example, parameters along the origin years can
be jointly significant, but not individually significant as shown in the empirical
example in the joint paper. In this case practitioners can consider to drop some
a parameters. These test results can be computed via the apc package by Nielsen
(2015) in R.

e Produce forecast distribution statistics and inspect them graphically as shown in
Table 2.4.3 and Figure 2.4.1. The over-dispersed Poisson forecast distribution
is coded in the apc package by Nielsen (2015). This package is planned to be
extended to include log-normal forecast distribution forecasts in the near future.
The forecast distribution is a t-distribution and it can be fed into capital modelling
to simulate reserve risks.

Parameterization of reserve risk in practice requires actuaries’ to employ judgement
when making data adjustments, selections, and assessing the appropriateness of model
results. In particular factors such as changes in terms and conditions, mix of business
and other factors not captured in the data may not be well reflected in the estimated
trend straight from the model which forms part of this analysis.
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1.6 Contribution to actuarial science

This dissertation contributes to actuarial science by putting the lognormal model which
is already in use by practitioners on a more sound theoretical footing. It derives theo-
retical results which can be used to select a suitable model in reserving exercises, which
is a regulatory requirement that has been found to be difficult to implement in practice
using established techniques. The age-period-cohort model framework presented here
also provides a good theoretical foundation for future research to extend the basic chain
ladder method, and could be useful in pricing and capital modelling as well as reserving.
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1.7 Contribution to actuarial practice

This dissertation contributes to actuarial practice as it provides an alternative set of
tools to model reserves. It exhibits empirical examples based on real datasets that il-
lustrate how the log-normal forecasts based on the asymptotic theory developed in this
dissertation work and how the results compare to the existing models. It suggests a
process which practitioners can follow to produce estimates, forecasts and model selec-
tions (as mentioned in 1.6) and also includes specimen R code to allow quick real-life
initialisation of the methods.
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Chapter 2

Generalized Log-Normal
Chain-Ladder paper

This chapter presents a joint paper with Prof. Bent Nielsen which was submitted to the
Scandinavian Actuarial Journal in April 2018.
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2.1 Introduction

Reserving in general insurance usually relies on chain-ladder-type methods. The most
popular method is the traditional chain-ladder. A contender is the log-normal chain-
ladder, which we study here. Both methods have proved to be valuable for point forecast-
ing. In practice, distribution forecasting is needed too. For the standard chain-ladder
there are presently three methods available. Mack (1999) has suggested a method for
recursive calculation of standard errors of the forecasts, but without proposing an actual
forecast distribution. The bootstrap method of England and Verrall (1999) and England
(2002) is commonly used, but it does not always produce satisfactory results. Recently,
Harnau and Nielsen (2017) have developed an asymptotic theory for the chain-ladder in
which the idea of a over-dispersed Poisson framework is embedded in a formal model.
This was done through a class of infinitely divisible distributions and a new Central
Limit Theorem. An asymptotic theory provides an analytic tool for evaluating the dis-
tribution of forecast errors and building inferential procedures and specification tests
for the model. Here we adapt the infinitely divisible framework of Harnau and Nielsen
(2017) to the log-normal chain-ladder and present an asymptotic theory for the distri-
bution forecasts and model evaluation. Thereby, asymptotic distribution forecasts and
model evaluation tools are now available for two different models, which together cover
a wide range of reserving triangles.

The data consists of a reserving triangle of aggregate amounts that have been paid
with some delay in respect to portfolios of insurances. Table 2.1.1 provides an example.
The objective of reserving is to forecast liabilities that have occurred but have not yet
been settled or even recorded. The reserve is an estimate of these liabilities. Thus, the
problem is to forecast the lower reserving triangle and then add these forecasts up to
get the reserve. The traditional chain-ladder provides a point forecast for the reserve.

The chain-ladder is maximum likelihood in a Poisson model. This is useful for
estimation and point forecasting. Martinez Miranda, Nielsen and Nielsen (2015) have
developed a theory for inference and distribution forecasting in such a Poisson model
in order to analyze and forecast incidences of mesothelioma. However, this is not of
much use for the reserving problem because the data is nearly always severely over-
dispersed. The over-dispersion arises because each entry in the paid triangle is the
aggregate amount paid out to an unknown number of claims of different severity. It
is common to interpret this as a compound Poisson variable, see Beard, Pentikainen
and Pesonen (1984, §3.2). Compound Poisson variables are indeed over-dispersed in the
sense that the variance to mean ratio is larger than unity. They are, however, difficult
to analyze and even harder to convolute. England and Verrall (1999) and England
(2002) developed a bootstrap to address this issue. This often works, but it is known
to give unsatisfactory results in some situations. The model underlying the bootstrap
is not fully described, so it is hard to show formally when the bootstrap is valid and to
generalize it to other situations, including the log-normal chain-ladder.

The infinitely divisible framework of Harnau and Nielsen (2017) provides a plausi-
ble over-dispersed Poisson model and framework for distribution forecasting with the
traditional chain-ladder. It utilizes that the compound Poisson distribution is infinitely
divisible. If the mean of each entry in the paid triangle is large, then the skewness of
compound Poisson variable is small and a Central Limit Theorem applies. Thus, keep-

19



1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
1997|2185 13908 44704 56445 67313 62830 72619 42511 32246 51257 11774 21726 10926 4763 3580 4777 1070 1807 824 1288
1998 3004 17478 49564 55090 75119 66759 76212 62311 31510 15483 23970 8321 15027 3247 8756 14364 3967 3858 4643
1999|5690 28971 55352 63830 71528 73549 72159 37275 38797 27264 28651 14102 8061 17292 10850 10732 4611 4608
2000|9035 29666 47086 41100 58533 80538 70521 40192 27613 13791 17738 20259 12123 6473 3922 3825 3082

2001|7924 38961 41069 64760 64069 61135 62109 52702 36100 18648 32572 17751 18347 10895 2974 5828

2002|7285 25867 44375 58199 61245 48661 57238 29667 34557 8560 12604 8683 9660 4687 1889

2003|3017 22966 62909 54143 72216 58050 29522 25245 19974 16039 8083 9594 3291 2016

2004|1752 25338 56419 75381 64677 58121 38339 21342 14446 13459 6364 6326 6185

2005|1181 24571 66321 65515 62151 43727 29785 23981 12365 12704 12451 8272

2006|1706 13203 40759 57844 48205 50461 27801 21222 14449 10876 8979

2007 | 623 14485 27715 52243 60190 45100 31092 22731 19950 18016

2008 | 338 6254 24473 32314 35698 25849 30407 15335 15697

2009 | 255 3842 14086 26177 27713 15087 17085 12520

2010| 258 7426 22459 28665 32847 28479 24096

2011|1139 10300 19750 32722 41701 29904

2012| 381 5671 34139 33735 33191

2013| 605 11242 24025 32777

2014|1091 9970 31410

2015|1221 8374

2016|2458

Table 2.1.1: XL Group, US casualty, gross paid and reported loss and allocated loss
adjustment expense in 1000 USD.

ing the dimension of the triangle fixed, while letting the mean increase, the reserving
triangle is asymptotically normal with mean and variance estimated by the chain-ladder.
Since the dimension is fixed we then arrive at an asymptotic theory that matches the
traditional theory for analysis of variance (anova) developed by Fisher in the 1920s. If
the over-dispersion is unity and therefore known as in the Poisson model of Martinez
Miranda, Nielsen and Nielsen (2015) then inference is asymptotically x? and distribution
forecasts are normal. When the over-dispersion is estimated as appropriate for reserving
data then we arrive at inference that is asymptotically F and distribution forecasts that
are asymptotically t. The chain-ladder bootstrap could potentially be analyzed within
this framework, but this is yet to be done.

When it comes to the log-normal model the situation is different. The log-normal
model has apparently been suggested by Taylor in 1979, and then analyzed by for
instance Kremer (1982), Renshaw (1989), Verrall (1991, 1994), Doray (1996) and Eng-
land and Verrall (2002). The main difference to the over-dispersed Poisson model is that
the mean-variance ratio is constant across the triangle in that model, while the mean-
standard deviation ratio is constant in the log-normal model. Therefore the tails of
distributions are expected to be different, which may matter in distribution forecasting.

Estimation is easy in the log-normal model. It is done by least squares from the log
triangle. Recently, Kuang, Nielsen and Nielsen (2015) have provided exact expressions
for all estimators along with a set of associated development factors. Least squares
theory provides a distribution theory for the estimators and for inference. However, the
reserving problem is to make forecasts of reserves that are measured on the original scale.
Each entry in the original scale is log-normally distributed. While there are expressions
for such log-normal distributions it is unclear how to incorporate estimation uncertainty,
let alone convolute such variable to get the reserve.

The infinitely divisible theory provides a solution also for the log-normal model.
Thorin (1977) showed that the log-normal distribution is infinitely divisible. First of all,
this indicates that the log-normal variables actually have an interpretation as compound
sums of claims. Secondly, the framework of Harnau and Nielsen (2017) and their Central
Limit Theorem apply, albeit with subtle differences. In the over-dispersed Poisson model
the mean of each entry is taken to be large in the asymptotic theory, whereas for
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generalized log-normal model we will let the variance be small in the asymptotic theory.
In both cases the mean-dispersion ratio is then large. In this paper we will exploit that
infinitely divisible theory to provide an asymptotic theory for the log-normal distribution
forecasts.

We also discuss specification tests for the log-normal model. Mis-specification can
appear both in the mean and the variance of the log-normal variables. The mean
could for instance have an omitted calendar effect. Thus, we study the extended chain-
ladder model discussed by Zehnwirth (1994), Barnett and Zehnwirth (2000), and Kuang,
Nielsen and Nielsen (2008a,b,2011). The variance could be different in subgroups of
the triangle as pointed out by Hertig (1985). Barlett (1937) proposed a test for this
problem. Recently, Harnau (2017) has adapted that test to the traditional chain-ladder.
We extend this to the generalized log-normal model. Figure 2.1.1 shows key references
of this joint paper.

We illustrate the new methods using a casualty reserving triangle from XL Group
(2017) as shown in Table 2.1.1. The triangle is for US casualty and includes gross paid
and reported loss and allocated loss adjustment expense in 1000 USD.

We conduct a simulation study where the data generating process matches the XL
Group data in Table 2.1.1. We find that that the asymptotic results give good ap-
proximations in finite samples. The asymptotic will work even better if the mean-
dispersion ratio is larger. The generalized log-normal model is also compared with the
over-dispersed Poisson model and the England (2002) bootstrap. The bootstrap is found
not to work very well by an order of magnitude for this log-normal data generating pro-
cess. The over-dispersed Poisson model works better although it is dominated by the
generalized log-normal model.

In §2.2 we review the well known log-normal models for reserving. In §2.3 we set up
the asymptotic generalized log-normal model based on the infinitely divisible framework.
We check that the log-normal model is embedded in this class and show that the results
for inference in the log-normal model carries over to the generalized log-normal model.
We also derive distribution forecasts. We apply the results to the XL Group data in
§2.4, while §2.5 provides the simulation study. Finally, we discuss directions for future
research in §2.6. All proofs of theorems are provided in an Appendix.
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Chain-Ladder Point Forecasts

1979 1985 1994 2000 2009 2011 2015
—p
Ghaine Kremer (1985, page 133-136 Kuang, Nielsen & Nielsen (2009)
Proved the chain-ladder method gives the same estimate as the Poisson Proposed a canonical parameterisation for the chain-
Ladder & maximum likelihood estimate. This is also analysed in Mack (1994 ladder model, which solved the identification problem
Poisson Appendix A), Renshaw & Verrall (1998), Mack & Venter (2000), Kuang, and eased estimation and forecasts. It reformulated
Model Nielsen & Nielsen (2009). the Poisson maximum likelihood estimates in @ more
interpretable way.
Chain- Zehnwirth {1994) Barnett & Zehnwirth (2000) and Kuang, Nielsen & Nielsen (2008a, b} &
ladder & Proposed a calendar Kuang, Nielsen & Nielsen (2011 2011)
lend year effect can be Discussed how to make reserve Developed a canonical parameterisation for
Calendar added to the chain- point forecasts with a calendar the extended chain-ladder and showed how
Effect ladder model. year effect in a log-normal to estimate and make point forecasts based
model. on the canonical parameters.
Log- Taylor (1979) Kuang, Nielsen & Nielsen
Normal & A log-normal model was first suggested to be used in 2015
B insurance reserving and has become a popular model in Provides formulae for the LN
Chain- reserving, which was analysed in Kremer (1982), chain-ladder maximum
Ladder Renshaw(1989), Verrall (1991, 1994) and Doray (1996) likelihood estimators.
amongst others.
Chain-Ladder Distribution Forecasts
1977 1984 1989 1999 2002 2017 2018
o
Beard, Pentikainen England & Verrall (1999) and England (2002) .
P (1984) Developed the bootstrap method to obtain a Harnau & Nielsen (2017
ESOTEN A g : Found an asymptotic distribution
Proposed the distribution for the over-dispersed Poisson § Fhacth di d
Over- i chain-ladder forecasts, which is commonly used. I A oI oV e
: d compound Poisson b Poisson chain-ladder model. Under
Disperse model for aggregate the asymptatic framework, we can
Chain- claims. This madel is Mack (1999 . find inferences and forecast
Laddar an ODP model, where Develope(fl a formula to estlmate: tr\e moments. distribution for the reserves.
the variance is of the chain-ladder forecasts. This is also used in
proportional to the practise, but the entire distribution forecast is
mean. not given.
Kuang & Nielsen (2018)
Defines a more general class of log-
. . Renshaw (1989) and England & Verrall (2002 I model and derived
(. ) - normal model and derived an
Generalized g:‘;;';::hg Iolg%?lZeral s Presented log-normal forecast errors for a single cell but asymptotic distribution forecast. This
Log-Normal infinitely divisible, which means aggregate log-normal forecasts is not found. provides an alternative model to
Chain- the log-normal model is forecast reserves. In a generalised
Ladder suitable for modelling England & Verrall (2002 log-normal, the standard deviation is
aggregate claims , similar to the Presented an approximation for forecast errors for the proportional to the mean. The paper
Compound Poisson model. sum of log-normal reserves. However the formula is not also discusses inference and model
easy to follow and it does not provide us with the entire selection, which are easily done in
distribution forecast. the asymptotic framework.

Figure 2.1.1: Key references on the over-dispersed Poisson and log-normal chain-ladder
forecasts
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2.2 Review of the log-normal chain-ladder model

A competitor to the chain-ladder is the log-normal model. In this model the log of
the data is normal so that parameters can be estimated by ordinary least squares.
We review the log-normal model by describing the structure of the data, the model,
statistical analysis, point forecasts and extension by a calendar effect.

2.2.1 Data

Consider a standard incremental insurance run-off triangle of dimension k. Each entry is
denoted Y;; so that 7 is the origin year, which can be accident year, policy year or year of
account, while j is the development year. Collectively we have data Y = {Y};,Vi,j € T},
where Z is the triangular index set

Z=/{i,j: iand j belong to (1,...,k) withi+j—1=1,... k}. (2.2.1)

Let n = k(k + 1)/2 be the number of observations in the triangle Z. One could allow
more general index sets, see Kuang, Nielsen and Nielsen (2008a), for instance to allow
for situations where some accidents are fully run-off or only recent calendar years are
available. We are interested in forecasting the lower triangle with index set

J ={i,j: iand j belong to (1,..., k) withi4+j—1=k+1,...,2k—1}. (2.2.2)

2.2.2 Model

In the log-normal model the log claims have expectation given by the linear predictor

The predictor p;; is composed of a an accident year effect a;, a development year effect
B; and an overall level §. The model is then defined as follows.

Assumption 2.2.1 log-normal model. The array Yi;, i, € I, satisfies that the
variables y;; = log Y;; are independent normal N(ju;;,w?) distributed, where the predictor
is given by (2.2.3)

The parametrisation presented in (2.2.3) does not identify the distribution. It is
common to identify the parameters by setting, for instance, 6 = 0 and Zle B; =
0. Such an ad hoc identification makes it difficult to extrapolate the model beyond
the square composed of the upper triangle Z and the lower triangle 7 and it is not
amenable to the subsequent asymptotic analysis. Thus, we switch to the canonical
parametrisation of Kuang, Nielsen and Nielsen (2009, 2015) so that the model becomes
a regular exponential family with freely varying parameters. The canonical parameter
is

&= {1, Aag, ..., Aag, ABy, ..., ALY, (2.2.4)
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where Aa; = o — o, is the relative accident year effect and AjB; = B; — ;-1 is the
relative development year effect, while yq; is the overall level. The length of £ is denoted
p, which is p = 2k — 1 with the chain-ladder structure. We can then write

i J
pi =+ > Aag+ > ARy = X, (2.2.5)
(=2 (=2

with the convention that empty sums are zero and X;; € R? is the design vector
X5 =11, 1<), Lae<iys Lo<gy, - - L) 1 (2.2.6)

where the indicator function 1(,,<;) is unity if m <7 and zero otherwise.

2.2.3 Statistical analysis
The log observations y;; = log Y;; have a normal log likelihood given by
2y _ I 2 1 2
logn(§,w?) = —§log(27rw ) — TUXE:I(%J — lejf) ) (2.2.7)

Stacking the observations y;; = log Y;; and the row vectors X[, then gives an obser-
vation vector y and a design matrix X and a model equation of the form

y=XE+e. (2.2.8)
The least squares estimator for £ and the residuals are then
£ = (X'X)" ' X"y, Eij = Yij — Xi,jé- (2.2.9)
while the variance w? is estimated by

, RSS
==

where RSS =)&), (2.2.10)

i,j€T

S

Kuang, Nielsen and Nielsen (2015) derive explicit expressions for each coordinate of the
canonical parameter and they provide an interpretation in terms of so-called geometric
development factors.

Standard least squares theory provides a distribution theory for the estimators, see
for instance Hendry and Nielsen (2007), so that

EZN{EW(X'X) Y, 2232 /(n—p). (2.2.11)

Individual components of é will also be normal. Standardizing those components and
replacing w? by the estimate s* gives the t-statistic, which is t,_, distributed.

We may be interested in testing linear restrictions on €. This can be done using
F-tests. For instance, the hypothesis that all Aa parameters are zero would indicate
that the policy year effect is constant over time. Such restrictions can be formulated as
¢ = H( for some known matrix H € RP*PH and a parameter vector ( € RPH. In the
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example of zero Aa’s the H matrix would select the remaining parameters, the p1; and
the ABjs. We then get a restricted design matrix Xy = X H and a model equation of
the form y = Xyz( + . We then get estimators

RSSy

A:X/X —lX/ ’ 82: 7
(= (XpXn) aY A

where the residual sum of squares RSSy = 3, ;7 €%, is formed from the residuals

EHij = Yij — X}Lijé as before. The hypothesis can be tested by F-statistic

_ {RSSy — RSS}/(0—pu) o
RSS/(n—p)

F F(p — pu,n — py). (2.2.12)

We may also be interested in affine restrictions. For instance, the hypothesis that
all Aa parameters are known corresponds the hypothesis of known values of relative
ultimates. This may be of interest in an Bornhuetter-Ferguson context, see Margraf and
Nielsen (2018). This is analyzed by restricted least squares which also leads to t and F
statistics.

2.2.4 Point forecasting

In practice we will want to forecast the variables Y;; on the original scale. Since y;; is
N(fi5,w?) then Y;; = exp(y;;) is log-normally distributed with mean exp(u;; + w?/2).
Thus, the point forecast for the lower triangle 7, as well as the predictor for the upper
triangle Z, can be formed as

Y = exp(X[€ +&?/2), (2.2.13)

We will also be interested in distribution forecasting. However, the log-normal model has
the drawback that it is a non-trivial problem to characterize the joint distribution of the
variables on the original scale. Renshaw (1989) provides expressions for the covariance
matrix of the variables on the original scale, but a further non-trivial step would be
needed to characterize the joint distribution. Once it comes to distribution forecasting
we would also need to take the estimation error into account. This does not make the
problem easier. We will circumvent these issues by exploiting the infinitely divisible
setup of Harnau and Nielsen (2017).

2.2.5 Extending with a calendar effect

It is common to extend the chain-ladder parametrization with a calendar effect, so that
linear predictor in (2.2.3) becomes

Wijape = Q4 + [ + Yigj—1 + 9, (2.2.14)

where 1+ j—1 is the calendar year corresponding to accident year ¢+ and development year
j. This model has been suggesting in insurance by Zehnwirth (1994). Similar models
have been used in a variety of displines under the name of age-period-cohort models,
where age, period and cohort are our development, calendar and policy year. The model
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has an identification problems. The canonical parameter solution of Kuang, Nielsen and
Nielsen (2008a) is to write fiijape = Xi; speSape Where, with h(i,s) = max(i — s + 1,0),
we have

fapc = (Hlla Vay Ve, AQOég, S 7A205k7 AQBS? s 7A26k7 AQ’Y:}, s 7A27k>/7(2215)
Xij,apc = {]‘72_17‘]_]‘7h(173)’7h(2’k)7h(ja3>77h(.]7k)7
h(i+j—1,3),... h(i+j—1,k)}. (2.2.16)

The dimension of these vectors is pyp. = 3k — 3.
This model can be analyzed by the same methods as above. Stack the design vectors

to a design matrix X,,. and regress y on X, to get an estimator &,,. of the
2

le j,apc
for]mp(2.2.9) along with a residual sum of squares RSS,,. and a variance estimator s,
The significance of the calendar effect can be tested using an F-statistic as in (2.2.12),
where ¢ and p now correspond to the extended model, while ( and py correspond to the
chain-ladder specification.

When it comes to forecasting it is necessary to extrapolate the calendar effect. This

has to be done with some care due to identication problem, see Kuang, Nielsen and
Nielsen (2008b, 2011).
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2.3 The generalized log-normal chain-ladder model

The log-normal distribution is infinitely divisible as shown by Thorin (1977). We can
therefore formulate a class of infinitely divisible distributions encompassing the log-
normal. We will refer to this class of distributions as the generalized log-normal chain-
ladder model. In the analysis we exploit the setup of Harnau and Nielsen (2017) to
provide distribution forecasts for the generalized log-normal model.

2.3.1 Assumptions and first properties

The infinitely divisible setup of Harnau and Nielsen (2017, §3.7) encompasses the log-
normal model. Recall that a distribution D is infinitely divisible, if for any m € N,
there are independent, identically distributed random variables Xi, ..., X, such that
> o1 Xo has distribution D. The log-normal distribution is infinitely divisible as shown
by Thorin (1977). This matches the fact that the paid amounts are aggregates of number
of payments. In our data analysis we neither know the number nor the severities of the
payments. Due to the infinite divisibility the log-normal distribution can therefore be a
good choice for modelling aggregate payments.

We will need two assumptions. The first assumption is about a general infinite
divisible setup. The second assumption gives more specific details on the log-normal
setup.

Assumption 2.3.1 Infinite divisibility. The array Yi;, i,j € L, satisfies

() Y;; are independent distributed, non-negative and infinitely divisible;

(i7) asymptotically, the dimension of the array T is fized;

(44i) asymptotically, the skewness vanishes: skew(Y;;) = E[{Y;; — E(Y;;)}/sdv(Yi;]* — 0.

We have the following Central Limit Theorem for non-negative, infinitely divisible
distributions with vanishing skewness. This is different from the standard Lindeberg-
Lévy Central Limit Theorem for averages of independent, identically distributed vari-
ables, but proved in a similar fashion by analyzing characteristic function and exploiting
the Lévy-Kintchine formula for infinitely divisible distributions.

Theorem 2.3.1 (Harnau and Nielsen, 2017, Theorem 1) Suppose Assumption
2.3.1 1s satisfied. Then
v, — E(V)
War(Y)

We need some more specific assumptions for the log-normal setup. When describing
the predictor we write u;; = Xj; to indicate that any linear structure is allowed as
long as & is freely varying when estimating in the statistical model. This could be the
chain-ladder structure as in (2.2.5), (2.2.6) or an extended chain-ladder model with a

calendar effect.

B N(0,1).

Assumption 2.3.2 The generalized log-normal chain-ladder model. The array
Yi;, 1,7 € I, satisfies Assumptions 2.5.1 and the following:

(1) log EYy; = pij + w?/2 = X[;€ + w?/2, where & is identified by the likelihood (2.2.7);
(ii) asymptotically, w? — 0 while & is fived;

(#ii) asymptotically, Var(Yy;) /{w?*E*(Y;;)} — 1.
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We check that the log-normal model set out in Assumption 2.2.1 is indeed of the
generalized log-normal model.

Theorem 2.3.2 Consider the log-normal model of Assumption 2.2.1. Suppose the di-
mension of the array T is fizred as w? — 0. Then Assumptions 2.3.1, 2.3.2 are satisfied.

A first consequence of the generalized log-normal model is that Theorem 2.3.1 pro-
vides an asymptotic theory for the claims on the original scale. We now check that we
have a normal theory for the log claims. The proof applies the delta method. Theo-
rem 2.3.3 is useful in deriving the inference in Theorem 2.3.5 and estimation error for
forecasts in Theorem 2.3.8 in later sections.

Theorem 2.3.3 Suppose Assumptions 2.3.1, 2.3.2 are satisfied. Let y;; = logV;.
Then, as w? — 0,

_ D
w 1(yij — /IJZJ) — N(O, 1)
Due to the independence of Y;; overi,j € I then the standardized y;; are asymptotically
independent standard normal.

We will need to reformulate the Central Limit Theorem 2.3.1 slightly. The issue is
that the generalized log-normal model leaves the variance of the variable unspecified in
a finite sample, so that the Central Limit Theorem is difficult to manipulate directly.
Theorem 2.3.4 is useful in deriving the process error for forecasts in Theorem 2.3.8 later.

Theorem 2.3.4 Suppose Assumptions 2.5.1, 2.3.2 are satisfied. Then, as w? — 0,
_ D
w™H{Yi; — E(Yy)} = N{0, exp(2p;5)}-

Note that Yi; overi,j € L are assumed independent.

2.3.2 Inference

We check that the inferential results for the log-normal model, described in §2.2.3, carry
over to the generalized log-normal model. First, we consider the asymptotic distribution
of estimators and then the properties of F-statistics for inference.

Theorem 2.3.5 Consider the generalized log-normal model defined by Assumptions
2.8.1, 2.8.2 and the least squares estimators (2.2.9). Then, as w?* — 0,

WTHE-E) > N[0, (X X)),
w2 B2 Jn—p).

The estimators é and s? convergent jointly and are asymptotically independent.

We can derive inference for of the estimator é using asymptotic t distribution. The
proof follows Theorem 2.3.5 and the Continuous Mapping Theorem.
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Theorem 2.3.6 Consider the generalized log-normal model, defined by Assumptions
2.3.1, 2.3.2. Then as w?* — 0,

D
= tap

We can also make inference using asymptotic F-statistics, mirroring the F-statistic
(2.2.12) from the classical normal model. The proof is similar to Theorem 4 of Harnau
and Nielsen (2017).

Theorem 2.3.7 Consider the generalized log-normal model, defined by Assumptions
2.3.1, 2.3.2 with three types of linear predictor:

the extended chain-ladder model parametrised by Eqp. € RPore in (2.2.15);

the chain-ladder model parametrised by & € RP in (2.2.4); and

a linear hypothesis € = H( for ¢ € RPE and some known matric H € RP*PH
Let RSSqpe, RSS and RSSy be the residual sums of squares under the linear hypotheses.
Then, as w — 0,

(RSS — RSSapC)/(papC B p) E> F

=

RSSapC/(n - papc) P—Papc;,—Papc)
(RSSy — RSS)/(p —pu) b
L P
; RSSn—p)  [owney

where Fy and Fy are asymptotically independent.

2.3.3 Distribution forecasting

The aim is to predict a sum of elements in the lower triangle, that could be the overall
sum, which is the total expected reserve; or it could be row sums or diagonal sums
giving a cash flow of expected reserve. We denote such sums by Y, = Z(i iea Yij for

some subset A € J. The point forecasts for a single entry are Y;; = exp(X{jé + 5%/2)
as given in (2.2.13), while the overall point forecast is

Ya= Y Vy= > exp(X/{+5°/2) (2.3.1)
(i,5)eA (i,5)eA
To find the forecast error we expand
Yi; — Vi = {¥i; — E(Yy)} — exp(w?/2){exp(X[;€) — exp(X[;¢)}
+ {exp(w?/2) — exp(s”/2)} exp(X[;€), (2.3.2)

which we will sum over 4. This is sometimes called the forecast taxonomy. This
expansion gives some insight into the asymptotic forecast distribution, although the
detailed proof will be left to the appendix. The first term in (2.3.2) is the process error.
When extending Theorem 2.3.4 to the lower triangle J we will get

_ D
w 1{Y-A - E(YA)} — N(O7§¢24,process)7 (233>
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where

gil,process - Z eXp 2X, (234)
i,jEA

The second term in (2.3.2) is the estimation error for the canonical parameter £. From
Theorem 2.3.5 we will be able to derive

_ 2 D
w ! eXp(w2/2){eXp(Xz{j€) - exp(Xz/]g)} — N(07 gil,estimation)? (235)
where
gzl,estimation = {Z eXp(legg)Xz,]}(X/X)_l{ Z eXp(XZIJS)XZ]} (236)
i,jEA i,j€A

The third term in (2.3.2) vanishes asymptotically. We will estimate w? by s* which
turns the asymptotic normal distributions into t-distribution. The process error and
the estimation error are asymptotically independent as they are based on independent
variables for the upper and lower triangle, J and Z. We can describe the asymptotic
forecast error as follows.

Theorem 2.3.8 Suppose the generalized log-normal model defined by Assumptions 2.3.1,
2.3.2 applies both in the upper and the lower triangle, T and J. Then, as w* — 0,

1/2¢

0! (YA YA) (g.A,process + g.A estzmatzon) n—p»

where gipmcess and giestimation can be estimated consistently by

Ti\,pracess = Z eXp QXI A (237)
i,jeA
ril,estimation = { Z eXp(Xz/]é)Xz/]}(X/X)_l{ Z eXp(X;]g)XZ]} (238)
i,jeA i,j€A

Thus, the distribution forecast is

Y/A + {@2<r?4,process + rit,estimation>}1/2tn*lr (239>

2.3.4 Specification test

Specification tests for the log-normal model can be carried out by allowing a richer
structure for the predictor or for the variance. We have already seen how the generalized
log-normal chain-ladder model can be tested against the extended chain-ladder model
using an asymptotic F-test. We can test whether the variance is constant across the
upper triangle by adopting the Bartlett (1937) test. Recently, Harnau (2017) has shown
how to do model specification tests for the over-dispersed Poisson model. Here we will
adapt the Bartlett test to the log-normal chain-ladder. It should be noted that one can
of course also allow a richer structure for the predictor and the variance simultaneously
following the principles outlined here.

Suppose the triangle 7 can be divided into two or more groups as indicated in Figure
2.3.1. Thus, the index set Z is divided into disjoint sets Z, for £ = 1,...,m. We then
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set up a log-normal chain-ladder seperately for each group. Note that the full canonical
parameter vector £ may not be identified on the subsets. As we will only be interested
in the fit of the models we can ad hoc identify ¢ by dropping sufficiently many columns
of the design matrix X. This gives us a parameter § and a design vector X,j, for each
subset Z, and a predictor p;j = X;,§. Thus the model for each group is that y;j is
N(,uijg,wl?). Let p, denote the dimension of these vectors, while n, is the number of
elements in Z, giving the degrees of freedom df, = n, — py.

When fitting the log-normal chain-ladder seperately to each group we get estimators
ég and predictors fi;j, = nggég. From this we can compute the residual sum of squares
and variance estimators as

N 1
RSS, = Z (yij — Mz’j,g)z, 57 = d—feRSSg. (2.3.10)

1,J€Lp

Figure 2.3.1: Examples of dividing triangles in two parts

If there are only two subsets then we have two choices of tests available. The first
test is a simple F-test for the hypothesis that w; = ws. In the log-normal model this is

w D
FY = 3%/33 = Fn2—P2,n1—P1' (2'3'11)

In the generalized log-normal the F-distribution can be shown to be valid asymptotically.
Harnau (2017) has proved this for the over-dispersed Poisson model using an infinitely
divisible setup. That proof extends to the generalized log-normal setup following the
ideas of the proofs of the above theorems. We can then construct a two sided test.
Choosing a 5% level this test rejects when F“ is either smaller than the 2.5% quantile
or larger than the 97.5% quantile of the F,,_,, », —p,-distribution.

The second test is known as Bartlett’s test and applies to any number of groups.
Thus, suppose we have m groups and want to test w; = --- = w,,. In the exact log-

2

normal case then s?,...,s? are independent scaled y? variables. Bartlett found the

likelihood for this x? model. Under the hypothesis the common variance is estimated
by

52 = % > RSS,,  where df.=) dfi=n—>Y p, (2.3.12)
C =1 /=1 =1
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while the likelihood ratio test statistic for the hypothesis is
LR = df.log(5°) — Y _ dfilog(s7). (2.3.13)
=1

The exact distribution of the likelihood ratio test statistic depends on the degrees of
freedom of the groups, but not on their ordering. No analytic expression is known.
However, Bartlett showed that this distribution is very well approximated by a scaled
y2-distribution. That is

LR*

| 1
. X1 where  C=1+_— (> —— ). (2.3.14)

The factor C' is known as the Bartlett correction factor. Formally, the approximation is
a second order expansion which is valid when the small group is large, so that min, df,
is large. However, the approximation works exceptionelly well in very small samples;
see the simulations by Harnau (2017). Once again the Bartlett test (2.3.13) will be
applicable in the generalized log-normal model, which can be proved by following the
proof of Harnau (2017).

In practice, we can fit seperate log-normal models to each group, that is y;;, is
assumed N(p;0,w7). If the Bartlett test does not reject the hypothesis of common
variance we then arrive at a model where y;;, is assumed N(,ul-jg,w2). This model can
be estimated by a single regression where the design matrix is block diagonal, X™ =
diag(Xy, X, ..., X,,) of dimension p. = »," p;. We then compare the models with
design matrices X™ and the original X of the maintained model through an F-test.
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2.4 Empirical illustration

We apply the theory to the insurance run-off triangle shown in Table 2.1.1. All R (2017)
code is given in the supplementary material. We use the R packages apc, see Nielsen
(2015) and ChainLadder, see Gesmann et. al. (2015). First, we apply the proposed
inference and estimation procedures to the data. This is followed first by distribution
forecast and then by an analysis of the model specification.

2.4.1 Inference and estimation

We apply the log-normal model to the data and consider three nested parametrizations:

apc age-period-cohort model = extended chain-ladder
ac age-cohort model = chain-ladder
ad age-drift model = chain-ladder with a linear accident year effect

Table 2.4.1 shows an analysis of variance. This conforms with the exact distribution
theory in §2.2.3 and the asymptotic distribution theory in Theorems 2.3.5, 2.3.7 in
§2.3.2.

sub =2 10g L dfsub Fsub,apc p Fsub,ac p
apc 170.00 153

ac 179.87 171 0.41  0.984

ad 2568.57 189 2.23  0.000 4.32  0.000

Table 2.4.1: Analysis of variance for the US casualty data

Other model reductions can also be tested similarly, such as the age-period (ap)
model which was proposed by Zehnwirth (1994). For illustration purpose we consider
the three commonly considered models for reserves. First, we test the chain-ladder model
(ac for age-cohort) against the extended chain-ladder model (apc for age-period-cohort)
with p = 0.984. The chain-ladder hypothesis is clearly not rejected at a conventional 5%
test level. Next, we test the further restriction (ad for age-drift) that the row differences
are constant, that is A?q; = 0. We get p = 0.000 and p = 0.000 when testing against
the apc and ac models respectively. This suggests that a further reduction of the model
is not supported. In summary, the analysis of variance indicates that it is adequate to
proceed with a chain-ladder specification and thereby ignore calendar effects.

Table 2.4.2 shows the estimated parameters for the log-normal model with chain-
ladder structure (ac). We report standard errors se; following Theorem 2.3.6. They
are the same for Aa and AS due to symetry of (X’X)~! at the diagonal. These follow
a t-distribution with n —p = 171 degrees of freedom, since the triangle has dimension
k=20andn = k(k+1)/2 =210 and p = 2k—1 = 39. The corresponding two-sided 95%
critical values are 1.97. The parameters with * are when the absolute t-values are greater
than 1.97, that is outside the 2-sided 5% test. In these cases we conclude the parameter
are insignificant. We also report the degrees of freedom corrected estimate, s2, for w?.
We see that many of the development year effects A3, in particular Af,, are significant.
The first few development year effects are positive, which matches the increases seen
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in first few columns of the data in Table 2.1.1. At the same time many the accident
year effects A« are not individually significant, although they are jointly significant as
seen in Table 2.4.1. It is suggested that practitioners reduce their models by dropping
of the most insignificant parameter iteratively until all parameters are significant. All
parameters are retained in the analysis in this paper so that the forecasts can be easily
compared with those from the usual chain ladder and bootstrap methods. The signs
of the Aa’s match the relative increase or decrease of the amounts seen in the rows of
Table 2.1.1.

In Appendix 3.2 we present a further Table 3.2.1 with estimates. These are the
estimated parameters for the log-normal model with an extended chain-ladder structure
(apc) as in §2.2.5. These will be used for the simulation study. The A?y-coefficients
measure the calendar effect and are restricted to zero in the chain-ladder model.

estimate t-value estimate t-value
11 7.66 55.59
Ay 0.29 17.02 *| Ap, 2.27 2.16 *
Ao 0.16 6.84 * | Apfs 0.93 1.20
Aoy -0.27 1.68 ApBy 0.24 -1.90
Aas 0.15 0.62 A5 0.09 1.04
A -0.37 -1.19 A -0.18 -2.52 *
Aoy -0.20 -0.94 ASy -0.14 -1.30
Aag -0.01 -2.69 *| Apfg -0.43 -0.06
JANS -0.01 -1.82 ASy -0.30 -0.03
Aoy -0.13 -2.32 * | AP -0.40 -0.77
Aoy -0.02 -1.05 AByy -0.19 -0.12
AO{lQ -0.47 -1.28 ABIQ -0.24 -2.49
Aoy -0.44 -1.30 ApBis -0.26 -2.18
Aayy 0.30 -2.60 * | AP -0.56 1.38
Aanqs 0.31 -1.32 ApBys -0.30 1.35
Ao -0.27 1.62 JAVGIT 0.41 -1.08
Aaqr 0.14 -3.23  * | ABr -0.90 0.51
Aog 0.20 0.37 ApBisg 0.12 0.64
Aoy -0.09 -1.01 ABg -0.38 -0.25
Ay 0.87 -0.54 APy -0.27 1.72
52 0.17 RSS 28.96

Table 2.4.2: Estimates for the US casualty data for the log-normal chain-ladder (ac).

2.4.2 Distribution forecasting

Table 2.4.3 shows forecasts of reserves for the US casualty data in different accident
years, i.e. the row sums in the lower triangle 7. We report results from the generalized
log-normal chain-ladder model (GLN), the over-dispersed Poisson chain-ladder (ODP)
and England (2002) bootstrap (BS). For each method, we present a point forecast of
the reserve, the standard error over point forecast (se/Res) and the 1 in 200 over point
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generalized log-normal  over-dispersed Poisson  bootstrap

se. 99.5% Reserve  SC 99.5% Reserve 6 99.5%
Res Res v Res Res v Res Res

1871 0.55 243 1368 1.81 0.71 1345 1.99 9.93
5099 0.37 1.96 4476 0.92 3.40 4415 097 4.63
7171 0.30 1.77 6925 0.69 2.78 6830 0.71 3.56
11699 0.26 1.66 10975 0.54 241 10846  0.56 2.90
13717 0.24 1.64 14941 0.44 2.14 14767 0.45 2.50
14344 0.22 1.58 18337 0.39 2.01 18147 0.40 2.29
18377 0.21 1.54 24487 0.34 1.87 24233 0.35 2.09
9 25488 0.21 1.54 31876  0.29 1.76 31607 0.30 1.93

10 30525 0.20 1.53 35567 0.28 1.72 35270 0.28 1.87

11 40078 0.20 1.53 48595 0.24 1.63 48176  0.25 1.73
12 32680 0.20 1.53 42027 0.26 1.68 41659 0.27 1.80
13 28509 0.21 1.54 37114 0.28 1.74 36814  0.29 1.88
14 51761 0.21 1.55 66977 0.22 1.58 66554 0.23 1.69
15 98748 0.22 1.58 | 102982 0.20 1.51 | 102282 0.20 1.59
16 100331 0.23 1.60 | 136647 0.19 1.51 | 135880 0.20 1.59
17 149813 0.24 1.64 | 164318 0.22 1.56 | 163500 0.22 1.68
18 221550 0.26 1.69 | 218874 0.25 1.66 | 218115 0.26 1.83
19 229481 0.30 1.79 | 166120 0.49 2.29 | 166431 0.51 2.84
20 575343 041 2.06 | 337001 0.94 3.46 | 353628 1.03 4.91
total 1656586 0.16 1.42 | 1469605 0.23 1.60 | 1480500 0.26 1.95

Reserve

~.

00 3 O UL = WD

Table 2.4.3: Forecasting for the US casualty data using the generalized log-normal, the
over-dispersed Poisson model and the bootstrap. The bootstrap simulation is based on
105 repetitions.

forecast values (99.5%/Res).

For the generalized log-normal chain-ladder model we use the asymptotic distribution
forecast in (2.3.9). For the over-dispersed Poisson model we use the asymptotic distri-
bution forecasts from Harnau and Nielsen (2017, equation 11). For the bootstrap we
use the ChainLadder package by Gesmann et al (2005), based on the method described
in England (2002). We apply 10° bootstrap draws using the gamma option.

Table 2.4.3 shows that the over-dispersed Poisson forecasts are similar to the boot-
strap. Their point forecasts are smaller than that of the generalized log-normal model.
This is in part due to the additional factor exp(s?/2) = exp(0.17/2) = 1.09 in the gen-
eralized log-normal point forecast. The difference seems large compared to the authors’
experience with other data. It is possibly due to the relatively large dimension of the
triangle, so that there are more degrees of freedom to pick up differences between the
over-dispersed Poisson and the generalized log-normal models.

The standard error and 99.5% quantiles over reserve ratios are generally lower and
less variable for the generalized log-normal chain-ladder model. This is especially pro-
nounced for early accident years and the latest accident year.

Figure 2.4.1 shows the trends of the reserve and standard error and 99.5% quantile
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(a) Reserve (b) se/Reserve (c) 99.5%/Reserve

Figure 2.4.1: Illustration of the forecasts in Table 2.4.3 for the US casualty data. Solid
line is the generalized log-normal forecast. Dashed line is the over-dispersed Poisson
forecast. Dotted line is the bootstrap forecast. Panel (a) shows the reserves against
accident year i. Panel (b) shows the standard error to reserve ratio. Panel (c) shows
the 99.5% quantile to reserve ratio.

over reserve ratios for the three methods. The point forecast trends are similar for
models, showing an increasing trend with accident year as expected. The ratios are seen
to be flatter for the generalized log-normal model. This is related to the assumption of
the generalized log-normal chain-ladder model that standard deviation to mean ratio is
constant across the entries, while the variance to mean ratio is assumed constant for the
over-dispersed Poisson model and the bootstrap.

2.4.3 Recursive distribution forecasting

To check the robustness of the model we apply the distribution forecasting recursively.
Thus, we apply the distribution forecast to subsets of the triangle.

In this way, Table 2.4.4 shows standard error and 99.5% over reserve ratios. It has
9 panels, where the rows are for the asymptotic generalized log-normal model, the over-
dispersed Poisson model and the bootstrap, respectively. In the first column we show
the ratios for the last 5 accident years based on the full triangle. These numbers are the
same as those in Table 2.4.3. In the second column we omit the last diagonal of the data
triangle to get a k — 1 = 19 dimensional triangle. We then forecast the last 5 accident
years relative to that triangle. In the third column we omit the last two diagonals of
the data triangle to get a k — 2 = 18 dimensional triangle.

We see that the generalized log-normal forecasts are stable for all years. The over-
dispersed Poisson and bootstrap forecasts are less stable in the latest accident year.
This is possibly because of instability in the corners of the data triangle shown in Table
2.1.1, that may be dampened when taking logs. Alternatively, it could be attributed
to a better fit of the log-normal model across the entire triangle. We will explore the
model specification using formal tests in the next section.
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Full triangle Leave 1 out Leave 2 out
generalized log-normal

se. 99.5% . se 99.5% . se 99.5%
Res Res Res Res Res Res

16 0.23 1.60 | 15 0.23 1.61 | 14 0.23 1.61
17 0.24 1.64 | 16 0.25 1.64 | 15 0.25 1.64
18 0.26 1.69 | 17 0.27 1.69 | 16 0.27 1.69
19 0.30 1.79 1 18 0.31 1.80 | 17 0.31 1.80
20 0.41 206 | 19 041 207 |18 041 2.07
all 0.16 1.42 | all 0.13 1.33 [ all 0.12 1.31

2

over-dispersed Poisson
16 0.19 1.51 | 15 0.20 1.53 | 14 0.22 1.58
17 0.22 1.56 | 16 0.22 1.56 | 15 0.24 1.62
18 0.25 1.66 | 17 0.28 1.74 | 16  0.28 1.72
19 0.49 229 | 18 0.48 225 | 17 0.48 2.24
20 0.94 3.46 | 19 1.38 4.61 | 18 1.51 4.94
all  0.23 1.60 | all 0.20 1.53 [ all 0.20 1.52

bootstrap
16 0.20 1.59 | 15 0.21 1.62 | 14 0.23 1.70
17 0.22 1.68 | 16 0.22 1.68 | 15 0.24 1.75
18 0.26 1.83 | 17 0.29 1.97 | 16 0.28 1.92
19 0.51 2.84 | 18 0.49 2.78 | 17 0.49 277
20 1.03 491119 1.49 6.69 | 18 1.66 7.45
all  0.26 1.95 | all 0.23 1.81 [ all 0.22 1.79

Table 2.4.4: Recursive forecasting for the US casualty data in the latest 5 accident years.
The bootstrap simulation is based on 10° repetitions.

2.4.4 Model selection

We now apply the specification test outlined in §2.3.4 for the log-normal model and in
Harnau (2017) for the over-dispersed Poisson model. For the tests we split the data
triangle of Table 2.1.1 as outlined in Figure 2.3.1:

(a) a horizontal split with the first 6 rows in one group and the last 14 rows in a
second group.

(b) a horizontal and diagonal split with the first 10 diagonals in one group, the last
10 rows in a second group and the remaining entries in a third group.

(c) a diagonal split with the first 14 diagonals in one group and the last 6 diagonals
in a second group.

For each split we estimate a chain-ladder structure separately for each sub-group. We
then compute the Bartlett test statistic LRY/C from (2.3.14) for a common variance
across groups. Given a common variance we also compute an F-statistic for common
chain-ladder structure in the mean. The Bartlett test statistics LR*/C follows a chi-
square distribution and the F-statistic is F-distributed. When the relevant p-values for
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these statistics are small, for example, less than 2.5%, it indicates the mean and variance
structure are differ in the triangle.

For each of the generalized log-normal and over-dispersed Poisson model we are
conducting 6 tests. When choosing the size of each individual test, that is the probability
of falsely rejecting the hypothesis, we would have to keep in mind the overall size of
rejecting any of the hypotheses. If the test statistics were independent and the individual
tests were conducted at level p the overall size would be 1 — (1 — p)® ~ 6p by binomial
expansion, see also Hendry and Nielsen (2007, §9.5). Thus, if the individual tests are
conducted at a 1% level we would expect the overall size to be about 5%. At present
we have no theory for a more formal calculation of the joint size of the tests.

generalized log-normal over-dispersed Poisson
Bartlett test F test Bartlett test F test
splits LR“/C P F p | LR®/C p F P
(a) 6.29 1.2% | 1.34 3.0% | 11.68 0.1% | 1.43 1.2%
(b) 4.70 9.5% | 1.5 0.5% | 11.63  0.3% | 2.50 0.0%
(c) .12 291% | 1.33 3.7% | 15.07 0.0% | 1.24 9.3%

Table 2.4.5: Bartlett tests for common dispersion and F' tests for common mean param-
eters.

Starting with the log-normal model we see that there is only moderate evidence
against model. The worst cases are that variance differs across the (a) split and the
chain-ladder structure differs across the (b) split. The log-normal fails in 2 out of 6 tests
at the 2.5% level, while the over-dispersed Poisson model is rejected by 5 out of 6 tests.
Therefore the log-normal model is preferred here over the over-dispersed Poisson model.
The variance differ across the (a) split could be caused by underwriting cycle. Claims
prior to 2003 are generally more volatile than claims after 2003 across the insurance
market. The mean difference suggests the development pattern has changed in the
recent years. Practitioners can fit two models to model the different mean structure.
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2.5 Simulation

In Theorems 2.3.7 and 2.3.8 we presented asymptotic results for inference and distribu-
tion forecasting. We now apply simulation to investigate the quality of these asymptotic
approximations.

2.5.1 Test statistic

We assess the finite sample performance of the F-tests proposed in Theorem 2.3.7 and
applied in Table 2.4.1. We simulate under the null hypothesis of a chain-ladder spec-
ification, ac, as well as under the alternative hypothesis of an extended chain-ladder
specification, apc. We choose the distribution to be log-normal so, to be specific, we
actually illustrate the well-known exact distribution theory for regression analysis. The-
orem 2.3.7 also applies for infinitely divisible distributions that are not log-normal but
satisfy Assumptions 2.3.1 and 2.3.2. Such infinitely divisible distributions are, however,
not easily generated. The real point of the simulations is therefore to illustrate the small
variance asymptotics in Theorem 2.3.7 by showing that power increases with shrinking
variance.

The data generating processes are constructed from the US casualty data as follows.
We consider a & = 20 dimensional triangle. We assume that the variables Y;; in the
upper triangle Z are independent log-normal distributed, so that y;; = log(Y;;) is normal
with mean y;; and variance 0. Under the null hypothesis of a chain-ladder specification,
Hqc, then ;; is defined from (2.2.5) where the parameters y;; are chosen to match those
of Table 2.4.2. We also choose 0 to match the estimate s? from Table 2.4.2, but
multiplied by a factor v? where v is chosen as 2,1,1/2 to capture the small-variance
asymptotics. Under the alternative, we apply the extended chain-ladder specification
Hape where the parameters are chosen to match those of Table 3.2.1. In all cases we
draw 105 repetitions.

Size under H,. Power under H,p,
Confidence level 1.00% 5.00% 10.00% | 1.00%  5.00% 10.00%
v=2 1.01% 5.00% 10.16% | 2.26%  9.03% 16.31%
v=1 0.98% 5.07% 10.07% | 10.49% 27.51% 40.22%
v=20.5 0.99% 5.09% 10.05% | 78.03% 92.17% 96.07%

Table 2.5.1: Simulated performance of F test based on 10° draws. The Monte Carlo
standard error less than 0.2%.

The size is the type I error, which is the probability of incorrectly rejecting the null
hypothesis, that is, calendar year trend is not present. The smaller the size, the better
the performance of the F-test. We note that the simulated size is correct apart from
Monte Carlo standard error, where Monte Carlo standard error calculation formula can
be found in equation (18.1.9), page 272 of Hendry & Nielsen (2017). This is because
the F(18, 153)-distribution is exactly the same as the confidence level of the test under
the null hypothesis. We are operating on the log-scale and simulate normal variables so
that standard regression theory applies.
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Under the alternative we simulate power, unity minus type II error. This is the
probability of correctly accepting the calendar year trend being useful. The higher
the power the better the F-tests. The simulations show that the power increases for
shrinking variance v?w? for F-tests at different confidence levels. For example, at the
5% confidence level, the F-test as shown in Table 2.4.1 works correctly just under 3 out
of 10 times and it improves to working correctly over 9 out of 10 times when the standard
deviation of the data reduce by 50%. When selecting an appropriate confidence level
practitioners should consider the implied size and power of the resultant test, ensuring
both are sufficient to allow meaningful test results.

When simulating the power of the F-test in Table 2.5.1, the test is not exact, but
asymptotically F-distributed with shrinking variance. Therefore the power increases
with smaller v. We can also illustrate the increasing power with shrinking variance
through the following analytic example. Suppose we consider variables Zi, ..., Z, that
are independent N(u, w?)-distributed. Then the parameters are estimated by ji = Z and
s?=(n—1)"13" (Zi— Z)% The t-statistic for 4 = 0 has the expansion

p—0 h—p n p-0
Ve /(n—1)  /s/(n—1) /s?/(n—1)

The first term is t distributed with (n — 1) degrees of freedom regardless of the value of
it. The second term is zero under the hypothesis 1 = 0. Under the alternative u # 0
the second term is non-zero and measures non-centrality so that the overall t-statistic is
non-central t. In standard asymptotic theory n is large so that for fixed p, w then s? is
consistent for w? and the second term is close to u/\/w?/(n — 1) = (u/w)y/(n—1). Due
to the (n — 1)-factor the non-centrality diverges, so that the power increases to unity
and the test is consistent. In the small variance asymptotics w? shrinks to zero while
n is fixed. Then s? vanishes, see Theorem 2.3.7, and the non-centrality diverges in a
similar way even though n is fixed.

2.5.2 Forecasting

We assess the finite sample performance of the asymptotic distribution forecasts pro-
posed in Theorem 2.3.8 and applied in Table 2.4.3. These asymptotic distribution
forecasts are compared to the over-dispersed Poisson forecast of Harnau and Nielsen
(2017) and the bootstrap of England and Verrall (1999) and England (2002). Two dif-
ferent log-normal chain-ladder data generating processes are used. First, we apply the
estimates from the US casualty data so that the parameters are chosen to match those
of Table 2.4.2. As before the variance w? is multiplied by a factor v where v = 2,1,1/2.
We have seen that the over-dispersed Poisson model is poor for this data set and we
will expect the generalized log-normal distribution forecasts to be superior. Secondly,
we obtain similar estimates for the Taylor and Ashe (1983) data, see also Harnau and
Nielsen (2017, Table 1). For those data the generalized log-normal model and the over-
dispersed Poisson model provide equally good fits so that the different distributions
forecasts should be more similar in performance.

We first compare the asymptotic distribution forecast from Theorem 2.3.8 with the
exact forecast distribution. This is done by simulating log-normal chain-ladder for both
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the upper and the lower triangles, Z and 7. The true forecast error distribution is then
based on Y4 — Y4, where Y, is computed from the simulated lower triangle J while Y
is the log-normal point forecast computed from the upper triangle data Z. We compute
the true forecast error Y4 — Y, for each simulation draw and report mean, standard
error and quantiles of the draws. This is done for the entire reserve, so that A = 7.
The asymptotic theory in Theorem 2.3.8 provides a t-approximation, so that for each
draw of the upper triangle Z, we also compute mean, standard error and quantiles from
the t-approximations and report averages over the draws.

The first panel of Table 2.5.2 compares the simulated actual forecast distribution,
true®™ N with the simulated t-approximations, t“*V. We see that with shrinking vari-
ance factor v then the overall forecast distribution becomes less variable and the t-
approximation becomes relatively better. The t-approximation is symmetric and does
not fully capture the asymmetry of the actual distribution. We note that the perfor-
mance of the t-approximation is better in the upper tail than the lower tail, which is
beneficial when we are interested in 99.5% value at risk.

The second panel of Table 2.5.2 shows the performance of the traditional chain-
ladder. Since the data are log-normal we expect the chain-ladder to perform poorly.
We apply the asymptotic theory of Harnau and Nielsen (2017) and the bootstrap of
England and Verrall (1999) and England (2002) as implemented by Gesmann et al.
(2015) The results are generated as before with the difference that the point forecasts
are based on the traditional chain-ladder, while the data remain log-normal. The actual
forecast errors, true®P” are similar to the previous actual errors true®™Y, particular in
the right tail of the distribution. The asymptotic distribution approximation, tP* and
the bootstrap approximation, B.S, do not provide the same quality of approximations
as t9IV did for true®™ ™. For large v = 2 the bootstrap is very poor, possibly because
of resampling of large residuals arising from the mis-specification.

We also simulate the root mean square forecast error for the three methods. For
the log-normal asymptotic distribution approximation this is computed as follows. We
first find mean, standard deviation and quantiles of the infeasible reserve based on the
draws of the lower triangle 7. This is the true forecast distribution. For each draw
of the upper triangle 7 we then compute mean, standard deviation and quantiles of
the asymptotic distribution forecast (2.3.9) and subtract the mean, standard deviation
and quantiles, respectively, of the true forecast distribution. We square, take average
across the draws of the upper triangle Z, and then the take the square root. Similar
calculations are done for the over-dispersed approximation and the bootstrap.

The third panel of Table 2.5.2 shows the root mean square forecast errors. We see
that the generalized log-normal distribution approximation is superior in all cases and
that the bootstrap can be very poor if v is not small.

In Table 2.5.3 we repeat the simulation exercise for the Taylor and Ashe (1983)
data. For these data we repeated the empirical exercise of §2.4, although we do not
report the results here. We found that the generalized log-normal chain-ladder and
the over-dispersed chain-ladder appear to give equally good fit, so that we will expect
less difference between the methods in this case. We suspect that this arises because
of two features in the data. The Taylor and Ashe triangle has a smaller dimension
of kK = 10 and there is less difference between the accident year parameters, see also
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Moments Quantiles

v Mean SE  0.5% 1% 5% 50% 95% 99% 99.5%
generalized log-normal (GLN)

2 true®tV 3.0 126  -55.1 426 -185 54 172 222 24.4
tGLN 0.0 79 -20.7 -187 -13.1 0.0 13.1 187  20.7

1 trueCtN 0.5 3.3 -11.2 95 55 09 5.0 6.5 7.0
tGLN 0.0 3.0 7.7 6.9 -49 00 49 6.9 7.7

0.5 true“tN 0.1 14 -4.1 3.6 -23 02 23 3.0 3.3
teLN 0.0 1.4 -3.6 3.2 23 00 23 3.2 3.6

v over-dispersed Poisson (ODP) and bootstrap (BS)

2 true®Pr 7.7 105 -379 -285 -10.0 9.3 203 254 27.3
tor 0.0 19.8 -51.6 -46.5 -32.8 0.0 32.8 46.5 51.6
BS -15.4 2631.6 -683.1 -350.8 -78.9 3.3 558 313.3 643.1

1 true®P? 1.3 3.2 -9.9 -83 -45 1.7 58 7.3 7.8
topr 0.0 79 -20.7 -18.6 -13.1 0.0 13.1 18.6 20.7
BS -1.8 1234  -739 -50.1 -21.2 0.5 125 234 35.1

0.5 true®P? 0.3 14 -4.0 3.5 -22 04 25 3.3 3.6
tor 0.0 3.8 -9.8 -88 -6.2 00 6.2 8.8 9.8
BS -0.2 42 -154 -131 -75 0.1 5.9 9.1 10.3

vV root-mean-square-errors (rms)

2 rms@tN 3.0 83 387 288 125 54 119 163 181
rmsOPr 7.7 13.8 29.7 299 282 9.3 209 318 35.9
rmsP®  4284.4 135397.1 925.7 431.1 864 6.8 17.3 527 397.7

1 rms@EN 0.5 1.1 4.5 3.6 1.9 0.9 1.8 2.6 2.9
rmsOPr 1.3 5.1 11.9 11.3 9.2 1.7 80 122 13.8
rmsBs 67.6 21323 795 484 182 12 54 6.1 188

0.5 rms&LN 0.1 0.3 0.8 0.7 04 02 04 0.6 0.7
rms9PP 0.3 2.4 5.9 5.5 41 04 38 5.7 6.4
rmsBS 0.6 3.0 11.9 10.0 5.5 03 24 2.7 5.7

Table 2.5.2: Simulation performance of distribution forecasts for the US casualty data.
Results in USD. The study is based on 10° repetitions, and for each simulated upper
triangle, the bootstrap is based on 999 simulations.
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Moments Quantiles

v Mean SE  0.5% 1% 5% 50%  95%  99% 99.5%
generalized log-normal (GLN)

2 true®tN 7.2 99.8 -372.9 -310.0 -170.0 20.4 140.6 187.5 206.2
tGLN 0.0 75.7 -205.7 -184.2 -127.7 0.0 127.7 184.2 205.7

1 true®tN 1.7 31.8 -96.4 -83.7 -54.0 39 496 66.8 728
teLN 0.0 29.7 -80.7 -722 -50.1 0.0 50.1 722  80.7

0.5 true“tN 0.4 143 -39.6 -354 -239 0.9 230 317 344
teLN 0.0 140 -38.0 -340 -236 0.0 236 340 380

v over-dispersed Poisson (ODP) and bootstrap (BS)

2 true®PP 451 91.4 -297.9 -242.1 -116.8 56.9 1682 213.5 230.8
topr 0.0 76.6 -208.4 -186.6 -129.4 0.0 129.4 186.6 208.4
BS -14.1 340.9 -414.3 -335.9 -193.8 -0.3 114.3 155.6 1774

1 true®P? 9.1 319 -89.8 -769 -46.8 114 569 73.5  79.6
topr 0.0 3.7 -86.1 -77.1 -53.5 0.0 535 T77.1  86.1
BS -2.5 354 -109.5 -972 -646 0.1 505 682 @ T74.1

0.5 true®P? 2.1 14.7 -39.3 -347 -228 2.7 252 338 369
topr 0.0 151 -41.2 -369 -25.6 0.0 25.6 369 412
BS -0.6 16,5 -46.3 -41.6 -28.6 0.0 253 349 382

vV root-mean-square-errors (rms)

2 rmsCLN 7.2 453 197.1 156.7 774 204 66.0 934 104.3
rmsOPP 451 32.2 1185 89.1 499 569 619 747  80.9
rmsPS  645.6 20322.2 4151 259.0 1269 57.4 168.6 107.6 107.7

1 rms@EN 1.7 74 248 207 126 39 120 181 2038
rmsOPr 9.1 64 179 156 127 114 114 16.0 187
rms?S 11.7 86 36.0 327 237 11.3 56.8 252 @ 17.7

0.5 rms@LN 0.4 2.2 6.0 5.4 3.6 0.9 3.7 5.7 6.8
rms@PF 2.1 2.3 6.4 5.9 47 27 3.8 6.3 7.5
rmsBS 2.7 3.1 11.3  10.3 76 27 251 9.3 5.7

Table 2.5.3: Simulation performance of distribution forecasts for the data used in Taylor
& Ashe (1983) Results. The study is based on 10° repetitions, and for each simulated

upper triangle, the bootstrap is based on 999 simulations.
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Harnau and Nielsen (2017, Table 2). As before we simulate a log-normal distribution
with parameters equal to the estimates from the data.

Table 2.5.3 shows that the three methods perform similarly. In this discussion we
focus on the root mean square error for the 99.5% quantile which is perhaps of most
practical interest. For large v = 2 and v = 1 the over-dispersed Poisson method actually
dominates the generalized log-normal model even though the data are generated to be
log-normal. For a smaller v = 1/2 the asymptotic approximation for the generalized log-
normal beats that of the over-dispersed model slightly. However, the bootstrap appears
to be best for v =1 and v = 1/2.
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2.6 Conclusion

We have presented a new method for distribution forecasting of general insurance re-
serves in terms of the generalized log-normal model. The forecasts are done under the
asymptotic framework which allows users to draw inferences and make model selections
easily. This gives an alternative to the traditional chain-ladder where we have the com-
monly used bootstrap method developed by England and Verrall (1999) and England
(2002) along with the recent asymptotic theory of Harnau and Nielsen (2017).

Actuaries will have to choose whether the traditional or the log-normal chain ladder
or a third method should be used for a given reserving triangle. In some situations
the log-normal chain ladder will be better than the traditional chain ladder as shown
in our empirical data analysis and simulation study. In addition, we have considered a
number of London market datasets. We compared the standard error over mean forecast
trends by year of account with the actuaries’ selected volatilities and found that the
generalized log-normal trends are more in line with the actuaries selected trends than
the over-dispersed Poisson model.

The generalized log-normal model distribution forecasts developed here could also
improve the actuarial process for a corporation. The log-normal is also often used in
simulating attritional reserve risk for capital modelling. At present this is sometimes
combined with the bootstrap method for the traditional chain ladder. This can result
in inconsistencies often between reserving and capital modelling.

A limitation of the log-normal model is that it only fits positive incremental values,
while in real life some values can be negative due to reinsurance recoveries, salvage or
other data issues such as mis-allocation between classes of business or currencies. In
these cases judgements are required and further research must look at how to provide
statistical tools to overcome such a limitation.

There is also scope to develop a more advanced model selection process than the
model specification tests discussed here. This will give actuaries a statistical basis to
select one model over another rather than just eye-balling a distribution fit on a graph.
Testing constancy of the dispersion as presented here for the log-normal chain ladder
and by Harnau (2017) for the traditional chain ladder is a beginning of that research
agenda.

The bootstrap method has become popular in recent decades. This is because it
usually produces distributions that appear reasonable and it is a simulation based tech-
nique which is favoured by many actuaries. A deeper understanding of the bootstrap
method can be developed so that it allows model selections and extensions to generate
reserve forecasts under other distributions than the over-dispersed Poisson.
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Chapter 3

Appendix

This Chapter shows proofs of Theorems and additional tables for the joint paper in
Chapter 2, the approved reserve outline and the refereces for this dissertation.
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3.1 Proofs of Theorems

Proof of Theorem 2.3.2. Recall the following results. A log-normally distributed
variable Y;; is positive, hence non-negative. It is infinitely divisible as shown by Thorin
(1977). The first three cumulants are

E(Yi;) = exp(ui; + w?/2),
Var(Yy;) = exp(2pi; + w*){exp(w?) — 1},

e = {exp(e) — 2 exp(e?) + 2), (3.1.3

see Johnson, Kotz and Balakrishnan (1994, equations 14.8a, 14.8b and 14.9a).

The log-normal distribution is a non-degenerate and non-negative divisible distribu-
tion, see Thorin (1977) and
EY —E(Y))?  exp(3w?) — 3exp(w?) + 2

Var(Y)3 (exp(w?) — 1)3/2
1+3w2+§9w4—3(1+w2+“§> +2+ O(w®)

(1+w?—1)3/2

(53— 3) '+ 0"

= 3 = 3w+ Ow?) = 0.

skew(Y) =

as w — 0. O

The next results require the delta method given as follows.

Lemma 3.1.1 The delta method (van der Vaart, 1998, Theorem 3.1) Let T,
be a sequence of random wvectors or variables indexved by w. Suppose w™ (T, — 0) is
asymptotically normal N(0, Q) for w — 0 and that g is a vector or scale valued function
that is differentiable in a neighbourhood of 6 with deriwative g. Then w™{g(T,) — g(0)}
is asymptotically normal with mean zero and variance {g(0)}Q{g(8)} .

Proof of Theorem 2.3.3. Throughout the proof we ignore the indices 7, j.
1. We show that

wHY —exp(p)} =w H{Y —E(Y)} + O(w) (3.1.4)
First, we add and subtracting E(Y) term in Y — exp(u) to get
WY — exp(p)} = w 1Y — E(V)} 4w HE(Y) — exp(p)}- (3.1.5)
By Assumption 2.3.2(7) then E(Y') = exp(u + w?/2) so that the second term becomes
& = w {E(Y) —exp(p)} = w ™ exp(p){exp(w?/2) — 1}.
Taylor expand the exponential function as exp(w?/2) — 1 = w?/2 + O(w?) to get
& = exp(u){w/2 + O(w’)} = O(w),
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since the canonical parameter ¢ is fixed, and hence y;; is fixed. The expression (3.1.4)
then follows.
2. We show that

w{Y exp(—p) — 1} 2 N(0,1). (3.1.6)
Apply (3.1.4) and divide by exp(u), multiply and divide by /Var(Y)/w and E(Y) to get

Y-exp() _ Y-EY) O(w) = { EY), vVar(Y), , EY)
wexp(p) weXp(u) \/Var( )" wE(Y) xp (i)

Assumption 2.3.2(i, i7i) implies that the second and third terms converge to unity. The-
orem 2.3.1, using Assumption 2.3.1. shows the first term is asymptotically normal.
Dividing by exp(g) in numerator and denominator establishes (3.1.6).

3. Apply the delta method in Lemma 3.1.1 to (3.1.6) with 7, = Y exp(—u) and
6 = 1 and choose ¢(t) = log(t) + i, so g(t) = 1/t. Then ¢(T,,) = logY and ¢(#) = p
while ¢(0) = 1 so that w™!(logY — ) is asymptotically standard normal as desired. [J

H Ho oyt T OW).

Proof of Theorem 2.3.4. Theorem 2.3.1 shows that {Y;;—E(Y;;)}/+/Var(Y;;) is asymp-
totically standard normal. Now, Assumption 2.3.2(ii¢) shows Var(Y;;)/{w?E*(Y;;)} — 1,
while Assumption 2.3.2(7, ) implies log E(Y;;) — p;;. Combine these three results to
get the desired statement. O

Proof of Theorem 2.3.5. The model equation is y;; = log Y;; = X[.{ +¢;5, see (2.2.8).
Theorem 2.3.3, using Assumptions 2.3.1, 2.3.2, shows that the vector of innovations
wle = wl(y — X¢) is asymptotically standard normal as w — 0. We can then use
standard least squares distribution theory in the limit.

Recall £ = (X' X)' X'y, see (2.2.9). Substitute y = X + u to get

-9 = wHIX X)X (XE+e) - = (X X)X (W),

Since wle 2 N(0, 7,,), we have (w™'(§ =€) EEN N{0, (X X)~'} as required.
The residuals in (2.2.9) can be written as ¢ = Py, where P, = {I,, — X(X X)~'X"}
is an orthogonal projection matrix so that P, = P} and P? = P,. Inserting the

model equation this becomes é = P, e, while P| X = 0. Since w™'e D, N(0, I,), then

w P N(0, Py ), so that w™?s* is asymptotically x;_,/(n—p) noting tr(P.) = n—p.
Finally é and s? are asymptotically independent, since é — ¢ and s? are functions of

X'e and P, e, while w™'e is asymptotically standard normal, while P, X = 0. 0J

Proof of Theorem 2.3.8. Recall the forecast taxonomy (2.3.2), summed over A.
The first contribution is the process error and satisfies

W Ya- EYa)}=w ) {Yy - E(Y;)}
i,jEA

This is a sum of independent terms, each of which is asymptotically N{0,exp(2p;;)}
by Theorem 2.3.4. Therefore, w™{Y4 — E(Y,4)} is asymptotically N(0, %, ocess), Where
=i jca €XP(2ui;) as stated in (2.3.3), (2.3.4).

2
gA,process
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The second contribution is the estimation error from f . Theorem 2.3.5 shows that

as w — 0 then w™' (£ — &) 2 N{0, (X' X)~'}. Apply the delta method in Lemma 3.1.1
with 7, = € and g(T) = > i jer eXP(X;;E), so that (1) = 3, i, exp(X[;€) X;;. There-
fore, w_l{exp(Xz{jé) - eXp(Xz/]g)} is asymptOticaHy N(07 gil,estimation% where g¢24,esti’rna,tion
is given in (2.3.6). Further, by continuity exp(w?/2) — 1 as w? — 0. In combination we
arrive at (2.3.5).

The third term is the contribution from estimation error of s?>. By continuity, we
get exp(w?/2) — 1 as w? — 0, while 3, ;, exp(X};€) is fixed. Rewrite s* = (s?/w?)w?.
Since s?/w? converges in distribution by Theorem 2.3.5 as w? — 0 then s? vanishes in
probability. Applying the exponential function, which is a continuous mapping, yields
that exp(s?/2) — 1 in probability and so does the entire third term.

The process error and the estimation error are independent as they are based on the
independent upper and lower triangles J and Z. Therefore, the first and second contri-
butions to the forecast taxonomy (2.3.2) are independent, while the third contribution
vanishes, so that

_ D
w 1{YA - E(YA)} - N(g.,%\,process + gi,estimation)?

which is asymptotically independent of s*. Further, s?/w? is asymptotically x7_,/(n—p)
so that s71{Y4 — E(Y4)} is asymptotically t,_, as desired.
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3.2 Further table

f11 7.69 o1 —p11 0.09  pio —pyn 2.08

A2qy  -0.13 A28, -1.35 Ay, 0.34
A0y -0.42 A2B, -0.69 A%y 0.04
A’y 0.43 A?B5 -0.13 A%ys  -0.31
A2a6 -0.53 A266 -0.27 A2’76 0.17
A2q;  0.18 A28, 0.04 A%y, -0.25
A2qg  0.18 A28 -0.30 A2y 0.25
Aq 001 A2B, 0.13 A%y 0.07
AzOélo -0.12 A2610 -0.09 A2'7/10 -0.04
A%0q;  0.12 A%By; 0.22 A’y -0.27

A0y, -0.47 A?B, -0.07 Ay 0.34
A205  0.05 A*By3 -0.00 A%y -0.34
Aayy 071 A?Byy -0.32 APy 0.25

A2ay;  0.02 A2B15 0.26 A%y -0.01
Aaig  -0.58 A2B1  0.71 Ay 0.10
A2ay;  0.44 A?B17 -1.28 A?y7 -0.23
A2as 0.03 A?Bg 0.98 A’ys 020
A2ayy  -0.26 A2B1g  -0.46 APy 0.23
A2ayy  0.89 A?By  0.03 APy 0.24
= 0.18 RSS 27.63

Table 3.2.1: Estimates for the US casualty data for extended chain-ladder, H,..
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3.3 Approved Research Outline

The following is the approved research outline submitted to the IFoA in October 2016.

SAQ Research QOutline

Rezearch Title: Application of Age Period Cohort Model in General
Imsurance Reserving

1 Indication of the research topic

| propase 3 resaanch project for SAD based on D.Phl. study at University of Cxfond and five published
papers joirty with my Culord supervisor Bert Mistsen and second supanvisor Jens Milsen from Cass
Business School on the toplc of application of Age Perlod Cohort (APC) model In ganeral Insurance
reserdng. My research wil be fesiing the APC model, Inciugding some recent developmens on real
daia sets from e London mankst This Includes noking 3l parameter estimates, forecast dsiibuions
and comelations. Compansons will be made wil the iedbional chaln laddsr, Somnuetier-Femuson
method and the Bootsiapoing method.

2 Potential benefits of the resulis

Pointial benafiis of the resuits will provide actusnes an alternative tooiset 10 the simple chain Laddes,
which is stabistically sound, and more generalised and easily mpiamented. The study Wil 3o
gamorsTate Dasad on real data when APC model perfonme bester than Me cument siandand resenving
techmiques. The study ks original In Mat aithough e APC moded s widsly used In epidemiology and
gamography study, | Nas not been applied o insurance data. My study wil tum the APC mode Into 3
useul Feserving ool and to show how It provides usefl oututs required by achuanes.

3 Reason for studying it

The Reserde & the amount of money INsuranc:s COMpany put asids for fulure (30l Ressning s 3
significant workload for an Insurance company. Soivency || requires achiarss fo caloulzte the
dsiribugon of forecasts using adequale statstical l=chniques, which should be consisiznt with the
methods usad to caiculate Dest estiimates. | aiso requines achuanes o eslimate comelaions i ensure
dverscation and depengency structure baing appropriate In Malr Intemal model, The standard
techmiques us=ad In e Landion Markst are baslc chaln ladder for best estimae and Dootsirapping Sor
ihe forecast dlsTibution. Thess techniques 528m 0 produce reasonabis resulis and are easy bo
Impliement. Howsver, e ks no theoredcal basis for these technigues; best estimane, Torecast
distribugion and comeiation are not Aways done In 3 consseT manner.

The APC model can ba witien In the Genesalized Linear Model Tramework which aliows drawing
statistical Infarence for the underlying data via Ikelinood anaysts. My stutty wil apply APC moded In
Insurance resanving. The stuty will be based on e Longdon market data fom Lioyd's. It shall show a
mumber of applications of the APC model on resening, Incuding Ncorporating with prior ifommation
In EEmFgEEEtEEﬂI'I"EE resanyes such &= e mﬂmmmmrﬂ Messenve
distribasion, esimaton of coMmeiations Dehwasen bUsiness, coMpantson of data rends. THis provides an
alternative tooiset 1o the cument standard resendng technigues. The study will aiso compare the APC
model outputs with e raditional techniques and shed light on types of data which the APC mode

peesrtioeres: el
4 Methods of investigation

41 AP modal

The main moda | shall use In my sudy s the APC modsd. The ARC mode! ks similar 1o an exiendad
chain [adder mefhad In the sense that the underying data have three Tends as I an InsurEnce clalms:
friangle. The conor represents year of account (or accident year), age represems dalms
devalogment tme and period represents calendar year effec. H}'pa.maﬁ] & [9) dscovered 3 wsefll
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way in parameterise e APC model, which Is @ key for easlly Inerpreting the estmates and making
fOrECasts.

The Fatistical memods | shall use In my siudy Indude the APC model, the generallzed linear mode,
lie=fihood arafysks, Ime serfes, siatstical tests, chaln ladder method, BF method, bootstrap method
and smulation.

41 Bt estimate from APC modsl

Estimation mithod |s madmum Ikelihood analysis. For a two dmensional Age-Cohart (AC) mode, |
have found anaiytical solusion to the estimatons, see ref3] & [3]. In particutar, when assuming calms
are (over-dspersad) Polsson distriputed, the AC Mmool proclces exacy the same best estmates of
resenve 35 a simpie chaln ladder.

For a three dimensional APC modsl, | shall usa the APC andior GLM package In statstical software R
{5ee ref1) & [2]) o cbiain estimates of the paramesers. This Incorporates with 3 Sme series aiong the
Period trend, provides forecasts for reserves. The Period frend cagiunes changes In claims handing,
changes In leglsiation, CNan ges In resenving basls, changes In ciaims Infation and changes In poilcy
tenTes and conditions, ref[S] discusses how to make robust forecasts using MTer=nt time sares
models for the caiendar year §end In order 10 COME U with 3 Mbust reserve estimate.

43 Faorecast Dismbution fom APC model

For the forecast dsrbution of reserves based on APC, | wil Us2 3 recenily developed asymgintic

theory developed by SBant Misen. This Involves an asympiotic forecast distribution assuming a

sampling schame based on Infnite divisibility, which is based on an F s3atisics. The fonecsst

dsiribuion Incorporaias both estimalion emor and process emor and Wil pe comparsd with e
distribarion forecast. The shudy will Ao consider cases when outlers and missing data

paint presents In the undemying tangie data. | shall 3ssa65 e Torecast dstribuon by comgaring he
acludl data, forecast bias and standand emos.

44  Bomhustier-Fergoseo (BF) method on the APC model

I wil also demnorstrate Impiementaton of 3 varation of Bomhuesier-Ferguson (BF) method to the
APC, wihich Is als0 developed recenty Dy Bent Migisan, which In tum builds on reffd]. The usual BF
method works out the ressnve by wsing prior ulbmate Infomation for each acodent year, typlcally 3
prior IS Mt given by an urdenwrter. The reserve for acddent year | basad on BF method Is:

Reserve_| = PriofUBmate | x (1-1 1 F_{k+24]),

whem F_{k+24) Is cumuiative development factor from cumant year (k+2-1) to ubmate year k. The
Idea s thial we only need o taks Ifommation of reiaive ubimate, for exampie, U I/ U_1. Suppose the
business volume remains the same, this would be the pamentage of movement of Iss rEilos In
accident year | compars to year 1.

4%  Compare dafa frends om the AP model

The nesdt part of my study will be comparning multiple resaning triangles. This will be done by
estimatng the parametars of multiie iiangies at the same me va Me APC (andior) GLM package In
R. This will b2 an enfrely new method. We can then compare the resening Fiangies by value of APC
estimators and comesponding t tatstics. Comalation between estimators will 350 be produced, which
alows calculation of comeiation betwesan resanes batweean frangles.

3 Time scale of the project
I pian o weork on this project over two years' part time:

»  GMoT o review IRerature and to sef up codes bo MepmdueE resuls In publishad paper 5

« 1 yearto analyse dats and draw conciusions (2-3 months on aach of Me bullet polnts In
section 3)

+ 5 monihs o wite up the dessartation
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