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ABSTRACT  
 

This paper covers a number of different topics related to the measurement and 
modelling of dependency within economic capital models. The scope of the paper is 
relatively wide. We address in some detail the different approaches to modelling 
dependencies ranging from the more common variance-covariance matrix approach, to 
the consideration of the use of copulas and the more sophisticated causal models that 
feature feedback loops and other systems design ideas.   

There are many data and model uncertainties in modelling dependency and so we 
have also endeavoured to cover topics such as spurious relationships and wrong-way risk 
to highlight some of the uncertainties involved. 

With the advent of the internal model approval process under Solvency II senior 
management needs to have a greater understanding of dependency methodology. We 
have devoted a section of this paper to a discussion of possible different ways to 
communicate the results of modelling to the board, senior management and other 
interested parties within an insurance company.  

We have endeavoured throughout this paper to include as many numerical 
examples as possible to help in the understanding of the key points, including our 
discussion of model parameterisation and the communication to an insurance executive of 
the impact of dependency on economic capital modelling results.    

The economic capital model can be seen as a combination of two key 
components, the marginal risk distribution of each risk and the aggregation methodology 
which combines these into a single aggregate distribution or capital number. This paper is 
concerned with the aggregation part, the methods and assumptions employed and the 
issues arising, and not the determination of the marginal risk distributions which is 
equally of importance and in many cases equally as complex.  
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1. INTRODUCTION 
 
1.1 The original version of this paper was written for the UK Actuarial Profession’s 
Financial Insurance Risk Management (FIRM) conference of June 2009. However, we 
believe it will be of interest to other actuarial practice areas such as non-life insurance 
and life assurance or to anyone involved in economic capital modelling, and interested in 
the use of economic capital output in pricing, business planning, capital allocation 
decisions and other activities.    
 
1.2 This paper is relatively wide in its scope. We originally started off with a brief 
that had a large technical bias, nudging towards the more complex areas of dependency 
modelling such as copulas, but as we progressed in our writing we found ourselves 
addressing more fundamental questions such as:  

- What do we mean by dependency? 
- Is correlation coefficient a good measure of dependency? 
- Are correlations stable over time and how do they vary? 
- Are diversification benefits realistic? 
- How often do we confuse spurious relationships for dependency? 
- What do people mean when they talk about ‘tail correlation’? 
- How does one communicate to the Board the impact of dependency modelling on 

economic capital results? 
 
1.3 Diversification modelling is an important topic. Diversification benefits can 
amount to anything in the region of 25-50% of an insurance company’s undiversified 
total economic capital, assuming a ground-up approach. It is therefore of great 
importance that this number is realistic and that any modelling underpinning the result is 
analytically robust and well documented. Analytical robustness, documentation and other 
criteria is becoming important for those organisations seeking internal model approval 
under Solvency II.  
 
1.4 The words dependency and correlation have recently suffered a rather negative 
press in the wake of the current financial crisis within the banking industry. Typical 
comments along the lines of “it was the fault of the Gaussian copula – it doesn’t capture 
tail dependency” or “the correlations were underestimated” or even “anything that relies 
on correlation is charlatanism” were seen in respect of structured credit securities and 
similarly complex financial products.  Often a result of mathematical models undone by 
their weakest link: their assumptions or their statistical properties, such as the presence of 
absence of tail dependency. There is a clear need for a greater understanding of 
dependency and correlation and their limitations if we are to avoid a repeat of the 
experience of the structured credit world in the wider financial community.   
 
1.5 This paper is a practical one, and not a theoretical one, and we attempt to illustrate 
theoretical concepts and ideas with as many numerical examples as possible whilst also 
highlighting many practical considerations in measuring, implementing and 
communicating the impact of correlations and dependency structures on economic capital 
results. 
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2. EXECUTIVE SUMMARY 

 
Before going into detail within each of the ten main sections of this paper it is 

useful to provide an overview of the topics discussed herein. 
 
2.1  Why Diversification is Important 

 
We begin by defining economic capital and then go on to describe the more recent 

regulatory developments occurring under Basel II, Solvency II and the UK’s current ICA 
regime. Particular attention is also played to the diversification aspects of the internal 
model approval process under Solvency II and the challenging requirements thereof.  
 
2.2  Correlation as the Simplest Type of Dependency 
 

Section 2 focuses on a particular type of dependency, the correlation coefficient. 
Correlation and dependency are often used interchangeably and yet they mean quite 
distinctly different things. We discuss the differences between them, and describe various 
types of correlation coefficients such as the linear (Pearson) correlation, the Spearman 
correlation coefficient and the Kendall Tau correlation. We also discuss in some detail 
the problems of using correlation as a sole measure of dependency.  
 
2.3  Risk Aggregation 
 

There are different ways to aggregate risks for an insurance company in its 
economic capital modelling efforts. A brief description is given of the main risk 
aggregation methods, namely variance-covariance matrix, copulas and causal models. 
Later on in the paper, separate sections are devoted to each of these methods, where their 
advantages and disadvantages are listed, taking into account considerations such as model 
accuracy, model consistency and ease of communication.  
 
2.4  Data and Model Uncertainties   
 

When looking at empirical evidence for dependency relationships, it is important 
not to mistake spurious relationships for dependency relationships between risks. There 
ideally should be some economic rationale behind hypotheses put forward. We take a 
look at Ancombe’s quartet which illustrates how both statistics and visual data plots are 
necessary when drawing conclusions on dependency. Later on in the section we discuss 
the issues and considerations arising in model selection and model calibration.            
 
2.5.  Variance-Covariance Matrix Methods 
 
2.5.1 The variance-covariance matrix is the simplest of the aggregation methods that 
are discussed. Following a discussion of the advantages and disadvantages of this 
method, other topics are discussed, from parameterisation to challenges such as the 
specification of variance-covariance matrix cross-terms, so common in large insurance 
groups, and the sometimes ignored topic of positive semi-definitive matrices. 
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2.5.2 Despite the method being relatively straightforward parameterisation remains an 
issue, as it indeed it does with the other methods. Correlations between financial time 
series data can show marked variation according to the time period investigated. Such 
marked variation is illustrated in the numerical examples shown.      
  
2.6  Copula Modelling Methods 
 
2.6.1 Copula modelling relies on more sophisticated modelling approaches using Monte 
Carlo simulation together with marginal risk distributions. The additional flexibility 
comes at the expense of complexities caused by copula selection, parameterisation and an 
increase in communication issues. Different copulas are discussed, from the more popular 
copulas such as the Gaussian and t copulas to those of the Archimedean family such as 
the Gumbel and Clayton copulas.  
  
2.6.2 We have also constructed a hypothetical insurance company, ABC Insurance 
Company, to compare and contrast the economic capital modelling results from use of the 
variance-covariance matrix to those arising through use of either the Gaussian or t 
copulas.  
 
2.7  Tail Dependency 
 
2.7.1 The concept of Tail dependency has arisen in more recent times as a description 
of the observation that large losses for different risks tend to occur more often at the same 
time than otherwise would be predicted by correlations estimated during ‘benign’ market 
conditions.  
 
2.7.2 This section discusses tail dependency and so-called ‘tail correlations’ proposed 
by regulators and the issues arising from their use. Lastly, we continue with the ABC 
Insurance Company example to show that under certain conditions such ‘tail correlations’ 
need not be as large as would otherwise have first been thought.                    
 
2.8  Causal Modelling Methods 
 

Finally the most sophisticated, intuitively appealing and potentially the most 
accurate of the risk aggregation methods is causal modelling i.e. dependency modelling 
with common risk drivers. However, their use raises other issues such as transparency, 
parameterisation, and the possible inducement of a false sense of accuracy for what can 
often be viewed as ‘black box’ models.  
 
2.9  Communication of Economic Capital Modelling Dependency Impacts 
 
2.9.1 This section covers the issues relating to the communication of dependency 
modelling approaches and results to the board and senior management within an 
organisation. How does one describe say a copula, what it does and how it impacts the 
company’s overall economic capital to an often non-technical audience.  
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2.9.2 We present a wide range of methods that could be used, discussing their 
advantages and disadvantages. Some of the methods may also be of use for determination 
copulas and their parameters if similar calculations are made from empirical data.   
 
2.10  Using Half-Space Probabilities to Capture Dependencies 
 

The last section of the paper investigates combined stress tests and two-way 
correlations, the latter of which has appeared in recent CEIOPS papers on risk calibration. 
Finally, there is a discussion of half-spaces as an alternative to the more common 
quadrant approaches used to consider extreme events. 
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3. WHY DIVERSIFICATION IS IMPORTANT 

 
3.1 Economic Capital 
 
3.1.1 A financial institution, be it an insurance company or a bank, faces a multitude of 
risks that could cause a financial loss. Economic capital is the realistic amount of capital 
that is needed to cover losses at a certain risk tolerance level. It captures a wide spectrum 
of risks such as insurance risk, market risk, credit risk and operational risk, as well as 
dependencies between them and various other complexities like transferability of capital, 
and expresses all of this as a single number. 
 
3.1.2 There are three main components of an economic capital definition:  

(i) risk measure 
(ii) probability threshold and 
(iii) time horizon 

 A company may do an economic capital calculations according to an external criteria 
laid down by the regulators for regulatory capital purposes or other criteria e.g. to satisfy 
specific standards prescribed by a rating agency. 
 
3.1.3 Currently the most popular risk measure that is used in banking and insurance is 
the one-year 99.5% Value at Risk (VaR). For example, under the UK’s Individual Capital 
Assessment (ICA) regime and Solvency II, an insurance company needs to hold enough 
capital such that there is a probability of 99.5% of survival over a one-year time horizon, 
or in other words the probability of insolvency over 12-months is no more than 0.5%.  
 
3.1.4 However, not all risks the company is facing will cause losses at the same time. 
Some areas of business may experience extremely high financial losses whilst others 
average losses, or even profits – an effect known as ’diversification’. Many firms 
calculate the capital requirement for each risk in isolation, ignoring the effect of other 
risks. The effect of diversification is visible when the overall capital required for an 
insurance company at the 99.5% level is less than the sum of the 99.5% individual capital 
amounts for each risk.  
 
3.1.5 The extent to which the aggregate 99.5% capital differs from a straight sum of the 
99.5% individual capital amounts is a measure of the level of diversification between 
risks. The lower the degree of dependency between risks the greater the diversification 
benefit.  
 
3.1.6 Diversification is not the only balancing item to reconcile single risk capital 
calculations to a total company level. Interaction effects may also play a part, where a 
development in one risk may amplify another. For example, an insured loss may be 
recoverable after some delay from reinsurance cover, creating an exposure to the risk of 
reinsurer default in the meantime.  
 
3.1.7 The diversification benefit depends, among other things, on the level from which 
we started aggregating. For example, if we started aggregating at the “equities, property, 
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fixed interest” level we are going to get a different diversification benefit than if we start 
aggregating at the UK equities, US equities, Asian equities, UK fixed interest, US fixed 
interest, Asian fixed interest level.  
 
3.1.8 The extent of the level of diversification between risks varies from company to 
company.  In fact, the recent CRO Forum QIS 4 benchmarking study of 2008 suggested 
that diversification reduces economic capital by around 40% on average. 
 
3.2 Regulatory Developments 
 

The use of economic capital models is far greater today compared with a few 
years ago. One of the key drivers to their more regular use within financial institutions 
has been the evolution of legislation for insurance companies and banks. Two of the more 
influential pieces of legislation have been the developments arising under Basel II 
(Banking) and Solvency II (Insurance). 1    
 
3.2.1 Basel II 
 
3.2.1.1 Basel II is the second of the Basel Accords issued by the Basel Committee on 
Banking Supervision. Its purpose being to create an international standard that banking 
regulators can use when creating regulations about how much capital banks need to hold 
against financial and operational risks. 
 
3.2.1.2 Basel II uses the three pillars approach, where the first pillar specifies a minimum 
capital amount, the second pillar is a supervisory review and the third pillar is a market 
discipline. From an economic capital modelling perspective the three major components 
of risk that are covered are credit risk, operational risk and market risk. Furthermore 
within each major risk there are different permissible approaches to the quantification of 
risk. 2  
 
3.2.2 Solvency I I  
 
3.2.2.1 Solvency II is a risk-based approach to insurance company supervision based on a 
three pillar approach similar to the banking industry.  
 
3.2.2.2 The first pillar contains the quantitative requirements for valuing assets and 
liabilities and capital requirements and capital resources. There are two separate capital 
requirements, the Solvency Capital Requirement (‘SCR’) and the Minimum Capital 
Requirement (MCR). The SCR is a risk-based requirement and the key solvency control 
level. Solvency II sets out two possible methods for the calculation of the SCR:  

(i) European Standard Formula; or 
(ii) Firms' own Internal Model for calculating Economic Capital.  

 

                                               
1 It should be noted that the UK’s ICA regime, which came into effect 1/1/2005, could be viewed as a 
forerunner of some of the features of the impending Solvency II legislation.  
2 For example, under Credit Risk the options are (i) Standardised approach, (ii) Foundation IRB and (iii) 
Advanced IRB, where IRB stands for “Internal Rating-Based Approach”.   
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The SCR will cover all the quantifiable risks an insurer or reinsurer faces and will take 
into account any risk mitigation techniques such as reinsurance. For details of the current 
CEIOPS advice on the internal model and standard formula standards and calibrations, 
refer to the CEIOPS website: www.ceiops.eu. 

3.2.2.3 The second pillar contains qualitative requirements on undertakings such as risk 
management as well as supervisory activities. The third pillar covers supervisory 
reporting and disclosure.  

3.3 Solvency II – Internal Model Approval 
 
3.3.1 The modelling of dependencies and calculation of the overall diversification 
benefits goes beyond a pure bottom line insurance company impact. With the advent of 
the Internal Model Approval Process (‘IMAP’) under Solvency II, and company desires 
to gain approval 3 of their economic capital models for computing the SCR, various other 
criteria, often otherwise ignored, suddenly become important.  
 
3.3.2 In particular with reference to CEIOPS Advice for Level 2 Implementing 
Measures on Solvency II “Tests and Standards for Internal Model Approval” (formerly 
CP56) (2010).  
 
3.3.2.1 Use Test (Section 3 of the CEIOPS Paper) 

 
1) Senior management, including the administrative or management body shall be 

able to demonstrate understanding of the internal model and how this fits with 
their business model and risk-management framework. 

2) Senior management, including the administrative or management body shall be 
able to demonstrate understanding of the limitations of the internal model and that 
they take account of these limitations in their decision-making.  

3) The timely calculation of results is essential. The administrative, management or 
supervisory body will need to ensure that the undertaking avoids significant time 
lags between the calculation of model output and the actual use of the model 
output for decision making purposes. 

 
3.3.2.2 One approach is to require board members to become familiar with say copula 
methodologies, at least on a very high level, and whatever dependencies are buried inside 
third party economic scenario generators. An alternative approach is to simplify the 
models until management can understand how they work.  
 
 
 

                                               
3 Even more so given the recent increase in some of the SCR standard formula parameters in the November 
2009 release of Consultation Papers (“CPs”). For example in CP71 there were quite marked increases in the 
volatility parameters for premium and reserve risk in the non-life underwriting risk module      
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3.3.2.3 Simplification has some significant advantages, including easier calibration and 
maintenance as well as a better chance of mistakes being detected as results are open to 
wider scrutiny. Furthermore with regards point 3, a simpler model is less likely to suffer 
from the time lags associated with a more complex model with multiple outputs. Having 
said that, an overly-simplified model may not be able to cope with such important 
features of tail dependency and asymmetry. A balance needs to be struck between 
simplicity and functionality. 
 
3.3.2.4 Statistical Quality Standards (Section 5 of the CEIOPS Paper) 

Another important section is that of the Statistical Quality Standards. Here there are 
many onerous requirements. We have focused on the “Adequate system for measuring 
diversification effects“ and in particular on paragraphs 5.245 and 5.246 of the paper:  
4) There should be meaningful support for claiming diversification effects that 

includes:     
a) Empirical / Statistical analyses 
b) Expert judgement of causal relationships 
c) or a combination of both.  

 
3.3.2.5 Regarding expert judgements, it is important to note that these should be 
explained and documented in detail and in a well-reasoned manner, including how expert 
judgement is challenged and reviewed / monitored against actual experience wherever 
possible. 
 
3.3.2.6 From paragraph 5.246 of the CEIOPS paper: 
5) Whatever technique is used for modelling diversification effects, undertakings shall 

ensure that diversification effects hold not only on average but also in extreme 
scenarios and scenarios for those quantiles which are used for risk management 
purposes.  

 
3.3.2.7 Given that correlation coefficients between risks are often set by reference to 
external studies, e.g. SCR Standard Formula correlations, point 4 above would seem to 
imply a lot more work needs to be done within insurance organisations to justify their 
parameter selections. Justification of diversification parameters is likely to prove quite 
difficult, but it is a necessary and positive development for the insurance industry. 
 
3.3.2.8 External Models and Data (Section 10 of the CEIOPS Paper) 

Many insurance companies that use third-party Economic Scenario Generators 
(ESG) as a part of the economic capital modelling process will need to be able to 
demonstrate an understanding of the dependency modelling within and the calibration 
thereof. Furthermore they will need to demonstrate a knowledge of any limitations of 
such processes.    
 
3.4 Diversifiers and Hedgers and the Importance of Perspective 
 
3.4.1 One of the key roles of insurance risk management is a careful selection of risks 
to be accepted. Thereafter there are two principle secondary techniques to manage risks: 

(i) Diversification. 
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(ii) Hedging. 
 
3.4.2 Diversification and hedging, whilst both being used to mitigate risk, rely on 
different levels of correlation between risks to be their most effective in the minimisation 
of the overall level of the risk exposure that an organisation faces. 
 
3.4.3 Insurance companies would like to minimise their overall capital needs for a 
given set of risk exposures and so are interested in the concept of diversification or in 
other words spreading their risks across many different categories. Diversifiers want to 
avoid high dependence between risks and so are interested in correlations between risks 
being either small positive numbers, zero or even negative.  
 
3.4.4 In contrast, hedgers are interested in a high level of positive correlation between 
the gross underlying risk exposure and the relevant insurance / capital market instrument 
used to mitigate such risk. 
 
3.4.5 A simple example of an insurance risk management instrument would be to use 
reinsurance to reduce the gross insurance loss exposure. The risk mitigating impacts of 
the two principle types of reinsurance, namely quote share and excess of loss, are a 
function of the overall level of gross exposure and the detailed specifics of the 
reinsurance contracts in question. The relationship (or ‘correlation’) between the gross 
and net losses will thus be a function of the overall level of gross insurance losses.  
 
3.4.6 Another example from capital markets is where available derivatives from banks 
might be on a standard index portfolio, and available only for terms shorter than the 
underlying insurance policy. To hedge, the insurer buys the guarantees that are available, 
hoping for a sufficiently high correlation between risks. 
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4. CORRELATION AS THE SIMPLEST TYPE OF DEPENDENCY 
 

4.1 Dependency Structures 
 
4.1.1 It is helpful to make a distinction between the economic drivers of risks facing an 
insurer and the monetary balance sheet effect. The economic drivers might include  
interest rates, mortality, natural catastrophes and credit indices, most of which can be 
observed external to the insurer. The monetary effect is a function of these drivers, 
sometimes a very complicated one, and is specific to the insurer. 
 
4.1.2 Within a single period value-at-risk model, the drivers are described by a 
multivariate joint probability distribution. Given that multivariate distribution, we can 
calculate the marginal distribution of each risk, that is, the distribution of each risk in 
isolation. The marginal distributions constrain but do not determine the joint distribution. 
The ‘dependency structure’ represents the information contained in the joint distribution 
but not in the marginal distributions. 
 
4.1.3 There are enough issues alone in estimating the form of the distribution and 
parameters for the marginal risk distributions before we even consider how they might be 
linked in a dependency structure. The realistic measurement and modelling of 
dependencies is one of the most difficult aspects of economic capital modelling facing the 
insurance and banking industries today.  
 
4.1.4 An unrealistic model of a dependency structure could result in an unrealistic 
optimistic or pessimistic view of an enterprise, despite the fact that the individual capital 
components themselves may be quite reasonable.  
 
4.1.5 Dependencies and Causation 
 
4.1.5.1 Dependencies are a statistical feature, in which information about one risk can 
provide information about another. In rare cases, there is a clear causal influence of one 
risk on another. For example, a natural catastrophe damaging a property could cause a 
fall in the property owner’s share price. Dependencies may arise because of shared 
dependence on external factors that are not individually modelled. For example, an 
solvency model may describe both motor insurance claim frequency and wage inflation, 
with both affected by unemployment rates. 
 
4.1.5.2 More usually, dependence reflects complex effects of macroeconomic conditions 
on many risks. For example, inflation rates, interest rates, exchange rates and equity 
values are not only interrelated but they also influence both sides of the balance sheet.  
 
4.1.5.3 The impact of these risk factors on asset values is obvious e.g. interest rates on 
bond values or inflation on equity values, but there is also a direct link to the liabilities. 
The level of inflation rates will influence the loss payments for underwriting losses and 
reserve development whilst interest rates will directly impact discounted cash value 
calculations or act as a risk factor for variation in the underwriting cycle.  Where 
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dependencies are assessed using expert judgement, a consideration of such causal 
relationships is a key consideration in forming the judgement.      
 
4.1.5.4 Purely statistical approaches to dependency modelling can measure simultaneous 
dependency without expressing a view on causality.  
 
4.1.5.5 For example, common statistical models of inflation and interest rates can reflect 
a positive correlation without expressing a view on whether falling interest rates are 
caused by falling inflation, falling inflation is caused by falling interest rates or falls in 
both variables are caused by other unmodelled factors. 
 
4.1.6 Dependency as a Mathematical Representation 
 
4.1.6.1 A statistical dependency between two risks is most often described by a single 
number, the linear (Pearson) correlation coefficient. But for many situations this one 
statistic is not sufficient to capture the range of possible relationships between risks and 
one needs information on the nature of the dependency structure.  For example, if one 
variable depends on another, but in a non-linear way, then a correlation does not capture 
this. If the conditional variance of one variable depends on another, then the Pearson 
correlation will not pick this up either. The term “dependency structure” includes these 
possibilities in addition to the linear dependence which Pearson correlation captures so 
well. 
 
4.1.6.2 In the real world then we have to make do with the tools available which involves 
measuring the observed risk correlations and then determining the parameters of the 
model structure that is being used to reflect such observations.  Many of these themes 
will be explored in more detail in the following sections.  
 
4.2 What Do We Mean by Dependency 
 
4.2.1 In everyday language a lot of us use the words ‘correlation’ and ’dependency’ 
interchangeably. Quite often a correlation coefficient is used in situations when we need 
to measure the strength of dependency between two random variables. In fact, it is very 
important to remember that correlation is just a special case of dependency. It quantifies a 
linear relationship between two random variables whilst dependency deals with any kind 
of relationship. 
 
4.2.2 Dependency between two random variables (e.g. risk factors) means that there is 
some link between them, i.e. information about one random variable tells you something 
about the value of the other random variable.  One extreme is perfect dependence; if you 
know the value of one random variable, you know exactly what the value of the other 
random variable is.  The other extreme is independence; the value of one random variable 
does not enable you to make any predictions about the value of the other random 
variable.  
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4.2.3  Dependence between two random variables can be strong but such a relationship 
does not need to follow a linear pattern. Consider the simple example in figure 1 of two 
random variables, X and Y. Let us suppose that U is uniformly distributed on [0,1] and, 
for α=0.4: 

X = [U/(1-U)]α 
Y = [(1-U)/U]α 

Then Y = 1/X so these distributions are dependent.  
 
Although Y = 1/X, a decreasing function of X, the correlation between X and Y is not 
-100% but only -29%. This is because the relationship between X and Y is non-linear. 
Taking different values of α, we can generate examples with correlations between -100% 
(for α close to zero), rising to zero as α approaches 0.5.  
 
This is easy to investigate by simulation, or by the analytical formula for the correlation: 
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Figure 1 Dependent Variables with Low Correlation    

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

 
 
4.2.4 One of the reasons for the popularity of correlation in finance is that it is used in 
variance-covariance matrices as part of Modern Portfolio Theory, which is based on the 
normal (or more correctly, elliptical) distribution. However, in reality, a lot of financial 
risks that are dealt with in economic capital modelling and other actuarial work are not 
adequately described by the normal distribution, see Shaw (2007), or indeed by an 
elliptical distribution. Many of these risks exhibit asymmetry and ‘fatter’ tails than 
described by the normal distribution, especially in non-life insurance, and so relying 
solely on correlation as a measure of dependency between risks can be very misleading. 
Moreover, by definition, correlation is a constant scalar coefficient.  
4.2.5 Market experience over the last year has led many firms to re-estimate the 
parameters underlying their models. In some cases, particularly for credit markets this has 
led to dramatic parameter revisions. This applies both to marginal distributions and to 



17 
 

dependency structures. One possible interpretation, asserted by CEIOPS in CP74 (2010) 
is that the linear correlations between various assets classes turned out to be significantly 
higher than have been observed historically. Embrechts and others (1999) provide the 
following good summary of the deficiencies of using correlation solely as a measure of 
dependency: 
 

D1. Correlation is simply a scalar measure of dependency. It cannot tell us 
everything we would like to know about the dependency structure of risks. 
 

D2. Possible values of correlation depend on the marginal distribution of the risks. 
All values between -1 and 1 are not necessarily attainable. This means, a model 
might be impossible to calibrate to certain correlation values. 
 

D3. Perfectly positively dependent risks do not necessarily have a correlation of 1. 
Perfectly negatively dependent risks do not necessarily have a correlation of -1. 
 

D4. A correlation of zero does not imply independence between risks. 
 

D5. Correlation is not invariant under monotonic transformations. For example, 
log(X) and log(Y) generally do not have the same correlation as X and Y. 

 
D6. Correlation is only defined when the variances of the risks are finite. It is not an 

appropriate dependency measure for very heavy-tailed risks where variances 
appear infinite. 

 
4.2.6 Sections 4.3 to 4.5 describe the different types of correlation. 
 
4.3 Pearson Correlation Coefficient 
 

We begin with by considering a pair of random variables X, Y with finite 
variances. 
 
4.3.1 Two Variables 
 
4.3.1.1 The Pearson correlation coefficient between X and Y is: 

)()(

],[
),(

YVarXVar

YXCov
YXL  , where ][][][],[ YEXEXYEYXCov   

 
 
4.3.1.2 If we have a sample of n observations xi  and yi  where i = 1, 2, ..., n, then the 
sample correlation coefficient, also know as Pearson product-moment correlation 
coefficient can be used to estimate the correlation between X and Y:  
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4.3.1.3 Pearson correlation has the following important properties: 
- The correlation is 1 in the case of an increasing linear relationship, −1 in the case 

of a decreasing linear relationship, and some value in between in all other cases.  
- The closer the coefficient is to either −1 or 1, the stronger the correlation between 

the variables. 1],[ YXL  if and only if there exist a, b≠0 such that Y = a + bX. 

- If the variables are independent then the correlation is 0, but the converse is not 
true because the correlation coefficient detects only linear dependencies between 
two variables. For example, suppose the random variable X is uniformly 
distributed on the interval from −1 to 1, and Y = X2. Then Y is completely 
determined by X, so that X and Y are dependent, but their correlation is zero; they 
are uncorrelated.  

- However, in the special case when X and Y are jointly normally distributed, zero 
correlation is equivalent to independence. 

- Linear correlation is invariant under a linear transformation: 
],[)(],[ 212211 YXbbsignYbaXba LL    for all real a1, a2 and b1, b2 ≠ 0 

- Linear correlation is not invariant under an arbitrary non-linear monotonic 
transformation T : ],[)](),([ YXYTXT LL   . 

 
4.3.1.4 There are many practical reasons for using of the Pearson correlation coefficient: 

- The Pearson correlation is easy to calculate. 
- The Pearson correlation is covered in many elementary statistical courses, so is 

likely to be familiar to a broader range of professionals making communication 
easier. 

- Given standard deviations and correlations of a vector of variables, it is simple to 
calculate standard deviations for sums and differences of those vector elements, as 
well as correlations between different linear combinations. 

- In the context of elliptically contoured distributions, the correlation matrix 
uniquely determines the dependence structure. 

- Where many risks are correlated, the correlations form a correlation matrix. The 
necessary and sufficient conditions for a correlation matrix to be feasible are well 
understood, and rapid tests exist even for high dimensional distributions. 

 
4.3.2 Correlation Matrix  
 
4.3.2.1 Consider vectors of random variables X = t

nXX ),...,( 1  and Y = t
nYY ),...,( 1 .  

Then, given pairwise covariances Cov[X,Y] and correlations ),( YX for an n×n 
correlation matrix we define: 

],,[],[ jiij YXCovYXCov   

],,[],[ jiij YXYX    for nji  ,1  

Such nxn matrices have to be symmetric and Positive Semi-Definite (‘PSD’). (See 
Appendix A for a definition of PSD). 
 
4.3.2.2 Rank correlation is an alternative to the use of linear correlation as a measure of 
dependency. The two most common types of rank correlation are: 
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 (i) Spearman coefficient; and 
 (ii) Kendall Tau correlation.  

Both of them are commonly used. 
 
4.4 Spearman Coefficient  
 
4.4.1 Definition of Spearman Correlation   
 
4.4.1.1 Spearman Coefficient is: )](),([],[ YFXFYX YXS     

where:  FX(X) and FY(Y) are cumulative density functions of X and Y, i.e. their ranks. 
 
4.4.1.2 In practice, a simple procedure is normally used to calculate S . If we are given 

two vectors X=(X1, …, Xn) and Y=(Y1, …, Yn) that represent observations of the random 
variables X and Y, then S  between X and Y is simply a linear correlation between the 

vectors of ranks of Xi and Yi.  
 
4.4.1.3 Rank correlation, and this refers to both Spearman Coefficient and Kendall Tau 
(see the next section), does not have the limitations of conditions D2, D3, D5 and D6.  
 
4.4.1.4 The following property holds for rank correlation: 

],[)](),([ YXYTXT rankrank    for any non-linear monotonic transformation T. Rank 

correlation assesses how well an arbitrary monotonic function could describe the 
relationship between two variables without making any assumptions about their 
underlying distribution frequencies.  
 
4.4.1.5 So we only need to know the ordering of the sample for each variable, not the 
actual values themselves. Therefore, rank correlation does not depend on marginal 
distributions of both variables. For this reason it can be used to calibrate copulas from 
empirical data. Having said this, the limitations identified in D1 and D4 still hold. It is 
possible to construct examples of random variables which are highly dependent on each 
other but have either a low or zero rank correlation coefficient. 
 
4.5 Kendall Tau Correlation 
 
4.5.1 The Kendall Tau correlation measures dependency as the tendency of two 
variables, X and Y, to move in the same (opposite) direction. Let (Xi,,,Yi) and (Xj ,Yj) be a 
pair of observations of X and Y.  

4.5.2 If (Xj - Xi) and (Yj - Yi) have the same sign, then we say that the pair is concordant, 
if they have opposite signs, then we say that the pair is discordant. Figure 2 illustrates 
concordant and discordant pairs in the (x,y)-plane. 

Figure 2 Example of Concordant and Discordant pairs   

         Concordant pair:               Discordant pair: 
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4.5.3 Definition of Kendall Tau Correlation  
 
4.5.3.1 Suppose, we have a sample of n pairs of observations. Let C stand for the number 
of concordant pairs and D stand for the number of discordant pairs. A simple intuitive 
way to measure the strength of a relationship is to compute S=C-D, a quantity known as 
Kendall S.  
 

4.5.3.2 The normalised value of S, namely 

)1(
2

1



nn

S   

is known as the Kendall Tau correlation coefficient, or Kendall Tau. 
 
4.5.3.3 This measure has a simple intuitive meaning. For example, in a sample with 

3/1  then 2 sets of observations (Xi,,,Yi) and (Xj ,Yj) are twice as more likely to be 
concordant than discordant. 
 
4.5.3.4 In section 4.6 we demonstrate the differences in the values arising from use of 
these different measures of correlation in the case of a simple example involving 10 joint 
data observations for two risks A and B.  
 
4.6 Numerical Example 
 
4.6.1 Let us consider Table 1 with 10 joint observations from two risk factors, A and B: 
Table 1 Example of calculations for risk factors A and B 
Observations Risk A Risk B Risk A Rank Risk BRank
Observation 1 0.5 0.2 5 1
Observation 2 0.6 0.9 6 8
Observation 3 0.4 0.6 4 5
Observation 4 0.8 0.3 8 2
Observation 5 0.3 0.4 3 3
Observation 6 0.2 0.7 2 6
Observation 7 0.9 0.5 9 4
Observation 8 0.7 0.9 7 8
Observation 9 0.1 1 1 10
Observation 10 100 0.8 10 7

Linear Correlation 0.21
Spearman Correlation -0.19
Kendall’s Tau -0.16
Concordant pairs 19
Discordant pairs 26  
 
4.6.2 The Linear correlation coefficient is equal to 0.21 whereas the Spearman 
correlation is equal to -0.19. This latter calculation involving the correlation of the ranks 
between the two risks. We note that the Spearman correlation is very different from the 
linear correlation. This is because the linear correlation is affected by one outlier (the last 
observation). 
 
4.6.3 Kendall’s Tau is equal to -0.16 and is calculated as (19-26)/45. It is close to the 
Spearman correlation, as they are both rank correlations and not affected by the outlier.  
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5. RISK AGGREGATION 
 

5.1 Risk Aggregation Framework 
 
5.1.1 A prima facie reason for the consideration of different dependency modelling 
structures is risk aggregation in computing overall economic capital levels for insurance 
companies and banks.  
 
5.1.2 A common approach for deriving economic capital is by first assessing the 
individual risk components and then considering possible techniques to aggregate these 
components to derive an overall capital number. This approach is a feature of the first 
four methods that we discuss in sections 5.3 to 5.6. 
 
5.1.3 One of the natural ways to model a joint behaviour of multiple risks is to come up 
with their multivariate distribution function. This leads to the use of copulas (see sections 
5.6 and 8) which provide a way of combining stand-alone marginal risk distributions into 
a multivariate distribution. 
 
5.2 Risk Aggregation Methodologies 
 
 Insurance companies and banks differ in their approaches to economic capital risk 
aggregation, some techniques being more sophisticated than others. The most common 
broad categories of methods used in financial modelling are: 

- Simple Summation (no allowance for diversification benefits). 
- Fixed Diversification percentage. 
- Variance-covariance matrix (quite often called the ‘Correlation Matrix’ or ’Sum 

of Squares’ approach). 
- Copulas. 
- Causal Modelling (an abstract model that uses cause and effect logic to describe 

the behavior of an insurance organisation; often referred to as an ’integrated 
model’ using CEIOPS Solvency II nomenclature).  This method is often used in 
combination with the above methods, such as variance-covariance matrix or 
copulas. 

 
5.2.1 The Best Approach 
 

There are various trade-offs to consider within each method: 
 

- Model accuracy (such as the ability to model heavy tailed risks). 
- Methodology consistency. 
- Numerical accuracy. 
- Availability of data to perform a realistic calibration. 
- Intuitiveness and ease of communication. 
- Flexibility. 
- Resources. 
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5.2.2 Solvency II  
 
5.2.2.1 As was stated in section 3.3, the advent of the Internal Model Approval Process 
(‘IMAP’) within Solvency II, and the desirability of many companies to gain approval, 
has increased the importance of some of the criteria stated in 5.2.1.  
 
5.2.2.2 For example the “Intuitiveness and ease of communication” has particular 
relevance in the context of the use of the internal model for decision making purposes and 
management’s ability to understand the methodological framework and its limitations.    
 
5.2.2.3 For each of the possible methods, we have not rigorously discussed their merits or 
demerits in light of all of the criteria listed in section 5.2.1, but rather have used examples 
from these for the comments that we make in section 7, 8 and 10. 
 
5.3 Simple Summation    
 

This involves adding together the stand alone marginal risk capital amounts. It 
ignores potential diversification benefits and produces an upper bound for the economic 
capital number. Mathematically this is equivalent to assuming a perfect dependency 
between risks, e.g. 100% correlation. 
 
5.4 Fixed Diversification Percentage    
 

This method is very similar to the straight summation as described in 5.3 above, 
however it assumes a fixed percentage deduction from the overall capital figure. 
 
5.5 Variance-Covariance Matrix    
 
5.5.1 The correlation matrix approach is where capital is first calculated on a stand 
alone basis for each risk and then aggregated using a correlation matrix. In this 
calculation there is no prerequisite for the stand alone marginal risk distribution to be 
known, however such stand alone capital for many risks is often calculated from prior 
determined marginal risk in the economic capital modelling process.         
 
5.5.2 The correlations may be estimated using conventional techniques. An alternative 
is to back-solve parameters to reproduce the answers to specified aggregation tests. The 
resulting parameters are sometimes called tail correlations or quadrant correlations.  
 
5.6 Copulas    
 
5.6.1 The copula approach is different, in that it involves a Monte Carlo simulation with 
the full marginal risk distribution of each risk and a copula function to produce a 
meaningful aggregate risk distribution. The simplest copulas from the calibration point of 
view are the Gaussian and t copula, more of which will be said later.  
 
5.6.2 This section gives a brief intuitive introduction to the concept of copulas, whereas 
section  8 goes into more technical details on this topic.  
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5.6.3 Let us consider two random variables X and Y. A range of outcomes for each 
variable on a stand alone basis can be represented by a marginal risk distribution 
function, given by its two-dimensional Probability Density Function (‘PDF’) or 
Cumulative Density Function (‘CDF’).   
 
5.6.4 In addition, we might happen to know the distribution law which describes the 
joint distribution of any pair of values (X,Y), i.e. the three-dimensional surface. Visually 
one can think of loss amounts on the x-axis and y-axis for X and Y respectively with the 
z-axis representing the value of either the joint PDF or CDF. If the joint distribution is 
known, it gives us the best possible information about the behaviour of both variables in 
aggregate. However, in practice, if we have a large number of risk variables, such as 
equity, fixed interest, property, non-life underwriting risk, non-life reserving risk etc. it is 
very difficult to specify a multivariate joint distribution between all risks. 
 
5.6.5 A way of dealing with this difficulty is to split the problem into two parts as 
illustrated by Figure 3: 

- The first part describes the individual behaviour of each risk in isolation, i.e. the 
stand alone marginal risk distribution (‘MRD’) and  

- The second part (which in itself is a distribution function) the dependency 
structure between the risk variables. This second part is known as a copula of the 
distribution: 

Figure 3. Simple representation of a Copula 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.7 Causal Modelling   
 
5.7.1 Causal modelling is best explained as common risk drivers which impact risks 
often in a non-linear fashion. This is the usual method for capturing dependencies within 
economic scenario generators. A typical example would be inflation being derived from 
simulated nominal and real yield curves, which in turn is linked to the simulation of 
insurance losses. This method is often used in combination with others, for example even 
in causal modelling it is not possible to formulate all potential risk relationships credibly 
and so techniques such as correlation matrices or copulas are often used to deal with the 
residual dependency risk relationships.    
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5.7.2 Causal Loops  
 
5.7.2.1 A causal loop diagram (‘CLD’) is a diagram that can be used to understand how 
interrelated variables affect one another. The CLD consists of a set of nodes representing 
connections between variables. The relationships can be described as either positive or 
negative feedback according to their effect: 

- A Positive feedback (causal link) means that two nodes change in the same 
direction, i.e. if the node in which the link starts increases, the other node also 
increases, and vice versa.  

- A Negative feedback (causal link) means that the two nodes change in opposite 
directions, i.e. if the node in which the link starts increases, then the other node 
decreases, and vice versa. 

 
5.7.2.2 Furthermore, from a system dynamics perspective, a system can be classified as 
either ’Open’ or ’Closed’. Open systems have outputs that respond to but have no 
influence on their inputs, whilst Closed systems have outputs that both respond to and 
influence their inputs.    
 
5.7.3 Causal Loop Diagram for the Growth or Decline of UK Life Insurance 
Companies 
 
5.7.3.1 These models can get quite complex, as is illustrated by the causal loop diagram 
in Figure 4 to explain the growth or decline of UK life insurance organisations.    
 
Figure 4 Casual Loop Diagram for Growth or Decline of UK insurance companies 

 
Source: Robert A Taylor (2008).”Feedback”. U.S. Department of Energy's Introduction to System 
Dynamics (2008) 
 
5.7.3.2 There are various features from Figure 4 worth mentioning: 
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- The model’s negative feedback loops are identified by ‘Cs’ which stand for 

‘Counteracting loops’.  
- The symbols ‘//’ are used to indicate places where there is a significant delay 

between cause and effect. 
- The thicker lines are used to identify the feedback loops and links that the reader 

should focus on. 
 
5.7.3.3 It is clear that a decision maker would not find it easy to think through the model 
dynamics based on such diagrams alone. As with the copula approach to economic 
capital calculation, the causal modeling approach would involve Monte Carlo simulation. 
  
5.8 Natural Catastrophe vs. Reinsurance Credit Risk Aggregation   
 
5.8.1 Companies often use a combination of different methods that we have described 
so far. For example, each insurance company within an insurance group may have models 
that operate in sufficient detail for its own purposes, but all companies within the group 
use common economic model output and disaster scenarios that imply dependency when 
risk is viewed at a group level.  
 
5.8.2 The modelling of reinsurance credit risk, i.e. the loss associated with the failure of 
reinsurance counterparties is a good example of the different levels of modelling 
granularity.  
 
5.8.3 One of the key dependencies for non-life insurance companies is between 
Catastrophe underwriting risk (‘Cat UW risk’) and Reinsurance credit risk (‘RI Credit 
risk’). If a low frequency, high severity natural catastrophe loss event were to occur, then 
a non-life company writing property related business may see a large increase in 
reinsurance credit risk, due to both an increased likelihood of default by its reinsurers and 
an increased exposure i.e. larger reinsurance recoveries.       
 
5.8.4 Different Methods are possible to reflect this dependency structure between Cat 
UW Risk and Reinsurance credit risk. These are described as follows:  

1) The simplest of the approaches would involve Catastrophe Underwriting 
risk (“Cat UW risk”) and Reinsurance credit risk (‘RI Credit risk’) as 
separate entries within a variance-covariance matrix.  
- The marginal risk capital calculation for RI Credit risk would be based 

on the expected level of reinsurance recoveries and other risk factors. 
The exposure would include the run-off of the opening balance sheet 
values and the expected incremental exposure from one year’s new 
business.  

- The selected correlation coefficient for use within the correlation 
matrix would reflect: 

(i) dependency relationships between the levels of exposure i.e. 
gross insurance losses (‘Cat UW risk’) and reinsurance 
recoveries via the reinsurance arrangements; and  
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(ii)  more complex relationships involving reinsurance default 
rates and loss given default being functions of the level of 
gross insurance loss events.  

 
2)             An alternative slightly more complex approach would involve the Cat UW 

risk marginal risk distribution also capturing the associated RI Credit risk 
associated with Cat UW risk. The Cat UW risk capital now being larger 
than the value of CAT UW risk calculated in 1.  
- Given that it is common for Cat UW risk modelling to involve the 

simulation of gross losses and reinsurance recoveries, such methods 
would enable the modeller to capture the varying reinsurance loss 
exposure more accurately via the direct structural relationship between 
the exposures.  

- In this eventuality the RI Credit risk marginal capital calculation 
would only be in respect of reinsurance recoveries associated with 
prior year’s business.  

- Despite their now being a direct causal link between the simulated 
gross insurance losses and the reinsurance recoveries for new business 
there is still left the potential residual risk dependency relationship 
between a large natural catastrophe and the indirect impact on 
reinsurance credit risk variables like default probabilities. This 
residual dependency risk could be handled either though a selected 
correlation within a variance-covariance matrix calculation or by 
copula simulation.     

 
3) More complex causal modelling methods could involve:  

(i) Reinsurance Default Probabilities (PD) and Loss Given 
Default (LGD) being a function of insurance losses and / or 
asset values and /or: 

(ii)  (ii) stochastic interest rates in the discounting of the 
reinsurance loss payments in the RI Credit risk calculation 
given that economic capital calculations are on a present 
value basis.  

 
5.8.5 The last method, whilst being more intuitive, than the earlier methods, does at the 
same time introduce more uncertainly in terms of both model risk and parameter risk.    
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6. DATA AND MODEL UNCERTAINTIES 

 
6.1 Spurious Relationships 
 
6.1.1 It is important when looking at empirical results that spurious relationships are not 
mistaken for dependency relationships between risks.     
 
6.1.2 In statistics a spurious relationship 4 is a mathematical relationship in which two 
occurrences have no causal connection, yet it may be inferred that there is one.                      
“Correlation does not imply causation” is often used to point out that correlation does not 
imply that one variable causes the other. However, the presence of a non-zero correlation 
may hint that a relationship does exist. 
 
6.1.3 Edward Tufte (2006) puts it succinctly: 

“Empirically observed covariation is a necessary but not sufficient condition for causality”. 
 
6.1.4  Correlation does not imply Causation 

1)  A occurs in correlation with B. 
2)  Therefore, A causes B.      

 
6.1.4.1 In this type of logical fallacy, a conclusion about causality is made after observing 
only a correlation between two or more factors. When A is observed to be correlated with 
B, it is sometimes taken for granted that A is causing B, even when no evidence supports 
this. This is a logical fallacy as four other possibilities exist: 

(a)  B may be the cause of A. 
(b)  An unknown factor C may be causing both A and B.   
(c)  The ‘relationship’ is coincidence or so complex or indirect that it is more 

effectively   called coincidence. 
(d)  B may be the cause of A at the same time as A is the cause of B.     

 
6.1.4.2 Determining a cause and effect relationship requires further study even when the 
result is statistically significant.   
 
6.1.4.3 Examples of each, drawn from everyday life as analogies, are: 

(a) “The more firemen fighting a fire (A), the bigger the fire is going to be 
(B). Therefore firemen cause fire “. In reality, it is (B) the fire severity 
influencing how many firemen are sent (A).  

(b) “Sleeping with one’s shoes on (A) is strongly correlated with waking up 
with a headache (B)”. This ignores the fact that there is a more plausible 
lurking variable: excessive alcohol, (C) giving rise to the observed 
correlation.      

(c) “With a decrease in the number of pirates, there has been an increase in 
global warming, therefore global warming is caused by a lack of pirates” 

                                               
4 Sometimes called spurious correlation or spurious regression 
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(d) “According to the ideal gas law: PV = nRT, given a fixed mass, increased 
temperature (A), results in increased pressure (B), however an increase in 
pressure (B) will result in an increase in temperature (A). The two 
variables are directly proportional to each other.    

 
6.1.4.4 With regards economic capital modelling, simple examples of (a) and (b) are:  

(a) Increasing domestic demand and inflation (A) often leads to the 
Government having to increase short-term interest rates (B), to counter 
potential over-heating in the economy, evidence of positive correlation. 
Conversely, falling short-term interest rates (B) is likely to lead increased 
demand, which once spare capacity is utilised, leads to increasing inflation 
(A), however in this case, there is evidence of negative correlation.   

(b) The large negative correlation between equity returns (A), and credit 
spreads (B), during 2008 could be viewed as a consequence of the 
financial crisis (C). 

 
6.1.4.5 Some observed correlation relationships are one way A  B. For example, a very 
severe natural catastrophe could lead to a large decrease in equity markets, but a large fall 
in equity markets is not likely to result in a natural catastrophe.  
 
6.1.5  Economic Logic 
 
6.1.5.1 When determining correlations between risks, one should consider the questions: 

- Is the relationship logical (rather than spurious)?   
- Is there statistical evidence for the hypothesised relationship? 

 
6.1.5.2 An example of a relationship that satisfies both of these questions is in the simple 
example of a yield curve. The three year bond yield is closely related to the two year and 
four year bonds yields, which is intuitive given that yield curve movements are often 
thought of as a combination of: 

(i) parallel shift; and 
(ii) slope changes. 

 Empirical studies support positive correlations between adjacent points of the yield 
curve.    
  
6.1.6  Spurious Regression Example 
 
6.1.6.1 Consider 2 random walk time series, Xt and Yt as follows: 

Xt = Xt-1 + t 
Yt = Yt-1 + t 

where: 
t and t are N(0,1) distributed  
X0 = Y0 = 5. 
 

6.1.6.2 Given this, a random sample of 100 values for each of X and Y for t = 0 to 99 has 
been generated. Using this output the linear correlation and R2 have been calculated. 
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6.1.6.3 X and Y are not related and yet it is common, to observe high correlations.  
 
6.1.3.4 Figures 5, 6 and 7 show: 
 (i)   Linear regression between X and Y. (figure 5) 
  (ii)  Time Series of X and Y (figure 6) 

(iii) Residuals from the linear regression (figure 7).  
 
6.1.3.5 In this random example, the observed correlation between X and Y is 56.5% and 
5.9% between the residuals (any difference from zero due to simulation error). The time 
series plots in figure 6 for X and Y look plausible for typical financial variables and yet 
we conclude they have a large positive correlation when in fact there no relationship 
between them at all. Moreover, there is significant autocorrelation in the residuals leading 
one to reject the linear regression model as a measure of the relationship.   In fact, this is 
illustrative of the fact that trending variables, which are often a feature of economic and 
financial time series data, are likely to lead to a regression with high values of R2, 
regardless of whether they are related or not. Differencing variables (changes) eliminates 
trends and thus avoids spurious regression, so it is important to consider the nature of the 
variables being used to determine the correlation of interest.   
 
Figure 5 Linear Regression of Y vs X    

  

Linear Regression Y vs X y = 0.2112x + 4.18
R2 = 0.3192
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Figure 6 Time Series of Y vs X  
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Figure 7 Residuals from the linear regression   
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6.2 Correlation and Linearity (Anscombe’s Quartet) 
 

The Pearson correlation coefficient indicates the strength of a linear relationship 
between two risks, but it alone is often not sufficient to evaluate the strength of this 
relationship. This is illustrated with a study of sets of scatter plots of what is known as 
Anscombe’s quartet, created by Francis Anscombe (1973). The y variables have the same 
mean, standard deviation, linear correlation and regression line and yet in all four cases 
the distribution of the variables is markedly different.  
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6.2.1 Anscombe’s Quartet 
 

Anscombe’s quartet consists of four data sets which have the same identical 
statistical properties but which are very different to each other when viewed graphically. 
The different graphs are labelled 1 through to 4. The linear regression line for each set of 
points is given by y = 3 + 0.5x. The statistics for all four data sets are shown in Table 2. 
 
Table 2 Anscombe’s Quartet Statistics 

Property Value
Mean of each x variable 9.0
Variance of each x variable 10.0
Mean of each y variable 7.5
Variance of each y variable 3.75
Correlation between each x and y variable 0.816
Linear regression line y = 3 + 0.5x    
 
6.2.2 Comments on Figure 8 

Graph 1 – What one would expect when considering two correlated variables that 
follow the assumption of normality.    

Graph 2 – The relationship is not linear but an obvious non-linear relationship 
exists.    

Graph 3 – The linear relationship is perfect except for one outlier.  
Graph 4 – The relationship between variables is not linear but one outlier is 

enough to give a correlation of 0.81 and make it appear as though there 
is one. 

 
Figure 8 The Four different graphs of Anscombe’s Quartet   
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The numerical examples in Figure 8 demonstrate that the correlation coefficient, as a 
statistic cannot replace a more detailed examination of the data patterns that may exist.    
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6.3 Biases introduced by the way we look at Data  
 
6.3.1 Following on from section 6.2, we address the potential issues arising from the 
different ways that we may investigate the same data set. Ideally data visualisation needs 
to take place in more than one framework. For example, a typical visualisation of the 
dependency structure between two risks is through the use of a scatter plot, as in Figure 9. 
Here the Pearson correlation coefficient between the two risks X and Y is 55.1%.      
 
Figure 9 Linear Regression of Y vs. X    

Linear Regression Y vs X
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6.3.2 However, if we plot risks X and Y as time series (Figure 10) we see quite a 
marked pattern in the differences in their relationship over time. The dependency between 
the two risks is time-varying, the nature of which will not be picked up in graphical 
representations such as a scatter plot. The scatter plot in essence disregarding any 
historical trends that may be present in the data. 
 
Figure 10 Time Series of Y vs X 
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6.3.3 This is not to say that a scatter plot is not useful but that it should perhaps not be 
the only visual aid used in the computation of correlation parameters.  
 
6.4 Wrong-Way Risk 
 
6.4.1 Sections 6.4 to 6.7 look at miscellaneous topics that each in their own right and  
illustrate some of the potential issues arising when parameterisation and modelling 
dependency structures within economic capital models. We begin with a discussion of the 
so-called ‘Wrong-Way Risk’.    
 
6.4.2 The way that risks are aggregated relates to the scope of inter-risk diversification, 
i.e. to the idea that an aggregation of risks will not be larger that the sum of its 
components.  
 
6.4.3 With risks aggregation across different portfolios or business units, some of the 
assumptions may fail to hold. One possible reason for the aggregate to require more 
capital than the sum of the capital for each component is the nature of the risk measure. 
For example, the VaR measure can be shown to fail the subadditivity property of a 
coherent risk measure. It is possible to construct examples where the VaR of a 
combination of risks is greater than the sum of the VaR of the individual constituent 
parts.      
 
6.4.4 Another reason is more complex and subtle, the so-called ‘wrong-way risk. This 
also sometimes called “interaction” or “nonlinearity”. 
 
6.4.5 With the ‘wrong-way risk’ the reason why the aggregate risk may be greater than 
the sum of the parts is not related to the choice of risk metric, but because one risk may 
amplify the effect of another. Measurement of risks one at a time may not detect this 
amplification. This issue is more prevalent with the variance-covariance matrix approach 
to risk aggregation than the other approaches we have identified.  
 
6.4.6 For example, measuring separately the market and credit risk components in a 
portfolio of foreign currency denominated loans with a currency hedge can underestimate 
risk as a default may result in an over-hedge of subsequent currency movements.  
 
6.4.7 Another example is a follow on from section 5.8 and the discussion of different 
types of modelling of Natural Catastrophe and Reinsurance Credit Risk. The two risks 
types are often modelled separately before being combined. A situation where a 
catastrophe increases reinsurance due as probability of default is the ‘wrong-way risk’. 
The standard formula makes an assumption that loss in any scenario can be expressed as 
a simple sum of risks from different sources, but in this example there is an arbitrariness 
in assessing whether a reinsurance bad debt on a larger than expected recovery is 
classified as default risk or natural catastrophe risk. The answer is that it depends on the 
order in which the risks are analysed – an effect familiar to actuaries through analysis of 
change. As the result is no longer a sum of marginal risks, the correlation formula based 
on the variance of a sum, no longer applies.       
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6.4.8  Modelling tail dependency in underlying risk drivers is no remedy for wrong-way 
risk,. Instead, it is necessary to model carefully the way in which a firms net assets 
depends on risk drivers, including a consideration of effects when more than risk 
materialises at once. One method of capturing this is to use the combined scenario 
approach outlined in Solvency II, whose mathematical basis is covered in McNeil & 
Smith (2009).  
 
6.5 Multivariate Distributions: The Curse of Dimensionality 
 
6.5.1 There are times when one may want to calibrate dependency relationships by 
looking simultaneously at all risks together, rather than the more common approach of 
two risks at a time, whether estimating correlation coefficients between a pair of risks, or 
determining parameters for specific copulas. For example, if there are three risks: A,B,C 
of interest, this would involve looking at the joint distribution of all three (A,B,C), rather 
than the separate analysis of the three pair combinations (A,B), (A,C) and (B,C).          
 
6.5.2 However, the estimation of multivariate distributions suffers from the so-called 
‘curse of dimensionality’.   
 
6.5.3 Here is an example of the problem. An insurer itemises the risks to which it is 
exposed, resulting in a short list of 200 risks. Let us suppose that 90 years of clean and 
relevant historical data is available with annual observations, for each risk. For some 
risks, far fewer than 90 years relevant data is available. Having 100 years data provides 
more statistical input that is usually available. With such a data set, we may be able to 
estimate not only location and dispersion but perhaps also some measures of asymmetry 
and tail fatness. 
 
6.5.4 However, in the multivariate case, the number of parameters proliferates relative 
to the number of observations. For example, suppose we are to estimate a correlation 
matrix. A 200×200 correlation matrix contains 19,900 distinct elements. Out of 40,000 
elements, the 200 diagonal elements are all 1, and as the matrix is symmetric the 
remaining 19,900 elements each appear twice, once below and once above the diagonal. 
 
6.5.5 The number of data points is only 18,000, this being 200 risks multiplied by 90 
annual observations. No continuous calibration methodology can map the possible data 
sets onto the set of possible correlation matrices. There will always be some correlation 
matrices that are mathematically valid but inaccessible, that is, which cannot arise for any 
input data set. The more limited the data, the greater the extent of inaccessible matrices. 
 
6.5.6 It may be argued that it is desirable to capture aspects of distribution beyond mean 
and variance. For example, it may be desirable to capture skewness and tail fatness. It 
may be desirable to capture aspects of dependency beyond correlations, such as quadrant 
correlations or tail dependency. All of these introduce additional parameters, inevitably 
increasing the extent of inaccessible correlation matrices. 
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6.6 Multivariate Distributions: Multivariate Model Selection 
 

Given the wide range of possible multivariate models, and the impossibility of 
distinguishing between them on data alone, other supplementary criteria come into play.  
These might include: 

- Computational ease of calibration, validation or simulation 
- Results-driven model selection 
- Consensus – using a similar approach to other firms 
- Mathematically ‘natural’ models. 

We examine each of these criteria in turn. 
 
6.6.1 Computational Ease of Calibration, Validation or Simulation 
 
6.6.1.1 Calculations for calibrating models can be computationally intensive and are 
prone to malfunction. The malfunctions occur because model fitting usually involves 
difficult numerical procedures, such as optimisation of goodness of fit, or solution of 
multiple simultaneous equations to capture chosen calibration statistics.  
 
6.6.1.2 There is no infallible general algorithm for optimisation or simultaneous 
equations solution. Reliability can be improved by choosing models for which the 
required estimation equations are well behaved; for example when functions to be 
minimised are convex, or when simultaneous equations are linear.  
 
6.6.1.3 Some mathematical models lend themselves more easily to such methods, and in 
the absence of a firm steer from data, it is natural that analysts prefer models that are easy 
to handle. 
 
6.6.2 Results-Driven Model Selection 
 
6.6.2.1 Results-driven criteria choose a model whose conclusions are acceptable. This 
could mean, for example, avoiding model families whose estimation results in large 
sensitivities to individual data points, thus reducing the chance of widely fluctuating 
model conclusions.  
 
6.6.2.2 Results-driven selection may also describe a technique where an analyst seeks to 
understand the range of possible outcome from different models, and seek output at a 
chosen point within that range. It is desirable to select a modelling approach whose 
output ranks consistently among the range of possible model. However, results-driven 
selection has a downside, and indeed many references to the technique use the pejorative 
term ‘cherry picking’. The fear is that firms may fail to communicate fully the extent of 
cherry picking, or that users may overestimate the influence of data versus manual 
selection in reported numbers. 
 
6.6.3 Consensus – Using a Similar Approach to Other Firms 
 
6.6.3.1 Many specialist consultants and model developers have built software and 
methodologies for capital calculations, aimed at the insurance market. Some insurers may 



36 
 

perceive cost savings or reduced project risk from buying a pre-packaged solution rather 
than building from scratch.   
 
6.6.3.2 Even where firms well understand a modelling approach internally, 
communication to the outside world of regulators, rating agencies and analysts remains a 
formidable challenge.  
 
6.6.3.3 External parties seldom have a particular methodology in mind, but instead 
compare approaches from different insurers, commenting on relative strengths and 
weaknesses. These commercial influences result in a substantial consensus dividend, 
where insurers who travel with their peers are likely to experience better project success, 
lower build costs and easier dialogue with external parties. 
 
6.6.3.4 The use of consensus methodologies may be characterised as ‘best practice’ or 
‘herd instinct’ depending on whether they are considered to be a good thing or not. 
However there is a systemic risk if everyone is using the same models.  
 
6.6.4 Mathematically ‘Natural’ Models 
 
6.6.4.1 The final criterion for model selection is the mathematical concept of a ‘natural’ 
model. For example, there are many ways to construct bivariate distributions with normal 
marginals, but any mathematician would regard the bivariate normal as the ‘natural’ 
extension of the univariate normal. Models that are not natural may be called ‘arbitrary’. 
 
6.6.4.2 Given mathematics’ usual requirement for precise definitions, the meaning of 
‘natural’ is surprisingly subjective. A paper criticising the use of copulas by Mikosch 
(2005) spawned a heated debate as to what models could be considered natural or 
arbitrary. In the absence of agreed criteria for natural models, the discussion reduces to a 
matter of personal opinion with little hope at present of objective resolution. 
 
6.6.4.3 Mathematical notions of natural models are not empirical assertions; the goodness 
of fit or otherwise to a particular data set is irrelevant. In the physical sciences, this has 
proved no obstacle because it turns out that many accurate physical theories are also 
mathematically elegant, with laws of motion, optics, relativity and quantum mechanics all 
mapping into neat mathematical formulations.  
 
6.6.4.4 Unfortunately, such success stories are rare in applied finance. Indeed, users’ 
uncritical faith in elegant mathematical concepts such as normality, or a failure to include 
messy concepts such as tail dependence, have contributed to more financial problems 
than to solutions. However, in these examples it appears that mathematical elegance has 
been allowed to override empirical evidence.  
 
6.7 Ten Properties of Good Calibration 
 
6.7.1 A realistic economic capital model should ideally have robust calibration. There 
remains the question therefore of what constitutes a ‘good calibration’. A natural 
statistical approach is to select a family of distributions and to estimate these using a 
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combination of historic data and expert guesswork. Several generic approaches exist for 
distribution estimation, including the method of maximum likelihood, as well as methods 
based on setting fitted statistics such as means, correlations, rank correlations or kurtosis 
to their empirically estimated counterparts. 
 
6.7.2 There are good and bad ways to go about calibrations. Choices to adopt a 
particular approach usually involve some sort of trade-off between different criteria. 
Some attributes of a good calibration process are as follows: 

- Statistical power – This means that estimated parameters are likely to be close to 
the true parameters.  

- Robust Process –  The estimation process converges to a unique solution (does not 
get stuck in an endless loop nor iterate between solutions), estimated models can 
be computed quickly and the fitted model varies continuously as a function of the 
data and responds logically to new data 

- Symmetries – The estimation process is preserved under various transformations 
of the data, e.g. if we rotate the historic risk vectors then fitted distribution is the 
corresponding rotation of the unrotated fit. 

- Parsimony – The number of parameters used is minimised in order to produce the 
simplest possible model. Parameters are included only if justified by the data. 

- Surjection – Any underlying distribution is capable of arising as a fit given 
sufficient data; the calibration process does not exclude significant model types. 

- Parallel threading –  Individual parameters each follow a transparent process from 
data to parameter value, which can be verified manually, communicated 
graphically, explained to non-experts and consequences understood. The 
alternative is an estimation process where all parameters emerge simultaneously 
from a single complicated calculation.  

- Consistency – Input conflicts can easily be avoided or at least remedied. An 
example of input conflicts is a correlation matrix that is not positive definite; each 
individual assumption is valid but together they are not. 

- Inclusion – Different methodologies can be combined for different parameters. 
For example some parameters may be estimated from historic data, others taken 
from published analysis, others from expert views and yet others from peer group 
surveys. 

- Evolution – Existing software can be re-used, or cheap software licensed. The 
need for technical re-training, bespoke development or explaining unfamiliar 
concepts to regulators, is minimised. 

- Surplus suitability – The construction of any model of surplus (in short available 
capital) should lend itself to fast and accurate calculations of key percentiles of the 
surplus function, as well as to supplementary calculations such as marginal 
attribution of capital requirements. 
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-  
7. VARIANCE-COVARIANCE MATRIX METHODS 

 
7.1 Methodology 
 
7.1.1 Introduction 
 
7.1.1.1 This method allows for a full pattern of risk interactions with the assumption of 
differing pairwise correlations between risks. The overall level of diversification between 
risks is dependent on the levels of these correlations.  
 
7.1.1.2 The capital for an insurance company with n risks is calculated by use of the 
following variance-covariance matrix formula: 

Capital =  ( ij Ci Cj )
0.5  for i,j = 1 to n. 

Where: 
- Ci is the stand alone capital amount for the ith risk 
- Correlation coefficient ij for risks i and j allows for the diversification between 

risks. 
 
7.1.1.3 When correlations are all equal to 1, the calculation is equivalent to the sum of 
stand-alone capital amounts. If the risks are all independent i.e. the correlation 
coefficients between risks i and j are all equal to zero then the total capital is equal to: 

Capital =  ( Ci
2 )0.5  for i = 1 to n. 

 
7.1.2 Risk Dimensions – Economic Nature vs Organisational 
 
7.1.2.1 Many financial institutions, in particular large insurance groups, consist of various 
subsidiaries, business units (BU) or similar organisations. When faced with this situation, 
there are two important dimensions of risk classification: 

- Economic nature of risk – insurance, market, credit, operational risk etc. 
- Organisational structure – business lines or legal entities. 

 
7.1.2.2 The economic nature of the risk considers aggregating risks into silos by risk-type 
across the whole group e.g. equity risk by consideration of the aggregate risk at a group 
balance sheet level. By contrast, the organisational risk grouping would consider 
organisation silos before the aggregation to a group capital total. This approach deals 
with inter-risk relationships earlier on in the process and takes advantage of known 
corporate structures. An organisational classification presents far less difficulty than a 
classification by risk where definitions of risk may be imprecise across different 
organisations.  
 
7.1.2.3 A third approach features aspects of both and operates at a lower level of risk 
granularity. In this situation the unit of risk that is worked with is of the form 
‘Organisation / Risk’ e.g. UK / Equity, France / Fixed Interest etc, the aggregation 
process thereafter working from this base level. However, whereas at face value this 
would seem to be conceptually a more accurate approach, there are other issues to 
consider like smaller volumes of data at this finer level of granularity and the difficulties 
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of estimating “cross-terms” in the enlarged correlation matrix. For example what would 
be the correlation coefficient between ‘UK / Equity’ and ‘France / Fixed Interest’ given 
the most likely scenario that correlation assumptions would only have been determined 
between the Equity and Fixed Interest risks within each business units, such as the UK or 
France.  
 
7.1.2.4 Section 7.6 discusses the issues arising in trying to determine these cross-terms.     
 
7.2 Advantages and Disadvantages of Variance-covariance Matrix Approach 
 

Advantages: 
- Relatively simple, intuitive and transparent. 
- Facilitates a consensus of typical correlations for use by companies. 
- The use of a cascade of correlation matrices permits the easy addition of further 

risks, from a new business unit, subsidiary or risk category.    
- Correlation is the only form of dependency that a lot of non-specialists are 

familiar with. This makes communication easier than some of the more 
sophisticated methods described in sections 8 and 10 . 

 
Disadvantages: 
- Risks where we have empirical evidence of correlations (mainly reliable market 

data) are very few and so there is a heavy reliance on a subjective ’expert opinion’ 
to determine correlations.. 

- The variance-covariance matrix approach implies that the underlying risks are 
normally (or elliptically) distributed. 

- Underestimates the effects of skewed distributions and does not allow for 
potential heavier dependency in the tail. 

- The value of correlations is sensitive to the underlying marginal risk distributions. 
- A correlation matrix has to satisfy certain conditions (e.g. is Positive Semi-

Definite). These are often ignored in practice. 
- All cause-effect structures cannot be properly modelled 
- Does not capture non-linearities. 

 
7.3 Risk Granularity   
 
7.3.1 The finer the level of risk classification (i.e. a more granular subdivision of risk) 
within a variance-covariance matrix, the lower the intra-risk diversification (i.e. 
diversification within a risk category) and the greater the inter-risk diversification (i.e. the 
diversification between risk categories). Differences in approaches will generally lead to 
differences in the economic capital number given the complexity of re-working all of the 
various risk dependency relationships.  
 
7.3.2 Sometimes the economic capital calculation will feature a series of ‘nested’ 
variance-covariance matrices. An example of this is the method adopted within the 
standard formula approach to the Solvency II Solvency Capital requirement (‘SCR’) for 
QIS 4 and as described in the Solvency II QIS 4 Technical Specification (2008).  
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7.3.3 Table 3 details the correlation matrix that is used to aggregate the individual 
capital amounts for each of the five main risk categories to derive the Basic SCR. Market 
Risk capital (SCR Market) is one of the major risk capital categories within this process.  
 
7.3.4 Table  4 shows the ‘nested Market Risk correlation matrix, i.e. the matrix that is 
used to aggregate the individual capital amounts in respect of different types of market 
risk e.g. interest rates, equities etc to derive an overall Market Risk capital number for use 
in Table 3.  
    
Table 3 QIS 4 SCR Correlation Matrix 

SCR Market SCR Default SCR Life SCR Health SCR Non-Life
SCR Market 100% 25% 25% 25% 25%
SCR Default 25% 100% 25% 25% 50%
SCR Life 25% 25% 100% 25% 0%
SCR Health 25% 25% 25% 100% 25%
SCR Non-Life 25% 50% 0% 25% 100%  
 
Table 4 QIS 4 Market Risk Correlation Matrix 

Mkt Interest Mkt Equity Mkt Property Mkt Spread Mkt Concentration Mkt Currency
Mkt Interest 100% 0% 50% 25% 0% 25%
Mkt Equity 0% 100% 75% 25% 0% 25%
Mkt Property 50% 75% 100% 25% 0% 25%
Mkt Spread 25% 25% 25% 100% 0% 25%
Mkt Concentration 0% 0% 0% 0% 100% 0%
Mkt Currency 25% 25% 25% 25% 0% 100%  
 
7.3.5 It is a common practice for many life insurance companies to aggregate individual 
stress tests results by using the variance-covariance matrix approach. Some non-life 
insurance companies 5 use this approach as well. However, more and more companies (at 
the moment mostly in the non-life area, although with life offices also gradually moving 
in the same direction), use more sophisticated mathematical models involving copulas 
and causal modelling.  
 
7.4 Simpler Variants 
 
7.4.1 Simple Summation    
 

As noted in section 5.3, this involves adding together the stand alone marginal 
risk capital amounts. Mathematically this is equivalent to assuming a perfect dependency 
between risks, e.g. 100% correlation. 

 
Advantages 
- No data is required to calibrate the model correlations 
- Computational simplicity  
- Ease of communication of method and results 
- It is conservative 

 
 
 
                                               
5 The word insurance company has been used in a generic sense to also mean Lloyd’s syndicates, reinsurers 
and similar insurance enterprises.  
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Disadvantages 
- This method overestimates the amount of required capital, and therefore incurs a 

cost of holding extra capital 
- Does not allow for meaningful interactions between risks 

 
7.4.2 Fixed Diversification percentage    
 

As noted in section 5.4 This method is very similar to the straight summation as 
described in 7.4.1 above, however it assumes a fixed percentage deduction from the 
overall capital figure. 
 

Advantages 
- Data simplicity.  
- Computational simplicity.  
- Ease of communication of method and results. 
- Recognition of diversification effects. 

 
Disadvantages 
- A crude method, but allows for some diversification benefit to reduce the capital. 
- Does not allow for meaningful interactions between risks. 
- Fixed diversification is not sensitive to changes in underlying risk exposures . 
- Does not capture non-linearities. 

 
7.5 Parameterisation 
 
7.5.1 Parameterisation of the variables used to model dependency structures in 
economic capital models is very often difficult. Many issues arise, not only in the 
estimation of parameters themselves, e.g. correlations for use in a variance-covariance 
matrix calculation, but also how these parameters evolve over time as a result of changes 
in economic indicators, business cycles or underwriting cycles. 
 
7.5.2 Some of the typical questions arising are: 

- Estimation of correlation coefficients for use in a variance-covariance matrix . 
- What sources of data and information are needed for the parameterisation 

exercise? 
- What sources of data and information is currently available? 
- How accurate, reliable and credible are the sources of data and information 

available?    
 
7.5.3 The following is a list of possible approaches:   

- Empirical estimation using historical time series data.   
- Use of expert judgement or industry benchmarks. 
- Ranking method, e.g. using Low, Medium and High rankings. 

 
7.5.4  Paragraphs 7.5.5 to 7.5.7 deal with each of these in turn. 
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7.5.5 Use of Historical Time Series Data 
 
7.5.5.1 A starting point in determining appropriate correlation estimates would be an 
estimate based on the historical time series data of underlying risks. It could be argued 
that any estimation based on internal data is the most appropriate, given it will reflect an 
insurance company’s actual experience and any differences in its business and risk 
profile. Considerations arising include: 

- Choice of index or data on which the time series is based. 
- Length of time series data. 
- Data frequency e.g. weekly / monthly / annual. 
- Dealing with data gaps, data credibility.  
- Data weightings, e.g. perhaps giving more weight to recent time periods. 
- Prospective views. 

 
7.5.5.2 Very often a published index is preferable to actual company data, not only 
because of the likelihood of a longer data history but to minimise data errors and secular 
risk. For example it may be more pragmatic for a UK insurance company when 
estimating Equity risk correlations to use the FTSE 100 Equity Total Return Index rather 
than its own data which could would contain a varying mix of equities from year to year.    
 
7.5.5.3 Often data is not complete therefore companies need to apply different techniques 
or a combination of techniques to overcome such shortcomings. Such techniques being: 

- Secondary data – sometimes companies supplement their internal data by 
secondary data from either public sources or from external data suppliers. For 
example, a useful source of data for underwriting risk is reinsurers’ data. 

- Simulating data – data can be enhanced by simulating historical data that is not 
currently observable. This synthetic data is itself the output from a model and 
appropriate parameters. 

 
7.5.5.4 Data quality can be an issue and can generally be grouped under three main 
headings: 

- Consistency – is the data consistent and collected in a standard format? 
- Completeness – is the data thorough, e.g. taking into account missing dates? 
- Accuracy – is the data correct? Common issues with data accuracy are processing 

errors, miscoding, bulk coding and bias. 
 
7.5.5.5 One of the more important aspects of data quality is the treatment of outliers. It is 
important to check whether any series contains outliers and if so try to understand the 
reasons for their occurrence. If an insurer thinks that the outlier reflects an anomaly that 
may repeat itself in the future then it will often retain the observation. If the outlier is for 
an event that is unlikely to occur again (perhaps because of a change in exposure), or is 
perceived not to be material for the future, then sometimes companies disregard it from 
the data or assigning a lower weight (<100%) than other data points.  
 
7.5.5.6 Omitting of a data outlier, unless an incorrect data entry, is not a good idea in that 
it allows for future unexpected events that may have been unforeseen when performing 
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the analysis. However, one needs to be mindful that such outliers do not distort the 
analyses such as we saw in graph 4 of Anscombe’s quartet (section 6.2).     
 
7.5.5.7 Correlations do vary over time and in a lot of cases quite markedly, so the 
analysis of historical time series data should not just be a once in a while exercise but an 
analysis that is performed quite regularly over time.    
 
7.5.6 Expert Judgement / Industry Benchmarks  
 
7.5.6.1 Very often company-specific data is not available or is of poor quality. Perhaps an 
index proxy for a risk is not suitable or the correlations estimated from company own 
data or index proxies vary too much over time.  
 
7.5.6.2 In such situations entries in a variance-covariance matrix may be filled on the 
basis of expert judgement.  
 
7.5.6.3 In such cases the parameters are based on the consensus of risk officers, 
underwriters, business managers, actuaries and other specialists in an organisation who 
understand the nature of risks being modelled. This is frequently complemented with an 
input from external consultants and industry benchmarks.  
 
7.5.6.4 Furthermore, expert judgement or opinion is a good starting point before any time 
series analysis has taken place serving very much as a reference point. 
 
7.5.6.5 This approach introduces an element of subjectivity but may be necessary if the 
prospective view of risk is different to that captured in the historical data. Expert opinion 
and judgement becomes more important when looking at extremes of risks where by 
definition they are unlikely to be very common in data series.      
 
7.5.6.6 The reliance on expert judgement is likely to vary by risk category. For example, 
this is likely to be more the case for operational risk than would be for equity risk. 
Furthermore, the reliance on this approach for risks may be more common for those 
organisations that are smaller in size and lack the capacity, scope and economies of scale 
to estimate correlations based on their own experience.   
 
7.5.7 Low, Medium and High Rankings 
 
7.5.7.1 In the absence of any data analysis organisations may fall back on the use of Zero, 
Low, Medium or High correlation rankings or similar grading based on a subjective 
assessment of the main risk pairings. The correlation coefficients allocated to these 
groupings are determined in advance based on prior studies. But what do we actually 
mean by Medium correlation, which could be regarded as rather arbitrary. It could mean 
30%, 40%, 50% or somewhere in between. In addition, the actual values within each 
category are often dependent on the nature of their use.   
 
7.5.7.2 The following in Table 5 illustrates the range of realistic correlations that may 
appear in each of the correlation groupings, but others could equally be valid.   
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Table 5 Correlation Ranking Ranges 
Correlation Rankings 

Correlation Negative Positive
Zero 0 0
Small -0.3 to -0.1 0.1 to 0.3
Medium -0.5 to -0.3 0.3 to 0.5
High -0.5 to -1.0 0.5 to 1.0  
 
7.5.7.3 Categorising dependencies as either Low, Medium or High is sometimes 
underplayed by commentators as an approach that should be limited to situations when 
there is no more accurate approach as though correlation measurement was a mere 
formality. 
 
7.5.8 Estimation of Correlation Coefficients from Historical Time Series Data 
 
7.5.8.1 Estimating ’credible’ correlation coefficients from historical data series is far 
from easy. The difficulty lies not in the calculation of different correlation coefficients, 
using the relevant mathematical formulae and underlying data, but the often sensitivity of 
the results to the time periods used and the secular risk of the underlying variables.  
 
7.5.8.2 Asset related data such as equity returns and fixed interest rates are usually more 
frequently available, more homogenous and less subjective than insurance line of 
business related data. Given this, we have used financial time series data in the following 
analysis. 
 
7.5.8.3 We decided to investigate a number of questions: 

- How do correlation estimates vary with differences in the length of time series 
data? 

- How do annual correlation estimates vary from year to year? 
 
7.5.9 Estimating Correlations with Variation in the Length of Time Series Data  
 
7.5.9.1 Figures 11 and 12 show annual time series data for 1988 to 2008 for the 
following: 

- LIBOR 3M rate 6. 
- UK 10 year Government Bond yield (GB 10Y). 
- FTSE All Share Total Return 12-months ending 31/12/YY (‘FTSE AS’). 
- Credit Spread for AAA rated 10 year bonds as at 31/12/YY (‘CS AAA’). 
- Credit Spread for BBB rated 10 year bonds as at 31/12/YY (‘CS BBB’). 

 
7.5.9.2 Figure 11 shows a line graph of the values for the first three indices, whilst Figure 
12 shows a similar graph for GB 10Y vs CS AAA vs CS BBB.    

                                               
6 The time series data was obtained from Bloomberg with the exception of CS AAA and CS BBB data 
which was obtained from Iboxx. 
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Figure 11 Time Series for LIBOR 3M vs GB 10 Y vs FTSE AS 
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7.5.9.3 On inspection of Figure 11 it is clear that the FTSE AS annual return shows a 
cycle with peaks and troughs over the period 1988 to 2008. Both LIBOR 3M and GB 
10Y exhibit downward trends over the same period and furthermore the LIBOR 3M and 
GB 10Y graphs crossover at a number of different points, indicating the changing shapes 
in the yield curve, either upward sloping, downward sloping or inverted yield curves. 
 
Figure 12 Time Series for GB 10 Y vs CS AAA vs CS BBB 
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7.5.9.4 For Figure 12 however, the general decrease in GB 10Y contrasts with the 
relatively flat credit spreads until 2006 onwards when there has been a sharp rise in the 
values of both CS AAA and CS BBB reflecting the changing market dynamics following 
the onset of the recent financial crisis.  
 
7.5.9.5 These relationships between key risk variables changing over time have 
consequences when one is faced with the estimation of the pairwise correlation 
coefficients. These comments are not restricted to asset risks in isolation as insurance 
liability or combined asset / liability time series graphs often show similar patterns. 
 
7.5.9.6 Pairwise correlation coefficients have been estimated between the five different 
risk types assuming four different time periods, namely: 

(i) 20 years to 2007; 
(ii) 15 years to 2007; 
(iii) 10 years to 2007; 
(iv) 5 years to 2007.  

 
7.5.9.7  The year 2007 has been chosen rather than 2008 so as to minimise as far as 
possible the influence of the recent financial crisis on the results comparison. Ideally, 
monthly data would have been better but for some of the risks the data was only available 
on an annual basis for time periods longer than 10 years. However, further analysis in the 
next section on a limited subset of these risks has been performed using monthly data. 
 
7.5.9.8 With only five data points for the five year period 2003 to 2007 the results will be 
very sensitive to sampling error, as will the results be for the 10 year period and to a 
lesser extent, periods 15 and 20 years. The results are presented in Table 6.  
 
7.5.9.9 The four sets of tables clearly show not only the sensitivity of the pairwise 
correlation coefficients to the time periods chosen for the analysis, but how on some 
occasions there is a reversal of the correlation signs. These results in conjunction with 
figures 11 and 12 illustrate the sensitivity of correlation estimates to the choice of data 
period and the issues in determining correlation coefficients between risks.     
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 Table 6 Correlation coefficients for different periods and risks  
20 Years Start 1988

End 2007
LIBOR 3M GB 10Y CS AAA CS BBB FTSE AS

LIBOR 3M 100.0% 86.4% -46.9% -28.3% 18.7%
GB 10Y 86.4% 100.0% -59.1% -43.7% 14.7%
CS AAA -46.9% -59.1% 100.0% 93.8% -59.6%
CS BBB -28.3% -43.7% 93.8% 100.0% -67.5%

FTSE AS 18.7% 14.7% -59.6% -67.5% 100.0%

15 Years Start 1993
End 2007

LIBOR 3M GB 10Y CS AAA CS BBB FTSE AS
LIBOR 3M 100.0% 68.7% -61.1% -68.5% 34.9%

GB 10Y 68.7% 100.0% -60.2% -64.8% 20.1%
CS AAA -61.1% -60.2% 100.0% 97.0% -71.5%
CS BBB -68.5% -64.8% 97.0% 100.0% -72.5%

FTSE AS 34.9% 20.1% -71.5% -72.5% 100.0%

10 Years Start 1998
End 2007

LIBOR 3M GB 10Y CS AAA CS BBB FTSE AS
LIBOR 3M 100.0% 62.3% -38.1% -45.7% 33.9%

GB 10Y 62.3% 100.0% 27.4% 21.0% -31.1%
CS AAA -38.1% 27.4% 100.0% 94.9% -89.3%
CS BBB -45.7% 21.0% 94.9% 100.0% -92.9%

FTSE AS 33.9% -31.1% -89.3% -92.9% 100.0%

5 Years Start 2003
End 2007

LIBOR 3M GB 10Y CS AAA CS BBB FTSE AS
LIBOR 3M 100.0% 62.6% -0.2% 17.6% -85.1%

GB 10Y 62.6% 100.0% 71.5% 62.6% -93.2%
CS AAA -0.2% 71.5% 100.0% 89.0% -48.8%
CS BBB 17.6% 62.6% 89.0% 100.0% -50.8%

FTSE AS -85.1% -93.2% -48.8% -50.8% 100.0%  
 
7.5.10 Estimating Correlation Coefficients using Monthly Time Series Data  
 
7.5.10.1 Further analysis has been performed on the following three sets of monthly time 
series data for the years 1999 to 2008:  

- LIBOR 3M rate as at the end of each month (same notation as before) 
- FTSE 10 Year Gilt Yield as at the end of each month (FTSE G 10Y) 
- FTSE All Share Total Return on a rolling 12-months basis as at the end of each 

month (same notation as before). 
 
7.5.10.2 Table 7 investigates the correlation between LIBOR 3M and FTSE G 10Y under 
a number of different calculation bases:  

- Column ‘12 Mths’ shows the correlation estimate for each year in isolation using   
12-months worth of data. For example for year 2005, 81.9% is based on the 
monthly data from Jan 2005 through to Dec 2005.     
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- Column ‘Cum YE 08’ shows the correlation estimated using monthly data 
assuming a start year (column’“Year’) through to Dec 2008.  For example for year 
2005, 74.5% is based on monthly data from Jan 2005 to Dec 2008. This 
calculation imitating the often used process of estimating correlations from the 
‘“last x year’s worth of data’.   

- Column ‘Cum YE 07’ is a similar calculation to Cum YE 08 but assuming 
monthly data through to Dec 2007. 

 
7.5.10.3 The latter two calculations are also shown in Figure 13. Observations of note 
are: 

- ‘12 Mths’ correlations are very volatile from year to year. 
- There is more stability in using cumulative monthly data as per Cum YE 08 or  

Cum YE 07 but even here there is a fair degree of volatility. Both of these 
calculations appear to indicate a long-term average of around 50%.  

 
7.5.10.4 However, these calculations are looking at correlations between interest rates of 
different terms.  Figure 14 shows similar calculations to Figure 13 but instead for LIBOR 
3M vs FTSE AS and this time using 20 years of data. From inspection of this figure it is 
clear how volatile even these calculations are based on the longer time series data set. 
 
Table 7 Correlation for LIBOR 3M vs FTSE G 10Y  
LIBOR 3M vs FTSE G 10Y

Year 12 Mths Years Data Cum YE 08 Years Data Cum YE 07
1999 21.7% 10 50.5% 9 52.8%
2000 64.0% 9 50.6% 8 53.3%
2001 32.5% 8 36.0% 7 35.3%
2002 89.2% 7 35.5% 6 32.9%
2003 56.2% 6 50.0% 5 48.5%
2004 1.7% 5 54.2% 4 49.2%
2005 81.9% 4 74.5% 3 75.5%
2006 50.1% 3 71.2% 2 67.3%
2007 -13.4% 2 70.5% 1 -13.4%
2008 81.8% 1 81.8%    

 
Figure 13 Correlation for LIBOR 3M vs FTSE G 10Y 
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Figure 14 Correlation for LIBOR 3M vs FTSE AS 
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7.6 Variance-Covariance Matrix Cross-Terms  
 
7.6.1 As stated in section 7.1.2, there are many financial institutions, in particular large 
insurance groups that consist of various subsidiaries, business units (BU) or similar 
organisational subdivisions. Not only is there a need to calculate economic capital at an 
individual BU level but also at an overall aggregate level as well.  
 
7.6.2 One of the more common approaches to economic capital modelling, that enables 
an insurance group to report economic capital at both an (i) aggregate capital level and 
(ii) BU capital level, is through the use of an enlarged correlation matrix. Data in such a 
matrix is of the form ‘Organisation / Risk’ e.g. UK /Equity or France/Fixed Interest etc. 
 
7.6.3 In addition, if an insurance company is modelling dependency within an internal 
model through the use of either a Gaussian or a t copula then it will need the aggregate 
correlation matrix as described above.  
 
7.6.4 The first stage in the derivation of the overall aggregate correlation matrix is the 
defining of the correlation matrix at an individual BU level. Once this has been done 
there is then the issue of the correlation matrix data entries for the cross-terms such as 
UK / Equity, France / Fixed Interest etc. 
 .  
7.6.5 Example 
 
7.6.5.1 Let us consider a simple example of a company with two business units A and B.  
Let each BU have two risk factors,1 and  2 say, where axy and bxy  represent the 
correlation between risks x and y (for all combinations of x,y = 1 and 2) for BU A and 
BU B respectively.  

The correlation matrix for BU A will be 







1

1

12

12

a

a
; and  
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the correlation matrix for BU B will be 







1

1

12

12

b

b
.  

Then the enlarged correlation matrix for the whole company would look like: 
 



















1??

1??

??1

??1

12

12

12

12

b

b

a

a

 

 
7.6.5.2 For example, an insurance company might have 15 BUs, each of which has 10 
separate risk categories. In this case, the enlarged correlation matrix will be of size 150 x 
150.    
 
7.6.5.3 There are several questions immediately raised by this approach: 

- How does one estimate cross terms such as the correlation between a1 and b1 etc. 
- Once the cross-terms are filled in, we still need to make sure that the resulting 

correlation matrix is PSD (see section 7.7). 
 
7.6.5.4 One possible approach to this common problem was proposed by Group 
Consultatif (2005)  
 
7.6.6 Group Consultatif Example of Calculating Cross-Terms 
 
7.6.6.1 Consider two risk types X and Y, and two business units BU A and BU B in 
Figure 15.  
 
Figure 15 Example of calculating cross-terms    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The question arises of how to estimate the cross-term identified by ?.  
 
7.6.6.2 The proposed approximation of the correlation between risk type X in BU A (XA) 
and risk type Y in BU B (YB) is given by: 

BU A 
Risk type X 

BU B 
Risk type X 

BU B 
Risk type Y 

BU A 
Risk type Y 

CorX(A,B) CorY(A,B) 

CorA(X,Y) 

CorB(X,Y) 
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7.6.6.3 Consider the following simple example. There are two permissible routes to get 
from XA to YB, these are described in the ‘Path taken’ in the following Table 8. Let us 
assume that CorX(A,B) = -0.7, CorY(A,B) = 0.9, CorA(X,Y) = 0.7 and CorB(X,Y) = 0.8. 
 
7.6.6.4 Then using the proposed Group Consultatif formula (XA,YB) = 0.075.  
 
7.6.6.5 One of the conditions on the correlation factor we are trying to estimate is 
expressed by the following double inequality (See Appendix A, section A2.4 for its 
derivation): 

)1)(1()1)(1( 2
,

2
,,,,

2
,

2
,,, ZYYXZYYXZXZYYXZYYX    (*) 

7.6.6.6 Using the formula in (*) we have estimated in Table 8 the lower and upper bounds 
of the correlation according to which of the two possible paths have been taken. The 
correct correlation between XA and YB should lie in the permitted ranges of each path. 
Quite clearly this is not the case.   
 
Table 8 Lower and Upper Bounds for correlation  
Path taken Lower Bound Upper Bound
CorX(A,B) & CorB(X,Y) -0.988 -0.132
CorA(X,Y) & CorY(A,B) 0.319 0.941  
 
7.6.6.7 It should be noted that this formula will not always produce sensible answers and 
illustrates the general issues in estimating cross-terms using similar formulae. 

7.7 Positive Semi-Definite Matrices 
 
7.7.1 Once we have filled in the elements of the correlation matrix there is a risk that 
the resulting matrix may not be Positive Semi-Definite, i.e. it will not be a consistent 
correlation matrix.  
 
7.7.2 If a matrix is not PSD, an insurance company may typically still use it in the 
variance-covariance approach to calculate its economic capital. However, the calculation 
approach used with an inconsistent correlation matrix might lead to counter-intuitive 
results like a total diversified economic capital higher than the total undiversified capital. 
 
7.7.3 Furthermore, if an insurance company is using a copula approach that requires a 
correlation matrix e.g. Gaussian copula or T copula then the model will not work as a 
matrix has to be PSD for it to be inverted as part of the Monte Carlo simulation process.  
 
7.7.4 It is relatively easy to find a solution in mathematical literature which alters a 
given inconsistent correlation matrix (a non-PSD symmetric matrix with unity diagonal) 
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until it is PSD. See for example the eigenvalue method described in Budden et al (2008) 
or in Embrechts et al (2005).  
 
7.7.5 The problem faced is that if a solution is relatively simple, it can produce quite 
large changes in the specified correlations and there is no way of knowing in advance if 
these changes are sensible or what is the impact on the resultant economic capital.  
 
7.7.6 Often insurance companies will want to impose certain constraints on the PSD 
algorithm e.g. certain key correlations are left unchanged, or can only deviate with a 
small tolerance. In such cases the algorithms become a lot more complicated and the 
resulting calculations an iterative process. 
 
7.8 Elliptical Distributions 
 
7.8.1 There is an important class of models for which risk aggregation is possible in 
closed form. Methods of aggregation based on square roots can be derived from this 
class, known as ‘elliptical distributions’, or sometimes ‘elliptically contoured 
distributions’.  
 
7.8.2 Elliptical distributions are a multivariate generalisation of the class of symmetric 
distributions in one dimension, and have the property that all linear combinations of 
coefficients produce distributions with the same shape. In other words, distributions of 
different linear combinations are related to each other by shifting and scaling. 
 
7.8.3 To put this more formally, an elliptically contoured distribution is characterised 
by a standardised cdf, a mean vector m and a scale matrix V. The standardised cdf, 
denoted by FS, must represent a symmetric distribution about 0, but does not have to be 
normal or thin-tailed.  
 
7.8.4 The elliptical distribution of a vector X is then defined by the probability 
distribution of each linear combination b.X: 
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7.8.5 Where the standardised cdf has finite variance, the definition implies that b.X has 
mean b.m and variance σ2bTVb. We can deduce that X has a mean vector m and variance-
covariance matrix  σ2V.  
 

7.8.6 The correlation matrix R is  usually defined by:
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7.8.7 We now derive the so-called correlation formula for capital aggregation.  
The correlation formula for economic capital takes the form: 
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7.8.8 Here, Rij is a correlation matrix and {ci} is the capital required for the ith  risk.  
 
7.8.9 For a proof of this and further discussion refer to Appendix C.   
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8. COPULA MODELLING METHODS 

 
We introduced copulas on an intuitive level in Section 5.6 as a convenient method 

for combining individual distributions into a multivariate distribution. This section 
defines copulas more rigorously, shows various types of copulas and introduces the 
important concept of tail dependence. 
 
8.1 Introduction 
 
8.1.1 This method is more flexible than the use of a variance-covariance matrix. 
Copulas are very flexible in that one can combine a varied number of marginal risk 
distributions together with a varying number of copula distributions. Various types of 
copulas can be selected depending on one’s views on such characteristics of a 
dependency structure as symmetry, skewness, kurtosis and tail dependence. However, the 
full marginal risk distribution is needed for each risk, rather than in the case of the 
variance-covariance matrix approach only the relevant capital number. 
 
8.1.2 In a simple case of two risks X and Y, a copula C(u,v) is part of a mathematical 
expression of their joint distribution function F(x,y) in terms of the individual marginal 
risks distributions FX(x) and FY(y):  

F(x,y) = C(FX(x), FY(y)). 
 
8.1.3 It can be observed that as FX(x) and FY(y) take values between 0 and 1, the 
function C is a joint distribution function on the unit square, or in other words a joint 
distribution of uniform distributions on the space [0,1].   
 
8.1.4 This approach can be extended to aggregate more than two marginal distributions 
into a joint multivariate distribution. A very convenient feature of copulas is that we can 
use the same copula function C(u,v) in combination with any marginal distributions we 
like. This follows from the Sklar’s theorem shown in the next section. 
 
8.1.5 By choosing the type of copula distribution function, we can control the features 
of dependency between risks. For example, a bivariate (two variables) t copula describes 
symmetric dependency in both of the joint left and right tails i.e. in the regions of [0,0] 
and [1,1] of the unit square. There are copulas characterised by a heavy right tail 
dependency, they have a larger concentration in the right tail, which means that an 
extremely high outcome for one risk factor is more likely to be occur in combination with 
the extremely high outcome for the second risk factor. 
 
8.2 Copula Mathematics 
 
8.2.1 An n-dimensional copula is a multivariate joint distribution on [0,1]n such that 
each marginal distribution is uniform on [0,1], i.e. copula C is a distribution function 
P(U1≤u1, …, Ud≤ud) of a random vector (U1, …, Ud) such that for every k P(Uk≤u)=u for 
each ]1,0[u .  More specifically, 
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   1,01,0: nC  is a copula if: 

-   0uC  when u  has at least one 0 component 

-   iuuC   when  1,...1,,1,...,1 iuu   

-  uC  is n-increasing, for example for n=2: 

For any ),( 21 aa  and ),( 21 bb  such that kk ba  : 

 
0),(),(),(),( 21212121  aaFabFbaFbbF . 

 
8.2.2 In other words, a copula is a joint distribution function. It takes the probability 
values from n risk factors and converts them into a single number. Say, we have 3 risk 
factors with the distribution functions F1(x), F2(x) and F3(x). Say, we are also given from 
the form of our copula that the triplet (0.1, -0.4, 0,5) corresponds to copula value 0.4. 
Thus, we know that the combination of risk values [F-1

1(0.1, F-1
2(-0.4), F-1

3(0,5)] has the 
probability density of 0.4. This way we can build the joint distribution of our three risk 
factors. 
 
8.2.3 Sklar’s Theorem is fundamental to the use and application of copulas. 
 
8.2.4 Sklar’s Theorem 

If ),...,( 1 nxxF  is a joint distribution function with marginal risk distributions 

)(),...,( 11 nn xFxF  then there exists a copula C  such that for every nRx  

))(),...,((),...,( 111 nnn xFxFCxxF  . Moreover, if )(),...,( 11 nn xFxF  are continuous, 

then C  is unique. 
 
8.2.4.1 This theorem means that for every n-dimensional distribution function, say 
describing the joint behaviour of n risk factors, it is possible to separate the information 
about each individual risk factor’s independent behaviour from the information about 
how the factors depend on each other. We do not have to know anything about the shape 
of risk factors themselves, but we know which mathematical function links them 
together. This function is called a copula of the original multivariate distribution. 
 
8.2.4.2 Sklar’s theorem provides the mathematical framework that allows the copula to 
aggregate the individual marginal risk distributions to derive a joint distribution. 
 
8.2.4.3 Furthermore: 

If C  is a copula for ),...,( 1 nXX  then for every set of strictly increasing 

transformations nTT ,...,1  C  is also a copula for ))(),...,(( 1 nXXT . 

 
8.2.4.4 This means that a copula of a random vector with continuous marginal 
distribution functions is invariant under strictly increasing transformations of the 
components of the random vector. We note that this property is similar to the rank 
correlation properties. 
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8.3 Advantages and Disadvantages of Copula Approach 
 

Advantages 
- Copula use is consistent with a typical actuarial and financial risk modelling 

process whereby marginal risk distributions for each risk are first determined and 
then one considers separately the aggregation process.      

- For a selected copula type, there are a wide range of dependency structures that 
are possible to invoke from the use of different copula parameters. 

- Copulas enable the user to build models that reflect reality more in that it is 
possible to allow for non-linearities (e.g. heavy tails) and other higher order 
dependencies  

- Most types of copulas are easily simulated using Monte-Carlo methods. 
- Copulas allow us to express dependencies in terms of quantities of loss 

distributions. A multivariate loss function constructed using a copula allows the 
estimation of losses at any given percentile level. 

- Copulas are gaining greater recognition as best practice by the various 
international actuarial and supervisory organisations, which should help in the 
internal model approval process. 

 
Disadvantages 
- Copula selection is non-trivial. There are many considerations. 
- There is usually not enough data to perform a credible calibration of a copula, 

especially in the tail. By definition the extreme joint loss events from various risks 
that one is trying to reflect in the modelling process are sparse in historical data. 

- The bottom-up Monte Carlo simulations approach is more demanding 
computationally, especially if the number of risks is large 

- Any economic capital model becomes more of a ‘Black Box’. There is often a 
lack of transparency in the modelling process. The model is harder to understand 
and check by a non-mathematician. 

- Communication both internally and externally becomes more of an issue when 
dealing with non-technical people. This should not be underestimated given the 
advent of Solvency II and the Pillar III disclosure requirements. This topic 
becomes important under Solvency II and the Internal Model Approval process.   

 
8.4 Coefficient of Tail Dependence     
 
8.4.1 Tail dependence coefficient is an important copula parameter which defines how 
likely it is that one risk variable takes an extreme value, given that another risk variable 
takes an extreme value. We need to use copulas with a higher tail dependence parameter 
if we think that two variables are a lot more dependant in the stressed environment than 
in the normal circumstances, i.e. exactly the kind of behaviour as demonstrated by the 
financial markets in the last couple of years. 
 
8.4.2 This section provides a mathematical definition of tail dependence coefficient 
necessary to follow the rest of Section 8. We return to tail dependence, in particularly 
contrasting it with ‘tail correlations’, in Section 9. 
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8.4.3 Let ),( YX  be a 2-dimensional random vector with marginal distribution functions 

XF  and YF .  
 

The Coefficient of Upper Tail Dependence of ),( YX  is defined as follows:  

 ))()((lim),( 11

1
uFXuFYPYX XY

u
U




 , provided that the limit 

 1,0U  exists. 

 
The Coefficient of Lower Tail Dependence of ),( YX  is defined as follows:  

))()((lim),( 11

0
uFXuFYPYX XY

u
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 , provided that the limit 

 1,0L  exists. 
 

For example, if (X,Y) is a 2-dimensional random vector with the copula C  then it 
can be shown that: 
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8.5 Different Types of Copula    
 
8.5.1 Gaussian Copula 
 
8.5.1.1 The Gaussian copula is the copula of the d-dimensional normal distribution with 
linear correlation matrix R . It is given by the following formula: 
 

 )(),...,()( 1
1

1
d

d
RR uuuC   ,  

 
where d

R  denotes the d-dimensional standard normal distribution function with linear 

correlation matrix R, and 1  denotes the inverse of the standard normal distribution 
function.  The Gaussian copula’s tail dependencies are zero, i.e. U = L= 0. This 
limitation means that the Gaussian copula is not suitable for modelling dependency with 
heavy tails. 
 
8.5.1.2 Figure 16 shows simulations from a 2-dimensional Gaussian copula. 

 (i) the first graph shows results based on a Gaussian copula with a correlation rho =   
0.2; and 

 (ii) the second graph one with correlation rho = 0.8. Clearly, the points on the 
second graph are closer to a straight line.  

 
8.5.1.3 The correlation matrix R, which is a key input to the Gaussian copula needs: 

- To be symmetric with unity diagonal elements. 
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- All of its pairwise values to be between -1 and 1. 
- To be Positive Semi-Definite (PSD) (see Appendix A). 

 
Figure 16 Gaussian copula simulations (rho = 0.2 and rho = 0.8)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8.5.2 t Copula 
 
8.5.2.1 The t copula is constructed from the multivariate t distribution in much the same 
way as the Gaussian copula is derived from the multivariate normal distribution. Some of 
its properties are similar to the Gaussian copula, but there are differences: 

- Similarly to the Gaussian copula the t-copula is an elliptical (‘bell shaped’) 
function. This makes it mathematically tractable.  

- The t copula (and Gaussian copula) is easily extended to the multidimensional 
case, unlike some other copulas which are limited to two risks only.  

- The t copula can be easily simulated just like the Gaussian copula. 
- The t copula has non-zero tail dependency coefficients. This is very important, 

because it allows us to model positive tail dependency between risks.  
- Like the Gaussian copula, it requires a correlation matrix R as a parameter input. 
- However, in addition it also requires a degrees-of-freedom (‘df’) parameter. The 

df parameter determines the strength of the tail dependency, the lower the value of 
df the greater the tail dependency. 

- The t copula is symmetrical and its left and right tail dependencies are equal. This 
is not the perfect solution given that economic capital modelling is predominantly 
concerned with only one side of the distribution. 

- A limitation of the t copula when modelling more than two risks is that aside from 
the pairwise correlation coefficient themselves there is only one variable, the df 
that controls the tail dependency structure. This means that all pairs of risk have 
the same tail dependency, which is clearly not realistic. This limitation can be 
overcome by the generalisation of a t-copula commonly known as the 
Individuated T (‘IT’) copula. See Barnett et al (2007). 

- The bivariate t copula with n degrees of freedom and correlation   has the 
following tail dependence coefficients: 

 )1()1)(1(),(),( 1    nSYXYX nUL  
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where 1nS  is the t-distribution survival function Pr(X>x) with n+1 

degrees of freedom.  
 
8.5.2.2 Figure 17 shows simulation results for a bi-variate t copula with (i) correlation 
rho=0.5 and df=20 and (ii) correlation rho = 0.5 and df =2. It can be seen from the second 
graph that the copula with df =2 has a higher tail dependence. 
 
Figure 17 t copula simulations (rho = 0.5, df = 20 and df = 28) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8.5.3 Archimedean Copulas  
 
8.5.3.1 Another family of copulas frequently used in actuarial modelling, in particular in 
non-life insurance, is the Archimedean family. The most common types of copulas from 
this family are the Gumbel and Clayton bi-variate copulas.  
 
8.5.3.2 The specific feature of the Archimedean copulas is the ability to model 
particularly heavy tail dependence. Unlike the t copulas, the Archimedean copulas are 
asymmetric. They allow the modelling of dependency structures where tail dependency 
only exists on one side of the distribution, i.e. either upper or lower tail dependence. They 
are particularly useful in causal models when one is only interested in specifying a finite 
number of bivariate risk dependencies. 
 
8.5.3.3 Unlike the Gaussian and t copulas, they are not derived from multivariate 
distribution functions using Sklar’s theorem. 
 
8.5.3.4 Another distinguishing feature of the Archimedean copulas compared to the 
Gaussian copula and the t copula is that they do not require a correlation matrix R as an 
input. Instead, they include a parameter which controls the tail dependency between two 
risks. 
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8.5.4 Gumbel Copula 
 
8.5.4.1 The Gumbel family of copulas is given by the formula:  

     


1

2121 lnlnexp),( uuuuC  , for 1 . 

 By substituting this expression into the formula for the coefficient of tail dependence we 
get: 

 122 U  and 0L . 

 
8.5.4.2 Figure 18 shows simulations from a 2-dimensional Gumbel copula with the 
parameters: 
  (i) theta=2; and 
  (ii) theta=4. 
 It is clear from the second graph that the copula with theta=4 has a higher upper tail 
dependence.  
 
Figure 18 Gumbel copula simulations (theta = 2 and theta = 4) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8.5.5 Clayton Copula 
 
8.5.5.1 The Clayton family of copulas is given by the formula:  

  


/1

1121 1),(
  uuuuC , for 0 . Then 

 12L  and 0U . 

 
8.5.5.2 Figure 19 shows simulations from a 2-dimensional Clayton copula with the 
parameters: 
  (i) theta=2; and 

(ii) theta=10. 
It is clear from the second graph that the copula with theta=10 has a higher lower tail 
dependence.  
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Figure 19 Clayton copula simulations (theta = 2 and theta = 10) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8.6 Copula Selection 
 
8.6.1 At the moment, the most commonly used copula in economic capital modelling is 
the Gaussian copula. It is relatively easy to understand, mathematically tractable and can 
be programmed easily to generate simulated output within an economic capital model. A 
limitation is that it does not induce tail dependency for extreme losses.  

8.6.2 A natural progression on from the Gaussian copula is to consider the use of other 
copulas such as the t copula, or those from the Archimedean copula family such as the 
Gumbel, Clayton and Frank copulas.  

8.6.3 In economic capital modelling we are of the opinion that the most obvious copula 
to investigate beyond the use of the Gaussian copula is the t copula (and later its 
extension the Individuated T (”IT”) Copula). Even with the use of the t copula there still 
remains the issue of determining both the: 

 (i) correlation matrix; and 
 (ii) tail dependency parameter, 

 so as to produce results, that give the requisite tail dependency at high loss percentiles.  
 
8.7 Parameterisation 
 
8.7.1 The practical issues arising when trying to estimate a correlation coefficient from 
real data were highlighted in section 7.5. With the parameterisation of copulas there is a 
further issue of how to parameterise the factors that determine the degree of tail 
dependency between risks in extreme loss scenarios.   
 
8.7.2 For the t copula (or its IT copula extension) one has to estimate degrees-of-
freedom parameters, whether it is just one parameter as for the more straightforward t-
copula, or n parameters for the more complex IT-copula. One way of doing this is to 
estimate the tail dependencies for each pair of risk factors from historical data or expert 
opinion / judgement, and then use an iterative algorithm which finds the set of degrees-
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of-freedom parameters implying the closest possible tail dependencies using the 
approaches described later in this section. 
 
8.7.3 If we aim to model tail dependency more accurately, whichever type of copula we 
are using, we will need to estimate extra parameters which influence the tail dependency.  
 
8.7.4 Estimating copula parameters needs good quality data. Problems arising include, 
however it should be noted that the first three are not necessarily unique to copulas: 

- Data may not be available, and if available, either of poor quality or incomplete. 
Asset related data such as returns for equity and fixed interest rate risk are 
generally more readily available and homogenous than some of the data related to 
insurance line of business related risks.    

- Data may be sparse due to the low frequency of the risk.   
- The frequency of the data will also be dependent on the nature of the risks. Asset 

related time series data is available at least daily whereas insurance loss data may 
typically only be available on either quarterly or annually    

- If we try to estimate parameters from real data, then we are going to have to use 
data from economic periods where extreme events occurred and by definition 
these very low frequency events are scarce data sets.  

- Managing the difficult trade-off of having a long enough historical time series to 
be representative of such events versus the potential secular risk arising.  

 
8.7.5 There are two general approaches to estimating copula parameters from a data set. 
These methods are described in Embrechts et al (2005). The two main methods are: 
 

- Maximum Likelihood Estimation. 
- Method of Moments. 

 
8.7.6 Maximum Likelihood Estimation 
 
8.7.6.1 The maximum likelihood estimation method consists of the following general 
procedure applied to any data set. For the sake of illustration we will work in 2 
dimensions with the two risks X and Y. By extension the same procedure is valid for 
dimensions > 2: 

- Marginal risk distributions are fitted separately for each of X and Y. 
- The so determined marginal risk distributions are then used to invert the joint data 

observations of (x,y) into a matrix U of joint values (u,v), where, u and v are 
defined by FX(x)  = u and FY(y) = v; x and y are values from X and Y respectively 
and u and v are values on the unit interval [0,1].  

- A copula is then fitted to the matrix U using the method of maximum likelihood. 
 
Even when the copula is the main object of interest, one still has to estimate the marginal 
risk distributions, as the copula data are never directly observable in practice.  
 
8.7.6.2 The success or otherwise therefore of the statistical quality of the estimates of the 
copula parameters will depend on the quality of the marginal risk distribution estimates. 
The marginal risk distributions in the first step can be chosen using either a: 
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- Parametric estimation method known as the Inference Functions for Margins 
(IFM)  

- Non-Parametric estimation with variant of empirical distribution known as 
Canonical Maximum Likelihood (CML). 

 
8.7.6.3 The first of these methods involves the fitting of an appropriate parametric model 
to the marginal risk data in question using Maximum Likelihood or some other method. 
In the event of a very sparse data a variant on this is to make use of a priori marginal risk 
distribution for the risk of interest.   
 
8.7.6.4 The second method involves the estimation of an empirical cumulative 
distribution function from the data, one method involving the divisor being n+1 rather 
than n such that the maximum or minimum points of the data set do not correspond to 
either u = 0 or 1. In addition Kernel Smoothing may be adopted to produce a smooth 
rather than irregular shaped curve.      
 
8.7.6.5 To implement the Maximum Likelihood method the copula density needs to be 
derived. The Maximum Likelihood Estimate is generally found by the numerical 
maximisation of the resulting log-likelihood function.      
 
8.7.6.6 Appendix F provides an illustration of the CML method to 10 years worth of joint 
monthly data for 3M LIBOR vs FTSE All Share Total Return. The first graph shows the 
scatter plot of the joint (x,y) values and the second graph the scatter plot of the joint (u,v) 
after the CML method has been used to fit an empirical CDF to the data. In this example, 
Kernel smoothing was applied to the empirical CDF.      
 
8.7.6.7 Both the Gaussian and t copulas were fitted, the following parameters being 
derived: 

- Gaussian copula: Correlation = 29.52% 
- t copula: Correlation = 27.61%; t copula d.f. = 2.64 

 
8.7.7 Method of Moments 
 
8.7.7.1 The method-of-moments consists of using an empirical estimate of Kendall’s tau 
rank correlation (or alternatively Spearman’s rank correlation) to derive an estimate of a 
copula parameter.  
 
8.7.7.2 This simpler procedure uses sample rank correlation estimates. This method has 
the advantage that marginal risk distributions do not need to be estimated and 
consequently inference about the copula does not depend on margin assumptions. 
 
8.7.7.3 We illustrate the method by estimating the correlation matrix parameter used for 
Gaussian and t copulas. 
 
8.7.7.4 Both the Gaussian and t copulas require a linear correlation matrix as an input 
parameter. This matrix is the linear correlation matrix related to the corresponding 
multivariate Normal distribution. This means that, if the user is estimating the correlation 
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parameters from sample data, then most likely the estimated correlation coefficient will 
be different from that required as input to the Gaussian and t copulas to perform Monte 
Carlo simulation, unless that is we assume that the marginal risk distributions being used 
are normally distributed. 
 
8.7.7.5 The theoretically correct approach for Monte Carlo simulation is to calculate the 
Kendall tau correlation coefficients between risks from sample data and then to convert 
these into linear correlation parameters using the following formula, see Embrechts et al 
(2005): 









2
sin Kendall

Gaussian


 .  

This formula works for any elliptical copula, of which the Gaussian and t-copulas are the 
most notable. 
 
8.7.7.6 In practice, if sample data arises from marginal risk distributions related to the 
Normal distribution family such as the Student t, Chi Squared, Gamma and Lognormal 
distributions then the estimated correlation parameters Gaussian are generally quite close to 
the estimated linear correlation coefficients from the sample data.  
 
8.7.7.7 However, the Pareto, Burr and Cauchy distributions are examples of marginal risk 
distributions where the estimated correlation parameters Gaussian are very different to the 
estimated linear correlation coefficients from the sample data. 
 
Figure 20 shows the correlation parameters sampled from two-dimensional distributions 
using a Gaussian copula with various marginal distributions. 
 
Figure 20 Correlations using Gaussian copula and various marginal risk distributions 
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8.8 Monte Carlo Simulation 
 

This section illustrates, through the use of a case study, the impact of different 
correlation and dependency structures on the economic capital modelling results of a 
hypothetical insurance organisation ABC Insurance Company. 
 
8.8.1 ABC Insurance Company 
 
8.8.1.1 ABC Insurance Company writes non-life insurance business in the UK. It 
calculates economic capital using both (i) copula simulation and a (ii) variance-
covariance matrix approach. This will involve separate risk distributions by risk category, 
a correlation matrix and an appropriate copula.  
 
8.8.1.2 To illustrate the concepts, the marginal risk distributions are all initially assumed 
to be Lognormal with a ratio of the Standard Deviation / Expected Loss, otherwise known 
as the Coefficient of Variation (‘CV’), equal to 25%.7 Furthermore the pairwise 
correlation coefficients between all risks are assumed to be identical.  
 
8.8.2 Risk Distributions 
 

Table 9 lists of the risk categories and the parameters of the risk distributions.  
 
Table 9 Risk distribution assumptions 
Risk Type Distribution Mu Sigma E(X) SD(X) CV(X)
Equity Lognormal 7.5706 0.2462 2,000 500 25%
Property Lognormal 7.5706 0.2462 2,000 500 25%
Interest Rate Lognormal 7.5706 0.2462 2,000 500 25%
Credit Spread Lognormal 7.5706 0.2462 2,000 500 25%
Credit Default Lognormal 7.5706 0.2462 2,000 500 25%
UW - Cat Lognormal 7.5706 0.2462 2,000 500 25%
UW Non-Cat Lognormal 7.5706 0.2462 2,000 500 25%
Reserve Lognormal 7.5706 0.2462 2,000 500 25%
Expenses Lognormal 7.5706 0.2462 2,000 500 25%
Operational Lognormal 7.5706 0.2462 2,000 500 25%  
 
8.8.3 Modelling Assumptions  
 
8.8.3.1 The modelling results are shown for four different copulas, namely: 

- Gaussian Copula 
- t Copula with 10, 5 and 2 degrees of freedom (d.f.) 
- Furthermore, economic capital numbers are also shown using the variance-

covariance matrix approach (V CV) to risk aggregation      
- Results are shown at varying percentiles ranging from 75% to 99.95% 
- Economic capital is based on a Value at Risk (VaR) risk measure over 12-months 

and Capital = Loss (%) – E(Loss) 8 9  

                                               
7 Results are also shown for the (i) Lognormal distribution with a CV of 50% and the (ii) Normal 
distribution with a CV of 25%. These other marginal risk distribution parameters are shown in Appendix E.  
8 We have used the notation 90%, 99.5% to mean the worst 1 in 10, 1 in 200 year result etc. 
9 Loss(%) = Loss amount at % percentile of interest e.g. 99%; E( Loss) = Expected Loss 
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- Copula simulation results are based on 25,000 simulations for each copula.  
- Losses are additive. 

 
8.8.3.2 The copula simulation exercise has been performed using the Matlab software 
from The Mathworks. The Monte Carlo simulation of correlated U(0,1) values of risks 
for the Gaussian and t copulas within Matlab take as input linear correlation coefficients.  
 
8.8.3.3 Correlation Matrix 
   

Figure 21 shows the correlation matrix with a correlation of 25% between risks.  
 
Figure 21 Correlation Matrix  
CORRELATION MATRIX

No. 1 2 3 4 5 6 7 8 9 10
Equity 1 1.00 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Property 2 1.00 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Interest Rate 3 1.00 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Credit Spread 4 1.00 0.25 0.25 0.25 0.25 0.25 0.25
Credit Default 5 1.00 0.25 0.25 0.25 0.25 0.25
UW - Cat 6 1.00 0.25 0.25 0.25 0.25
UW Non-Cat 7 1.00 0.25 0.25 0.25
Reserve 8 1.00 0.25 0.25
Expenses 9 1.00 0.25
Operational 10 1.00  
 
 
8.8.4 Modelling Results 
 

The results of this modelling exercise are discussed in sections 8.8.5 to 8.8.7. 
 
8.8.5 Lognormal risks (CV = 25%, Correlation = 25%) 
  
Table 10 Lognormal risks (CV = 25%, Correlation = 25%) 
Economic Capital - 25% Correlation
Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV

75.0% 4 1,760 1,685 1,578 1,421 1,658
90% 10 3,688 3,610 3,582 3,418 3,763
95% 20 4,928 4,906 5,004 4,889 5,182
99% 100 7,423 7,916 8,177 9,049 8,212

99.5% 200 8,391 9,087 10,031 11,052 9,455
99.95% 2,000 11,082 13,926 14,929 18,544 13,468

% difference cf Gaussian Copula 
Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV

75.0% 4 0.0% -4.2% -10.3% -19.3% -5.8%
90% 10 0.0% -2.1% -2.9% -7.3% 2.0%
95% 20 0.0% -0.4% 1.6% -0.8% 5.2%
99% 100 0.0% 6.6% 10.2% 21.9% 10.6%

99.5% 200 0.0% 8.3% 19.5% 31.7% 12.7%
99.95% 2,000 0.0% 25.7% 34.7% 67.3% 21.5%  
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8.8.5.1 The economic capital results for the t copula and the variance-covariance matrix 
approaches have been expressed as percentage changes +/- % of the economic capital of 
the Gaussian copula, e.g. at 99% the economic capital using the t copula with 5 d.f. 
(8,177) is 10.2% higher than from the Gaussian copula at the same percentile (7,423). 
 
8.8.5.2 Note: The variance-covariance matrix calculation uses a linear correlation matrix 
consistent with the 25,000 simulated lognormal outputs for each risk within each of the 
four different copula simulations runs. In fact the average correlations of the 45 (= 
10.(10-1)/2) pairs were 24.1%, 24.6%, 25.0% and 25.3% respectively for each of the 
Gaussian copula, t copula (10 df), t copula (5 df) and t copula (2 df). Using 25% in the 
variance-covariance matrix calculation is therefore consistent.      
 
8.8.5.3 Comments of note are: 

- If we consider the Gaussian copula as our reference point then quite clearly there 
is a very wide range of outcomes depending on the approach used to aggregate 
risks.   

- When the marginal risk distributions are non-normally distributed and positively 
skewed, then at higher percentiles the V CV capital approach to capital 
aggregation gives larger economic capital values than use of the Gaussian copula.    

- With lognormal marginal risk distributions, the variance-covariance matrix 
approach to economic capital at the higher percentiles produces similar capital to 
a t copula with appropriate degrees of freedom. For example at 99% the V CV 
economic capital is 8,212 which is marginally larger than the economic capital of 
8,177 arising from the use of a t copula with 5 d.f.     

- As the percentile increases, the larger the implied d.f for the t copula (lower tail 
dependency) to give the equivalent level of economic capital as the V CV 
approach.   
 

8.8.5.4 Appendix E provides the same exhibit as above but shows the sensitivity of the 
results to different correlation coefficients. Results are shown for correlations of 10%, 
25% and 50%.   
 
8.8.6 Lognormal risks (CV = 25% and 50%, Correlation = 25%) 
 
8.8.6.1 A natural question to ask is the sensitivity of the economic capital to variation in 
the CV of the underlying marginal risk distributions. In this simple example, the CV of 
the Lognormal distribution has been increased from 25% to 50%.   
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Table 11 Lognormal risks (CV = 25% and 50%, Correlation = 25%) 
Economic Capital - 25% Correlation CV 25%
Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV

75.0% 4 0.0% -4.2% -10.3% -19.3% -5.8%
90% 10 0.0% -2.1% -2.9% -7.3% 2.0%
95% 20 0.0% -0.4% 1.6% -0.8% 5.2%
99% 100 0.0% 6.6% 10.2% 21.9% 10.6%

99.5% 200 0.0% 8.3% 19.5% 31.7% 12.7%
99.95% 2,000 0.0% 25.7% 34.7% 67.3% 21.5%

Economic Capital - 25% Correlation CV 50%
Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV

75.0% 4 0.0% -4.7% -11.2% -24.4% -17.0%
90% 10 0.0% -0.6% -3.3% -5.5% 0.8%
95% 20 0.0% 3.4% 0.4% 3.7% 7.3%
99% 100 0.0% 6.0% 10.9% 23.5% 18.2%

99.5% 200 0.0% 11.5% 14.1% 32.9% 24.0%
99.95% 2,000 0.0% 13.8% 29.1% 57.1% 38.9%  

 
8.8.6.2 Again as in section 8.8.5 the economic capital in the tables is expressed as 
percentage changes +/- % of the economic capital of the Gaussian copula.  
 
8.8.6.3 Comments of note are: 

- At the higher percentiles, 95% and above, a larger CV results in larger percentage 
increases of V CV economic capital compared to the Gaussian copula.   

- Furthermore, with a higher CV the equivalent t copula implied d.f. such that the 
capital is equivalent to that of the V CV approach are lower (i.e. greater tail 
dependency). For example, at 99% with a CV of 25% the V CV approach is 
similar to a t copula with 5 d.f. whereas with a CV of 50% the V CV approach 
looks to be similar to a t Copula with a d.f. about half-way between 2 and 5 d.f.      

 
8.8.7 Normal vs Lognormal risks (CV = 25%, Correlation = 25%) 
 
8.8.7.1 The analysis here considers the sensitivity of the economic capital results to 
variation in the assumed marginal risk distributions. A comparison has been made of the 
results arising from use of the Normal distribution compared to those arising from use of 
the Lognormal distribution as used in the prior sections. 
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Table 12 Normal vs Lognormal risks (CV = 25%, Correlation = 25%) 
Economic Capital - 25% Correlation Normal CV 25%

Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV
75.0% 4 0.0% -2.7% -7.4% -15.0% 0.9%

90% 10 0.0% -1.7% -3.3% -7.4% 0.8%
95% 20 0.0% -1.1% -0.2% -3.3% 0.6%
99% 100 0.0% 3.7% 5.4% 13.1% 0.2%

99.5% 200 0.0% 5.5% 12.1% 19.5% 1.0%
99.95% 2,000 0.0% 19.6% 19.5% 35.8% 2.2%

Economic Capital - 25% Correlation LogNorm CV 25%
Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV

75.0% 4 0.0% -4.2% -10.3% -19.3% -5.8%
90% 10 0.0% -2.1% -2.9% -7.3% 2.0%
95% 20 0.0% -0.4% 1.6% -0.8% 5.2%
99% 100 0.0% 6.6% 10.2% 21.9% 10.6%

99.5% 200 0.0% 8.3% 19.5% 31.7% 12.7%
99.95% 2,000 0.0% 25.7% 34.7% 67.3% 21.5%  

 
8.8.7.2 Again, as in sections 8.8.5 and 8.8.6 the economic capital in the tables is 
expressed as percentage changes +/- % of the economic capital of the Gaussian copula. 
 
8.8.7.3 Note: For the Normal distribution the variance-covariance matrix calculation uses 
a linear correlation matrix consistent with the 25,000 simulated normal outputs for each 
risk. The average correlations were 24.7%, 24.1%, 24.7% and 24.8% respectively for 
each of the Gaussian copula, t copula (10 df), t copula (5 df) and t copula (2 df). Using 
25% in the variance-covariance matrix calculation is therefore consistent.      
 
8.8.7.4 Comments of note are: 

- When the marginal risks distributions are Normal then the V CV approach to 
capital aggregation should give equivalent economic capital results to those of the 
Gaussian copula.  

- The last column in the top table above shows percentage value differences that are 
nearly, but not exactly equal to 0%. Any differences from 0% being due to 
simulation error, even with 25,000 simulations. 

 
8.8.8 Conclusions 
 

As we have seen in the case of the Lognormal distribution the capital levels from 
use of a Gaussian copula at higher loss percentiles are lower than that from use of the 
variance-covariance matrix approach. This should be noted given that the Gaussian 
copula is often used by insurance companies to derive aggregate risk distributions 
perhaps without consideration of the impact when marginal risk distributions are no 
longer normal, and positively skewed as is often the case with many insurance loss risk 
distributions, or negatively skewed asset returns when looking at asset risks, of life and 
non-life insurance companies.  
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8.9 Copula Aggregation through Vines   
 
8.9.1 We have described the use of copulas to link two risks (bivariate). We now 
consider the extension to more than two risks. It turns out that extending elliptical (e.g. 
Gaussian and T copulas) to n dimensions is straightforward, but constructing other (in 
particular Archimedean) copulas in n dimensions can prove quite difficult. 
 
8.9.2 One way to use non-elliptical copulas in a multi-dimensional space is to construct 
bivariate copulas for various pairs of risk, and then link them up in a multi-dimensional 
copula using a technique called “Vine copulas”. The paper by Aas et al (2009) describes 
this technique in a lot of detail. This section provides its brief overview. 
 
8.9.3 Let us consider the 3-dimensional example. We are not given the copula function 
linking three random variables  321123 ,, xxxc , but we are given three bivariate copulas 

 ,12c ,  ,23c  and  ,2|13c . We can use  ,12c  with the distribution functions 

 11 xf  and  22 xf  to come up with the joint distribution function  2112 , xxf . Similarly, 

we can construct the joint distribution function  3223 , xxf . We can then use  ,2|13c  and 

the distribution functions  2112 , xxf  and  3223 , xxf  to come up with the joint 

distribution function  321123 ,, xxxf  without having the prior knowledge about the copula 

 321123 ,, xxxc . The procedure we have just described is a decomposition of a                   

3-dimensional copula into three pair-copulas. We can then calculate the joint distribution 
function for all three variables using conditional probabilities as follows: 

 
8.9.4 There are various ways of combining n risks into pairs for a pair-copula 
decomposition. For example, for d=5 there are 240 various constructions. The Aas paper 
(2009) introduces a systematic way for obtaining these decompositions known as regular 
vines. Special cases of these regular vines are the hierarchical Canonical vines (C-vines) 
and the D-vines.  
 
8.9.5 An illustration of a D-vine is shown in Figure 22. No mode in any tree is 

connected to more than two edges.  
 
Figure 22 D-vine structure 
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Source: Aas Kjersti et al, (April 2009); Pair-copula constructions of multiple dependence;., Insurance: 
Mathematics and Economics, Volume 44, issue 2, ISSN 0167-6687 
 
8.9.6 Figure 23 shows a canonical vine with five variables. Fitting a canonical vine 
might be advantageous when a particular variable is known to be a key variable that 
governs interactions in the data set. In such a situation one may decide to locate this 
variable at the root of the canonical vine, as has been done with variable 1 in Figure 23. 
 
Figure 23 Canonical vine (C-vine) structure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source: Aas Kjersti et al, (April 2009); Pair-copula constructions of multiple dependence;., Insurance: 
Mathematics and Economics, Volume 44, issue 2, ISSN 0167-6687 
 
8.9.7 For any given chosen vine structure (e.g. C-vine or D-vine), the user would have 
to specify the marginal distributions for each risk, and the copulas for each pair of risks. 
These distributions and pair-wise copulas can be anything. For example, we can assume 
that equities and mortality are joined by a Gaussian copula, and equities and interest rates 
are linked by a Gumbel or Clayton copula.    A numeric algorithm would then be used to 
go through all the vine branches and compute all other combinations of risks and finally 
the multidimensional distribution value using conditional probabilities.  
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9. TAIL DEPENDENCY 

  
Tail dependency was introduced in Section 8.4 as a copula parameter which 

measures how likely it is that one risk variable will take an extreme value, given that 
another risk variable takes an extreme value. The mathematical definition of tail 
dependence was also introduced in Section 8.4, as a part of copula mathematics. 
 

This section describes the tail dependency in more details as a stand alone risk 
measure and in particular contrasts tail dependency with ‘tail correlation’. 
 
9.1 What Do We Mean by Tail Dependency  
 
9.1.1 The overriding deficiency of all types of correlations that we have described in 
Section 4, namely linear and rank correlation, is that they are only scalar measures of 
dependency and do not allow us to model how dependency changes with economic 
circumstances.  
 
9.1.2 For example, they do not allow us to model dependency between risks conditional 
on the underlying values of the risks themselves, which is often a feature of actual events 
be it the recent financial crisis or natural disasters such as earthquakes or hurricanes 
where the observed dependency between risks tends to increase in the event of such 
scenarios.  
 
9.1.3 A feature of tail dependency is that one extreme event or series of events will 
trigger risks that are normally assumed to be independent or otherwise have low 
correlation.  
 
9.1.4 Turning to the insurance industry, it is recognised that very large events can 
trigger multiple lines of business. The 9/11 World Trade Centre attack is a prime example 
of this where large insurance loss amounts were seen in property, business interruption, 
marine, workers compensation and life insurance lines of business. However, this was not 
the end of the losses as the consequences included falling asset values on insurer’s 
balance sheets.  
 
9.1.5 The recent financial crisis has had huge impact across all financial markets. A 
standard observed pattern of relatively low levels of dependency between various 
financial asset classes, such as equities, fixed income, credit risk and foreign exchange 
rates was replaced by severe losses occurring at the same across all markets. Dependency 
empirically observed in the market at a time of extremely bad economic conditions (tail 
dependence) tends to differ structurally from the dependency levels observed in normal 
market circumstances.  
 
9.1.6 Figure 24 illustrates this idea. It shows the annual returns of two stock market 
indices: S&P500 and Nikkei 225 in each month for the last 40 years. 
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Figure 24 S&P 500 vs Nikkei 225 returns 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9.1.7 We can see from Figure 24 that in benign markets, when the values of the two 
indices are highly positive, the correlation between them is relatively weak (the points on 
the RHS are quite widely spread). But in adverse conditions, when the returns are highly 
negative, the correlation is relatively larger (the points on the LHS form much more of a 
concentrated pattern). In fact, the linear correlation coefficient calculated for all months 
when the S&P500 return was negative was 0.9, whereas the linear correlation coefficient 
calculated for all months when the S&P500 return was positive was 0.4. 
 
9.1.8 The challenge of a good economic capital model is to capture the main features of 
complex and unpredictable relationships between multiple real world risks with relatively 
simple mathematical structures. Any differences between the model and reality are 
accentuated in times of stress. 
 
9.2 The So-Called ‘Tail Correlation’ 
 
9.2.1 A common approach used by some insurance companies to reflect tail 
dependency when performing a variance-covariance matrix economic capital calculation 
is to use correlations that are larger than an average correlation that has been estimated 
from empirical data in normal market conditions.  
 
9.2.2 The concept of a so-called ‘tail correlation’ appears to have gained currency in 
describing such a correlation coefficient. 
 
9.2.3 To quote from the International Actuarial Association’s paper “A Global 
Framework for Insurer Solvency Assessment” (2004) 
 

“This correlation need not be the standard linear correlation found in statistics textbooks. In 
particular it could be a ‘tail correlation’ to incorporate the possibility of simultaneous adverse 
outcomes in more than line of business.”      
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9.2.4 Elsewhere the concept has appeared under a different guise, none more than so in 
the various CEIOPS Solvency II consultation papers on the deduction of the correlation 
coefficients for use in the risk aggregation process within the SCR Standard Formula. 
The latest version of which is the Level 2 Implementing Measures on Solvency II “SCR 
Standard Formula Article 111(d) Correlations” (formerly CP74) (2010).  
 
9.2.5 For example, within section 3.1 (page 7) of this paper is stated: 
 

“…. As to the choice of the correlation parameters the following safeguards were stated to be 
important: 
 to keep note of any dependencies that would not be addressed properly by this treatment; i.e. by 

linear correlation 
 to choose the correlation coefficients to adequately reflect potential dependencies in the tail of the 

distribution 
 to assess the stability of any correlation assumptions under stress conditions ” 

     
9.2.6 However, we feel obliged to point out that that such a correlation to reflect ‘tail’ 
dependency between two risks X and Y is not adequately described by the relationship in 
section 3.20 (page 11). In fact this formula, namely: 
 

 = lim P( Y > F-1
Y() / X > F-1

X()) as   1-    
 
where FX and FY are the distribution functions of X and Y respectively,  
 
describes the right tail concentration function which is a completely different measure to 
the linear correlation coefficient. This function is discussed further in section 11.6 of this 
paper.  
 
9.2.7 The use of higher correlations to reflect tail dependency is a practical, transparent 
and intuitive method that will result in economic capital being larger than would be the 
case from using ’average’ correlations assessed in normal market conditions.  
 
9.2.8 However there are certain theoretical shortcomings when higher correlations are 
used in conjunction with the variance-covariance matrix approach to capital aggregation:  

- Higher correlations do not model tail dependency. Tail dependency is a measure 
of dependence between the risk factors defined using a limit. For example, if you 
use a Gaussian copula, its tail dependence will be zero irrespective of whether you 
are using higher correlation parameters or not. 

- There are usually no theoretical foundations for their selected values.   
- The ‘tail correlation’ to be used is not only dependent on the risk measure of 

interest but also on the nature of the underlying marginal risk distributions, 
especially when risks are not normally distributed.   

 
9.2.9 An alternative approach which would allow companies to get around these 
difficulties would be to use a copula with positive tail dependency, such as a t-copula. 
However, owing to the issues surrounding copulas, mainly in the area of 
parameterisation, in reality many companies are currently using higher than average 



75 
 

correlations, or ‘tail correlation’s, to reflect views about tail dependence. Such selections 
are often done on the basis of a prudent margin.  
 
9.2.10 We shall see in the next section 9.3, that the requisite ‘tail correlation’s to be used 
to combine capital amounts can be much lower than would be expected and on many 
occasions the resulting coefficients can appear to be counterintuitive.       
 
9.3 Use of ‘Tail Correlations’ Instead of Tail Dependence 
 
9.3.1 If we accept that a t copula with n degrees of freedom induces tail dependency at 
the loss percentiles often used in economic capital modelling, then a question to ask is:  

“ What do the equal linear correlation coefficients have to be using the variance-
covariance matrix approach such that the resultant capital is equal to that arising 
from use of copulas, at the specified percentiles as shown in sections 8.8.5 to 
8.8.7.”   

 
9.3.2 Mathematically we have calculated the effective linear correlation coefficient x% 
such that:  Variance-covariance capital (using x%) = Copula capital (using 25% 
correlation, t copula with n d.f.) at any given percentile.  
 
The results are shown in Tables 13 - 16 
 
9.3.3 Lognormal Marginal Risk Distributions  
 
Table 13 Economic Capital Results as per Table 10  
Economic Capital - 25% Correlation
Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV

75.0% 4 1,760 1,685 1,578 1,421 1,658
90% 10 3,688 3,610 3,582 3,418 3,763
95% 20 4,928 4,906 5,004 4,889 5,182
99% 100 7,423 7,916 8,177 9,049 8,212

99.5% 200 8,391 9,087 10,031 11,052 9,455
99.95% 2,000 11,082 13,926 14,929 18,544 13,468  

 
Table 14 Implied linear correlation coefficients x% using Table 13 data 
Implied Correlation = V CV Sum  LogNorm CV 25%

Percentile Return Gaussian t - 10 df t - 5 df t - 2 df
75% 4 29.6% 26.2% 21.6% 15.4%
90% 10 23.6% 22.1% 21.6% 18.7%
95% 20 21.5% 21.2% 22.6% 21.0%
99% 100 18.4% 22.4% 24.7% 32.7%

99.5% 200 17.3% 22.2% 29.5% 38.2%
99.95% 2,000 13.3% 27.5% 33.3% 57.4%  

 
9.3.3.1 Taking as an example 99.5%, the t copula (5 df) gives capital of 10,031 whilst the 
variance-covariance matrix gives 9,455 using linear correlation coefficients of 25%. If the 
linear correlation was increased to 29.5% then the variance-covariance calculation would 
give the same value of 10,031.  
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9.3.3.2 As can be observed the implied ‘tail correlation’s at 99% and 99.5% are not much 
greater than the average linear correlation coefficient of 25%, and in fact in quite a few 
instances the ‘implied’ tail correlations are less than this ‘average’ linear correlation. 
Where this happens the numbers are shaded.   
 
9.3.3.3 At the higher percentiles there is a marked variation by percentile. Moreover, for 
any given percentile and t copula the implied ‘tail correlation’ is sensitive to the choice of 
distribution, which in these examples have quite modest CVs.    
 
9.3.4 Normal Marginal Risk Distributions  
 
Table 15 Economic Capital Results for Normal risks used to derive Table 12  
Economic Capital - 25% Correlation

Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV
75.0% 4 1,905 1,853 1,764 1,619 1,923

90% 10 3,623 3,562 3,504 3,356 3,653
95% 20 4,659 4,608 4,649 4,504 4,689
99% 100 6,620 6,864 6,978 7,488 6,631

99.5% 200 7,267 7,668 8,144 8,681 7,342
99.95% 2,000 9,179 10,978 10,966 12,467 9,379  

 
Table 16 Implied linear correlation coefficients x% using Table 15 data 
Implied Correlation = V CV Sum  Normal CV 25%

Percentile Return Gaussian t - 10 df t - 5 df t - 2 df
75% 4 24.3% 22.4% 19.3% 14.5%
90% 10 24.4% 23.2% 22.1% 19.4%
95% 20 24.5% 23.8% 24.4% 22.2%
99% 100 24.9% 27.6% 28.9% 34.9%

99.5% 200 24.3% 28.3% 33.3% 39.4%
99.95% 2,000 23.5% 38.4% 38.2% 52.7%  

 
9.3.4.1 For Normal marginal risk distributions and the use of the Gaussian copula the 
implied ‘tail correlation’s are very close to 25%. Technically speaking, we should be 
comparing the numbers to 24.7% as this was the linear correlation coefficient of the 
25,000 simulated Normal loss distribution output from Matlab.   
 
9.3.4.2 A normal marginal risk distribution together with a Gaussian copula should give 
equivalent results to a variance-covariance matrix calculation at each percentile.  
 
9.3.5 Conclusions 
 

The conclusion we draw from these results is that it is very difficult to come up 
with an adequate set of ‘tail correlations without any regard for the theoretical 
underpinnings of tail dependency. The results can vary quite significantly depending on 
what level of tail dependency a company is aiming to model. In terms of practical 
solutions, there are alternatives such as copulas, but if a variance-covariance matrix 
approach is deemed the most practical for a company then a lot more analysis will 
probably needed to justify any selections made.        
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10. CAUSAL MODELLING METHODS 

 
10.1 Methodology 
 
10.1.1 As noted in section 5.7, this method is intuitively very appealing as it can reflect 
directly, more than any other methods, possible relationships that might exist between 
different risks. The method can be describe as the simulation of common risks, for every 
risk, instead of modelling each risk separately and then aggregating them into a joint loss 
distribution.  The economic capital model implicitly captures any diversification benefits 
between risks.  
 
10.1.2 Within the causal modelling approach the risk dependencies are likely to be at a 
more granular level than one would see within the variance-covariance matrix approach. 
For example, some typical causal models capture dependencies such as:     

- Rate movements between lines of business. 
- Large loss frequency between lines of business. 
- Inflationary link between loss reserves and loss volatility. 
- Inflationary link between loss reserves and asset values. 

 
10.2 Some Examples   
 
10.2.1 Non-Life Underwriting Cycle 
 
10.2.1.1 For non-life insurers the underwriting cycle is one of the more obvious 
candidates for some form of causal modelling. The non-life underwriting cycle can be 
thought of as a recurring pattern of increases and decreases in insurance prices and 
profits.  
 
10.2.1.2 The cycle exhibits characteristics of a dynamical system with feedback loops and 
common economic and social shocks. Each line of business typically has its own cycle 
and cycles are often linked across lines of business within any one company.   
Models often focus on some form of profitability measure based on the loss ratio or 
combined ratio (loss ratio + expense ratio). For the dependent variable of interest then a 
number of predictor variables are possible: 

- Previous value of the variable over prior time periods.  
- Other company financial variables such as reserves, investment income and 

capital.    
- Regulatory and/or rating variables. 
- Financial market variables such as interest rates and equity returns. 
- Econometric variables such as inflation, GDP growth etc.  

 
10.2.1.3 In a simple autoregressive (AR) 10 model of the underwriting cycle, where the 
combined ratio is being modelled, the marginal risk distribution of the combined ratio in 

                                               
10 For the variable X at time t, Xt an AR(n) model is of the form Xt = a + �n bi Xt-i+ �.�t where the �t  are 
i.i.d. unit normal random variables. n = 2 or 3 are common models of the underwriting cycle. 
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future years t is conditional on the prior history of combined ratios in years t-1, t-2 etc. As 
such we can think of the marginal risk distribution as being non-static in that it evolves 
over time. This is in contrast to the typical copula simulation approach where the 
marginal risk distribution is fixed.  
 
10.2.2 Simple CDO Model 
 
10.2.2.1 A simple example of thinking of dependencies is where the value of a risk in any 
given scenario is made up of the impact from a set of simulated common risk factor 
drivers plus a simulated residual component for that risk. Furthermore, the residual 
components may themselves be subject to correlation.   
 
10.2.2.2 In simplified forms of Collateralised Debt Obligation (CDO) modelling it was 
common to assume the latent variable was the asset return of a counterparty. Default was 
deemed to occur when the value of the counterparty’s asset return in any particular 
scenario fell below some ‘asset’ threshold, itself related to the value of its liabilities.  
 
10.2.2.3 One could represent the asset return for each counterparty as a multi-factor 
model.  
 
10.2.2.4 In the simplest case we will consider a 2 factor model which consists of a: 

(i) systematic component; and 
(ii) non-systematic part.  

 
10.2.2.5 Let the systematic component X be the “state of the economy”, R2

i the 
“counterparty asset return correlation with the market” and i the counterparty-specific 
(or residual risk) part. It is further assumed that the variables X and i are normally 
distributed. In this example X is the underlying common risk driver, with the values of Ri 
and i also determining the degree of dependency between risks. 
  

For each counterparty i = 1 and 2 the asset return can be defined as:    
    ARi = [R2

i] 
0.5 X + [1 - R2

i] 
0.5 i 

Furthermore, given AR1 and AR2 the asset correlation A is then:    
A = Corr (AR1, AR2) = [R2

1] 
0.5 x  [R2

2] 
0.5 

Example:  R2
1 = 50% and R2

2 = 20% then A = 15.81%   
  
The R2 represents the proportion of the asset return that can be explained by variation in 
the state of the economy i.e. it’s systematic risk. The non-systematic part consists of both 
counterparty specific pieces and non-counterparty specific pieces that are common to 
groups of credit assets but are not deemed to be systematic in nature, e.g. exchange rates.  
The R2 can be determined for a company by computing the correlation of the asset value 
of the company with an index of asset values that represents the universe of companies.  
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10.3 Advantages and Disadvantages of Causal Model Approach  
 

Advantages: 
- Theoretically it is a very appealing and intuitive method. 
- Potentially the most accurate in imitating the way the ‘real world’ works with a 

series of external and internal shocks to a company.  
- Could be used in combination with other methods, e.g. an inflation variable may 

be used as a common risk driver for expense and claims risks with some further 
correlation between the expense and claims risks due to other factors.  

- Possible to capture non-linearities through causal risk relationships.  
 

Disadvantages: 
- Transparency and results communication becomes an issue – ‘Black Box’ 

approach.   
- Parameterisation issues relating to the causal relationships. 
- Could lead to an overly complicated model providing a false sense of accuracy. 
- The most demanding in terms of inputs. 
- It is not feasible to model all common risk factors at the lowest level. 
- If lots of common risk factors are simulated using a Monte Carlo approach, this 

puts a very high demand on computing power. 
 
10.4 Causal Modelling Design Challenges 
 

There are some additional design challenges for insurance companies 
contemplating using causal models, or ‘integrated models’ using Solvency II 
nomenclature.     
 
10.4.1 Economic Capital Modelling Involves “Stressed” States of an Organisation 
 
10.4.1.1 Causal risk relationships might be formulated and be reasonable in normal states 
of a company but in times of stress with which capital modelling is concerned such 
relationships might break down. This may be caused by complex non-linear relationships 
or “hidden loops” that are unforeseen and arise only when dynamic behaviour takes 
place.     
 
10.4.1.2 A very simple example for a non-life insurance company might be new business 
premium rates being a linear function of inflation, so if annual claims inflation was 2% 
then the increase in premiums due to claims inflation would be 2%. However, in an 
extreme scenario say with claims inflation running at 20% per annum then premium 
changes might be different to 20% as other factors came into play.     
 
10.4.1.3 In such a situation we would have confidence directionally whether inflation 
would increase (positive feedback) or decrease (negative feedback) premium rates but the 
amount of this change would be less certain.  
 
10.4.1.4 Other causal relationships are more certain, for example in non-life insurance if 
gross insurance loss distributions with parameters are specified, say separately between 
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attritional and large losses (frequency / severity) then assuming one can model accurately 
the ceded reinsurance contracts, then one can very often reproduce exactly the 
dependency relationship between gross and ceded losses, and hence by definition the 
resultant net losses.   
 
10.4.2 Successfully Capturing Reinforcing Effects 
 
10.4.2.1 Another challenge is how to capture reinforcing effects between risks, as so 
often happen in times of stress. Typical models might let risk A impact risk B via some 
specified relationship within the modelling time horizon, say 12-months, but then not 
allow risk B to then affect risk A, and so on within the same time space. This might be 
possible if smaller modelling time steps were used, but all too often this is not the case.  
 
10.4.2.2 Such reinforcing effects were evident in the recent financial crisis, as cited in the 
recent CEIOPS paper on Correlations (2010):  

“A strong fall in equity prices say, indicated an economic recession and a severe reduction of 
company expected profits. Such a situation is usually accompanied with an increase of risk-
aversion and higher default probabilities. Therefore, credit spreads can be expected to increase 
sharply as well. This further signals an increased risk aversion and higher default probabilities. In 
such a situation company expected profits and the market value of stock corporations would be 
affected leading to likely further decreases in equity prices and so on.” 

 
10.4.2.3 A correlation coefficient within a variance-covariance matrix framework 
implicitly takes into account such reinforcing mechanisms.    
 
10.4.3 Model Validation 
 
10.4.3.1  Back-testing of dependency relationships using historical data is fraught with 
difficulties, even more so with the use of causal models. A simple example of this issue is 
a continuation of our example from section 5.8 and the discussion of different types of 
modelling of Natural Catastrophe vs Reinsurance Credit Risk.  
 
10.4.3.2 Two situations are contrasted: 

- Variance-covariance matrix modelling where dependency is reflected through use 
of a correlation coefficient. In this situation it is relatively straightforward to 
empirically test such a correlation through the use of historical loss data for both 
natural catastrophe and reinsurance default. 

- Causal modelling involving a complex dependency structure where both the PD 
and LGD are functions of an index of the level of gross insurance losses. In this 
situation is it nigh on impossible from historical data to test each of the 
assumptions underlying such a complex relationship.     

 
10.4.4 Behavioural Modelling Issues 
 
10.4.4.1  Causal models by their very design are likely to be more complex than other 
modelling approaches used to deriving economic capital results. When designing a causal 
model there is risk that a model can become too complex in terms of risk dependency 
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relationships. This can not only cause more uncertainty in the risk parameterisation 
process but also in the accuracy of the overall economic capital modelling results.      
 
10.4.4.2  The issue is best summed up with reference to the banking industry and a 
comment from regulatory supervisors on page 32 of the BIS publication “Range of 
practices and issues in economic capital frameworks” (2009).  

“Finally a possible drawback of the more sophisticated methodologies is more of a behavioural 
nature. Often greater methodological sophistication leads to greater confidence in the accuracy of 
the outcomes. Given the diversity in the nature of inputs, the importance of assumptions that 
underline the parameters used, and the scale of the task in practical applications, the scope for 
hard-to detect and quantify inaccuracies is considerable. Complex approaches that are not 
accompanied by robustness checks and estimates of possible specification and measurement error 
can prove misleading”. 
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11. DEPENDENCY COMMUNICATION 

 
11.1 Different Ways of Thinking About Dependency 
 
11.1.1 One of the key challenges facing organisations is how to communicate the effect 
of dependency modelling on the economic capital results to senior management and other 
non-technical audiences.  
 
11.1.2 With the prospect of many insurance companies applying for internal model 
approval for 2012 under the Solvency II regime, the importance of communication on 
such matters is of particular importance, given that under the Use Test requirement: 

- Senior management, including the administrative or management body shall be 
able to demonstrate understanding of the internal model and how this fits with 
their business model and risk-management framework. 

- Senior management, including the administrative or management body shall be 
able to demonstrate understanding of the limitations of the internal model and that 
they take account of these limitations in their decision-making. 

 
11.1.3 This section therefore describes some simple measures that could be adopted by 
firms in their communication either internally to the board of directors and senior 
management or externally to various stakeholders.  
 
11.1.4 Furthermore, the values of the metrics arising from the application of specific 
copulas can be compared with the values of the same metrics computed from empirical 
data to help determine the most appropriate copula for the data under study.  
 
11.1.5 For the sake of simplicity, we shall continue with the use of ABC Insurance 
Company to illustrate the calculations for each of the measures of interest. 
 
11.1.6 The following is a list of possible measures. It is not exhaustive but illustrative of 
different approaches, some more complex than others:   

- Economic Capital Aggregation.  
- Joint Probability Density Function. 
- Scatter Plot. 
- Joint Excess Probability. 
- Tail Concentration Function.  
- Kendall Tau Correlation. 
- Coefficient of Tail Dependence. 
- Implied Gaussian Correlation.  

 
11.1.7 There are three possible levels of data granularity: 

- Comparisons made at an aggregate level e.g. total Economic Capital. 
- Comparisons made between a pair of risks e.g. “Scatter Plot”. 
- Comparisons made between all risk pairs e.g. “Tail Concentration Function” 
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11.1.8 The numerical exhibits that follow are based on simulated Matlab output with the 
same underlying assumptions as listed within section 8.8 for the 10 risk categories of 
ABC Insurance Company. In the sections where graphical results are shown for two risks 
,say X and Y, there are two options,  (i) actual values of x,y from the distributions of X 
and Y respectively or (ii) values of u,v such that FX(x) = u and FY(y) = v for X and Y 
respectively. In most cases the presentation format of (ii) has been adopted. Also, unless 
otherwise stated e.g. in section 11.2 “Economic Capital Aggregation”, the output from a t 
copula with 5 d.f. has been used.    
 
11.2 Economic Capital Aggregation  
 

Description 
The objective here is to calculate the total economic capital at the different 
percentiles using a number of different risk aggregation techniques. In the exhibit 
that follows capital numbers are shown for the: 
(i) Gaussian copula 
(ii) t Copula at 10, 5 and 2 d.f.; and 
(iii) variance-covariance matrix approach to capital aggregation. 

 
Exhibit 

 
Figure 25 Economic Capital Results using different methods (as per Table 10) 
Economic Capital - 25% Correlation
Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV

75.0% 4 1,760 1,685 1,578 1,421 1,658
90% 10 3,688 3,610 3,582 3,418 3,763
95% 20 4,928 4,906 5,004 4,889 5,182
99% 100 7,423 7,916 8,177 9,049 8,212

99.5% 200 8,391 9,087 10,031 11,052 9,455
99.95% 2,000 11,082 13,926 14,929 18,544 13,468

% change cf Gaussian Copula 
Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV

75.0% 4 0.0% -4.2% -10.3% -19.3% -5.8%
90% 10 0.0% -2.1% -2.9% -7.3% 2.0%
95% 20 0.0% -0.4% 1.6% -0.8% 5.2%
99% 100 0.0% 6.6% 10.2% 21.9% 10.6%

99.5% 200 0.0% 8.3% 19.5% 31.7% 12.7%
99.95% 2,000 0.0% 25.7% 34.7% 67.3% 21.5%  

 
Advantages 
- It is relatively simple to understand.  
- It is possible to directly measure the financial impact on a company.  

 
Disadvantages 
- One has no information of what is happening at an individual risk category level 

at each percentile of interest. 
- The calculations are more computer intensive than those that will be discussed in 

the following sections. 
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11.3 Joint Probability Density Function 
 

Description 
The Joint Probability Density function is a 3 dimensional representation of the 
plot of the values from two risk factor distributions,in this case risks X1 and X2  
A greater density of points represented by a larger value of the PDF.  

 
Exhibit 

 
Figure 26 Joint Probability Density Function for two risks  
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Advantages 
- It is relatively simple to understand. 
- The exhibits are relatively easy to create. 

 
Disadvantages 

- Simulation error may distort the presence or otherwise of ‘tail’ dependency 
strength. 

- There is no numerical measure that reflects the degree of dependency between 
risks.  

- One can only use this method for a pair of risks at a time. 
 
11.4 Scatter Plot 
 

Description 
A scatter plot involves a plot of the joint values simulated from two risk 
distributions. In this example the values (u,v) corresponding to amounts x and y 
from risk distributions X and Y have been plotted. Furthermore, u and v are 
defined by the relationships FX(x)  = u and FY(y) = v, where u and v are values on 
the interval [0,1].  

 
The extent of the clustering of points in the region of (1,1) indicates the level of 
‘tail’ dependency between two risks. 

 
In the exhibits that follow within this section and sections 11.5 to 11.9 we have 
used risk category names of ABC Insurance e.g. UW Non-Cat and Interest Rate as 
is the case in Figure 27.      
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Exhibit 
 
Figure 27 Scatter Plot for two risks  
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Advantages 
- It is relatively simple to understand. 
- The exhibits are very easy to create. 

 
Disadvantages 

- Simulation error may distort the presence or otherwise of ‘tail’ dependency 
strength. 

- There is no numerical measure that reflects the degree of dependency between 
risks.  

- It may be difficult to distinguish a pair or risks with higher tail dependence from a 
pair of risks with higher correlation but lower tail dependence. 

- One can only use this method for a pair of risks at a time. 
 
11.5 Joint Excess Probability 
 

Description 
For a pair of risks, the Joint Excess Probability is the joint probability that 2 risks 
are either greater or lower than some deemed threshold. Notation wise: 

 RJEP(z) = P( u>z, v>z ) 11 
 LJEP(z) = P( u<z, v<z )  

 
where: u and v are defined by FX(x)  = u and FY(y) = v; x and y are values from X 
and Y respectively and u and v are values on the unit interval [0,1].  

 
For independence the values of RJEP(z) and LJEP(z) are (1-z)2 and z2 
respectively.    

 

                                               
11 The functions RJEP(z), LJEP(z) are our notation to distinguish between the top right hand and bottom 
left hand corners of the area [0,1] x [0,1].  
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Exhibit 
Figure 28 is an illustration of the RJEP(z) concept using a scatter plot of the 
simulation output for two hypothetical risks X and Y.  

 
e.g. RJEP(0.8) = No. of Points in A / Total No. of Points (in this case 1,000).   

 
Figure 28 Calculation of RJEP(z) for z = 0.8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11.5.1 Figure 29 is a matrix of values of the function RJEP(0.95) for each of the pairwise 
combinations of the 10 risks.12 
 
11.5.2 For comparative purposes the value of RJEP(0.95) = 0.25% is shown where risks 
are independent of each other, i.e. there is 0% correlation.  
 
11.5.3 In the example illustrated in Figure 29, the values between risk pairs should be 
identical however the presence of simulation error leads to small differences. With 
different pairwise correlations between risks the matrix of values becomes more 
meaningful.  
 
Figure 29 Matrix of values of RJEP(z) for z = 0.95  
 
RJEP(Z):  t Copula 5 d.f. z 95.0%

No. 1 2 3 4 5 6 7 8 9 10
Equity 1 0.87% 1.08% 1.07% 1.04% 0.98% 1.00% 0.89% 0.87% 0.98%
Property 2 1.04% 0.98% 0.97% 0.95% 0.98% 1.00% 0.95% 0.96%
Interest Rate 3 1.12% 1.06% 1.03% 1.10% 1.09% 1.04% 1.10%
Credit Spread 4 1.02% 0.99% 1.19% 1.01% 1.07% 1.17%
Credit Default 5 0.97% 1.05% 1.02% 1.00% 1.00%
UW - Cat 6 0.93% 0.91% 0.96% 1.07%
UW Non-Cat 7 0.97% 0.98% 1.09%
Reserve 8 1.04% 1.05%
Expenses 9 0.98%
Operational 10

Independence 0.25%  
 

                                               
12 Even with 25,000 simulations, simulation error is evident 
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Advantages 

- It is practical and the concept is relatively easy to understand  
- The calculation is relatively easy to perform. 
- It allows the quantification of the level of dependence at a given percentile in a 

way which is both mathematically tractable, and simple to understand. 
- It provides a consistent methodology for comparing the relative strength of 

dependency between two or more risks whether the dependence between them is 
expressed using copulas or correlations, or in any other way. 

- For more than two risks it is possible to estimate RJEP(z) and LJEP(z) for each 
pair of risks and present the information as a matrix of values for all risks or a pair 
of risks. 

 
Disadvantages 

- For most of practitioners used to linear correlations this would be a new concept 
and some confusion between the two numbers is possible. In particular, it could 
be mistaken to be a ‘tail correlation’, i.e. the level of correlation in the tail. In fact, 
the RJEP(z) and LJEP(z) functions are probabilities, i.e. take values between 0 
and 1 whereas a correlation coefficient takes values between -1 and 1. 

- It is difficult to translate a value of RJEP(z) or LJEP(z) into a number that is 
commonly understood e.g. linear correlation, or its equivalent at the ‘tails’.  

- Simulation error may distort the presence or otherwise of ‘tail’ dependency 
strength. 

 
11.6 Tail Concentration Function  
 

Description 
For a pair of risks, the strength of ‘tail’ dependence between risk factors can be 
defined using the Right and Left Tail Concentration Functions R(z) and L(z) 
respectively as follows: 

- Right Tail Concentration Function: R(z) = P( u>z / v>z ) = P( u>z, v>z ) / P ( v>z)  
- Left Tail Concentration Function:  L(z) = P( u<z / v<z ) = P( u<z, v<z ) / P ( v<z ) 

       
where: u and v are defined by FX(x)  = u and FY(y) = v; x and y are values from X 
and Y respectively and u and v are values on the unit interval [0,1].  

 
Technically speaking, if we have more than two risks, e.g. three risks, then R(z) 
should be defined as R(z) = P( u>z / v>z, w>z ) etc.  

 
Exhibit 
Figure 30 is an illustration of the R(z) concept using a scatter plot of the 
simulation output for two hypothetical risks X and Y.  

 
e.g. R(0.8) = No. of Points in A / ( Total No. of Points (A + B) )   



88 
 

 
Figure 30 Calculation of R(z) for z = 0.8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11.6.1 Figure 31 is a matrix of values of the function R(0.95) for each of the pairwise 
combinations of the 10 risks. 13 In this example the values between risk pairs should be 
identical however the presence of simulation error leads to small differences. With 
different pairwise correlations between risks the matrix of values becomes more 
meaningful.  
 
11.6.2 For comparative purposes the value of R(0.95) = 5.0% is shown where risks are 
independent of each other, i.e. there is 0% correlation. 
 
Figure 31 Matrix of values of R(z) for z = 0.95 
 
R(Z):  t Copula 5 d.f. z 95.0%

No. 1 2 3 4 5 6 7 8 9 10
Equity 1 17.58% 21.85% 21.61% 20.89% 19.68% 20.16% 17.98% 17.58% 19.68%
Property 2 21.18% 20.03% 19.87% 19.38% 20.03% 20.36% 19.38% 19.71%
Interest Rate 3 21.20% 19.98% 19.45% 20.82% 20.67% 19.68% 20.89%
Credit Spread 4 19.06% 18.46% 22.20% 18.91% 19.96% 21.82%
Credit Default 5 19.13% 20.71% 20.16% 19.61% 19.76%
UW - Cat 6 18.87% 18.46% 19.35% 21.62%
UW Non-Cat 7 19.27% 19.51% 21.74%
Reserve 8 21.06% 21.38%
Expenses 9 19.48%
Operational 10

Independence 5.0%  
Advantages 

- It is practical and the concept is relatively easy to understand  
- The calculation is relatively easy to perform 
- It allows the quantification of the level of dependence at a given percentile in a 

way which is both mathematically tractable, and simple to understand 
- It is closely linked to another important copula parameter: “Coefficient of Tail 

Dependence” (section 11.8) which is a limiting case of the tail concentration 
function 

                                               
13 Even with 25,000 simulations, simulation error is evident 
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- It provides a consistent methodology for comparing the relative strength of 
dependency between two or more risks whether the dependence between them is 
expressed using copulas or correlations, or in any other way 

- For more than two risks it is possible to estimate R(z) and L(z) for each pair of 
risks and present the information as a matrix of values for all risks or a pair of 
risks 

 
Disadvantages 

- For most of practitioners used to linear correlations this would be a new concept 
and some confusion between the two numbers is possible. In particular, it could 
be misunderstood to be a ‘tail correlation’, i.e. the level of correlation in the tail. 
In fact, the tail concentration functions are different mathematical objects: they 
are probabilities, i.e. take values between 0 and 1 whereas correlation coefficient 
takes values between -1 and 1. 

- It is difficult to translate a value of R(z) or L(z) into a number that is commonly 
understood i.e. linear correlation  

- Simulation error may distort the presence or otherwise of ‘tail’ dependency 
strength 

 
11.6.3 For comparative purposes, the tables of matrices for R(0.95) and RJEP(0.95) are 
shown for both the T Copula with 5 d.f. and the Gaussian Copula in Appendix G.   
 
11.7 Kendall Tau Correlation 
 
11.7.1 The concept and definition of the Kendall tau rank correlation (or simply the 
Kendall tau) was discussed in section 4.5. 
 
11.7.2 It is a type of rank correlation, i.e. a correlation coefficient which depends on the 
ranking of data points, not on their values. Its values lie between -1 and 1.    
 
11.7.3 In this example the values between risk pairs should be identical however the 
presence of simulation error leads to small differences. With different pairwise 
correlations between risks the matrix of values becomes more meaningful.  
 

Exhibit 
 
Figure 32 Matrix of values of Kendall Tau 
 
Kendall Tau:  t Copula 5 d.f.

No. 1 2 3 4 5 6 7 8 9 10
Equity 1 17.62% 16.72% 17.74% 18.31% 16.29% 17.73% 16.72% 16.49% 17.50%
Property 2 15.38% 15.92% 16.39% 15.72% 17.20% 16.43% 16.29% 17.25%
Interest Rate 3 16.02% 16.67% 17.29% 17.66% 16.68% 16.71% 17.02%
Credit Spread 4 16.27% 17.17% 16.70% 15.94% 15.96% 16.02%
Credit Default 5 16.35% 17.22% 15.75% 15.68% 17.25%
UW - Cat 6 15.61% 15.16% 16.71% 17.90%
UW Non-Cat 7 15.56% 15.86% 17.63%
Reserve 8 16.73% 17.26%
Expenses 9 16.19%
Operational 10  
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Advantages 
- It is intuitively simple and the concept is relatively easy to understand.  
- It is more intuitive to someone who is used to regular linear correlations than 

other measures such as tail dependence 
- It does not depend on the absolute value of observations, which means it should 

be better dealing with data outliers. 
- It provides a consistent methodology for comparing the relative strength of two or 

more different random variables with any type of dependency structure. 
- It is possible to represent the information either as a matrix of values for all risks 

or a pair of risks. 
 

Disadvantages 
- The calculation is slightly more challenging than with other methods  
- It is difficult to translate values of Kendall Tauinto numbers that are commonly 

understood e.g. linear correlation, or its equivalent at the ‘tails’.  
- It does not identify trends like an ever-increasing “strength of relationship” with 

an increasing percentile, i.e. it is just a scalar measure, like the linear correlation, 
so not helpful when modelling tail dependence. 

 
11.7.4 Kendall Tau matrices are shown for both the t Copula with 5 d.f. and the Gaussian 
Copula in Appendix H.  
 
11.8 Coefficient of Tail Dependence 
 

Description 
 

Like many other concepts in this paper, the concept of tail dependency can be 
simple and intuitive. We have two random variables, X and Y. If X takes the 99.5th 
percentile value, what is the probability that Y also takes a value from the 99.5th 
percentile? Tail dependence is the probability that one risk factor is extremely large, 
given that the other one is extremely large as well. 
 
11.8.1 The Coefficient of Tail Dependence between two risks is an asymptotic measure 
of the dependence in the tails of the bivariate distribution (X,Y). 
 
11.8.2 For a multivariate distribution with a Gaussian copula, the tail dependence 
between any pair of risks is always zero. This is one of the important deficiencies of the 
Gaussian copula for modelling dependence. 
 
11.8.3 For continuously distributed random variables with the t Copula the Coefficient of 
Tail Dependence is: 

 = 2t+1( -(+1)0.5(1-)0.5/ (1+)0.5 )      

where:  is the pairwise correlation coefficient between two risks.  
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11.8.4 These coefficients can be viewed as the limiting conditional probabilities of the 
functions R(z) and L(z) respectively (see section 11.6) 
 

Exhibit 
For t copulas with 10, 5 and 2 d.f. respectively the following is a table of values 
for in the case of a 25% pairwise correlation between risks.  

 
Table 17 Coefficient of Tail Dependence  

T d.f. 
10 2.6%

5 10.7%
2 27.2%  

 
Advantages 

- This is the most accurate mathematical measure of the “true” tail dependence 
between two risks. 

- It does not depend on the estimated percentile, it is just one single characteristic of 
a dependence structure, e.g. copula. 

- It provides a consistent methodology for comparing the relative strength of two or 
more different copulas. 

- It is possible to represent the information either as a matrix of values for all risks 
or a pair of risks. 

 
Disadvantages 

- It is a relatively new concept and could be counter-intuitive to those who are just 
familiar with correlations. Moreover, it could actually be confused for ‘tail 
correlation’, because  takes values between 0 and 1 (although correlation can 
take values between -1 and 1). 

- The values of  are limiting values and do not reflect an ever-increasing value 
with an increasing percentile.  

-  = 0 for Gaussian copula.  
- For the t copula is limited by the combination of a degrees of freedom parameter 

and correlation coefficient. Not all values of between 0 and 1 are achievable by 
fixing one of these two parameters and varying the other. E.g., if you are trying to 
calibrate a t Copula for two risks with correlation 0.5 and a Coefficient of Tail 
Dependence of 0.7 by choosing the degrees of freedom parameter, this might not 
be possible. 

- The values use a closed-form solution which may, unless enough simulations are 
run, provide inconsistent values with values of R(z) from simulated output 

 
11.9 Implied Gaussian Correlation  
 

Description 
This method is really a combination of the methods previously described in 
sections 11.5 and 11.6 with notable differences:    

- R(z) and RJEP(z) values are shown for more than one percentile 
- R(z) and RJEP(z) values are shown for three different scenarios  
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(i) Independence (where correlation is 0%); 
(ii) Gaussian copula; and 
(iii) t copula with 5 d.f.  

The latter two, using the relevant correlations used. It should be noted, that any 
copula can be used in place of the t copula, for such comparisons.    

 
Exhibit 
Figure 33 shows the values of R(z) for Interest rate risk vs UW Non-Cat risk 
assuming a correlation of 25%.   

 
Figure 33 R(z) for different copulas and percentiles   
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11.9.1 On inspection it can be seen that the values of R(z) are greater for the t copula in 
comparison with the Gaussian Copula; which in turn has larger values of R(z) compared 
to an assumption of independence between the risks. This observation holds for all 
percentiles. Furthermore the ratio of R(z) (t copula) / R(z) (Gaussian copula) increases 
with an increasing percentile. 
 
11.9.2 The numbers behind this exhibit can also be used to determine a so-called 
‘Implied’ Gaussian correlation between a pair of risks at each percentile. For example, at 
99.0% the value of R(z) = 15.96% for the t copula (5 df) and 5.31% for the Gaussian 
copula assuming a linear correlation of 25%. However, if the linear correlation is 
increased from 25% to 54% then the value of R(z) at 99.0% with the Gaussian copula 
now equals the same value of R(z) = 15.96% as before. The intention is that the values of 
these so-called ‘Implied’ Gaussian correlations can be used to compare and contrast 
different model outputs. This approach is sensitive to simulation error.    
            
11.9.3 The ‘implied’ Gaussian correlation has similarities to the idea of trying to 
determine ‘tail correlations’ as discussed in section 9.  
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Advantages 
- It is very useful to compare the t copula alongside the Gaussian Copula and the 

scenario of Independence. In this way one can get a feeling for the degree of tail 
dependency of the t Copula at each percentile. 

- Furthermore, showing values at different percentiles is a useful way of comparing 
how the relative values between the t Copula and the Gaussian copula change 
with percentile. 

- It is easy to calculate and technically correct. 
- The exhibits are very easy to generate within a simulation model. 

 
Disadvantages 

- It is difficult to translate values of R(z) and RJEP(z) into numbers that are 
commonly understood e.g. linear correlation.  

- There are not many data points at the extreme percentiles and so the calculation is 
very sensitive to any simulation error in the joint distribution output.    

- One can only use this method for a pair of risks at a time.



12. USING HALF-SPACE PROBABILITIES TO CAPTURE DEPENDENCIES 
 
12.1 Combined Stress Tests and Two-Way Correlations 
 
12.1.1 Firms and regulators have developed a number of new approaches to cope with 
the complexities of risk aggregation. One of these is the development of combined stress 
tests, where more than one risk materialises at once. The intention may be to construct 
combined stress tests at a given level of confidence. This requires a generalisation of the 
percentile concept to multiple dimensions. 
 
12.1.2 Another area of developing interest has been an examination of dependencies 
under stressed conditions. Correlations are seen as having increased during the financial 
crisis, limiting the extent to which firms were able to benefit from diversification in 
stressed circumstances. These ideas have been implemented in several ways, ranging 
from a vague sense of caution in correlation assumptions to two-way correlation models 
where different correlations apply between pairs of risk drivers according to the direction 
of a firm’s exposure to those risks. 
 
12.1.3 Concepts of combined stress tests and two-way correlations do not naturally arise 
from copula approaches to dependency modelling. For this reason, although combined 
stress tests and two-way correlations have found favour in practical calculations, these 
have sometimes appeared to lack sound empirical and statistical foundations. 
 
12.1.4 Tukey’s (1975) description of “half space depth” is a promising mathematical 
context to describe these new tools. As mathematicians fill the gaps in practitioner lore, it 
is likely that some existing beliefs will be proved as theorems, others will be found to 
hold in limited circumstances and yet others may be exposed as false. 
 
12.2 Combined Events at a Given Confidence Level 
 
12.2.1 The capital modelling literature makes frequent references to the concept of a “1-
in-200 event”, which is interpreted as an event so serious as to be exceeded with a 
probability of only 0.005. When dealing with a continuous scalar distribution, there are 
two “1-in-200” events corresponding to the 0.5% and 99.5% percentiles. 
 
12.2.2 The corresponding concept in multiple dimensions is sometimes called a 
“combined 1-in-200 event”. Such an event might involve several risks, each at a less 
extreme that 1-in-200 level individually but somehow equivalent to 1-in-200 taken 
collectively. It has proved difficult to convert this intuitive concept into mathematics. For 
example, it might seem logical to use sets of equal probability density to define combined 
1-in-200 events, but this technique fails in simple cases such as two independent 
uniformly distributed risks. 
 
12.2.3 We start with a simple generalisation of the α quantiles, called the “likely one-
way stresses”. For a random vector X we construct likely combined stresses by stressing 
the first component to it’s α quantile, and setting other components to their conditional 
expectations given that the first component takes its α-quantile value. We can construct 



95 
 

another likely vector based on the 1-α quantile. Similar constructions give further likely 
events based on the α  and 1-α quantile of the other vector components, in each case 
setting the unstressed components to their conditional mean given the stressed 
component.  
 
12.2.4 If, for example, our random vector has 10 dimensions this construction gives 20 
“likely” points. This is an obvious generalisation of the one-dimensional case. McNeil 
and Smith (2009) give an example calculation based on two exponential distributions. In 
this case, the likely one-way stresses appear as follows in 12.2.5 – 12.2.8 
 
12.2.5 We wish to connect the one-way stresses to form a loop. The appropriate 
generalisation is as follows. For an arbitrary random scalar, Y, let qα(Y) denote the α-
quantile. Returning to our random vector X, we define the outer likely set, denoted by Λ+, 
by 

Λ+ = { E[X | u.X=qα(u.X)]; u≠0} 
 
12.2.6 We can see, on taking u to be plus or minus a basis vector that the likely one-way 
stresses lie in Λ+. We refer to Λ+ as the “outer likely set”. The outer likely set is the 
boundary of a blob which, at its most extreme points, touches the likely one-way stresses. 
 
12.2.7 What use is the outer likely set? One important result is the sufficient condition 
for solvency. Suppose that a financial firm has net assets that can be expressed as a linear 
function a(x) of the risk driver vector X. Suppose also that a(x)≥0 for all x in the outer 
likely set Λ+. This is sufficient to ensure Prob{a(x) ≥0} ≥ α. In other words, a 
probabilistic test of financial strength is reduced to a series of deterministic combined 
stress tests. 
 
12.2.8 The practical problem with the use of outer likely sets, as indeed with any 
measure of dependency, is parameterisation. A conditional expectation given an extreme 
event is difficult to calculate from historic data because, even if data is plentiful, there 
will only be one point at the exact α quantile for each risk driver. If the distribution of X 
is known analytically, the computation is more straightforward. In the case of elliptically 
contoured distributions the outer likely set is the boundary of an ellipsoid. Other shapes 
can also arise; McNeill & Smith (2009) show likely sets based on two independent 
exponential distributions. 
 
12.3 Two-Sided Correlations  
 
12.3.1 Some recent publications have introduced the notion of two-sided correlations. 
Sources include the CRO Forum’s Calibration Recommendations for solvency II (2009) 
and CEIOPS SCR Standard Formula Article 111(d) Correlations (formerly CP74) (2010). 
For example, the CRO forum’s document says the following about the correlation 
between equity and interest rate risk: 

“ The CRO Forum recommends that for portfolios with short durations (which is the more 
common situation), a correlation of 0.5 seems to be appropriate; whereas for a portfolio long in 
duration a correlation of 0 would be appropriate (conservative assumption).” 
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12.3.2 In this context, “short in duration” refers to insurers whose assets are shorter than 
liabilities, and are therefore exposed to a fall in interest rates. “Long in duration” refers to 
the reverse situation, where a rise in interest rates is the greater threat. The proposal is to 
use different correlations according to the sign of a firm’s interest rate exposure. To 
complete the picture mathematically, we would need also to construct correlations in 
respect of equity rise scenarios, giving four-sided correlations.  
 
12.3.3 As most insurers are exposed to an equity fall rather than an equity rise, these 
additional correlations are mainly of theoretical interest. 
 
12.3.4 The CFO Forum’s derivation of this range starts from the observed historic 
correlations ranging from -29% to +73% depending on choice of market and calibration 
period. The paper then asserts “the period with the worst correlation observed does not 
necessarily coincide with the period with the worst shocks. It is therefore not relevant to 
retain the highest correlation ever observed.” This is apparently the reason for shrinking 
the proposed range from [-29%,+73%] to [0%,50%]. The final step is to apply whichever 
end of the range is more prudent, which is why the recommendation depends on the sign 
of a firm’s interest rate exposure.  
 
12.3.5 CEIOPS SCR Standard Formula Article 111(d) Correlations (formerly CP74) 
(2010) follows the CRO forum recommendation, but with a contrasting rationale. 
Commenting on the proposed 50%/0% split correlations, CP 74 points to UK interest rate 
(10 year term, from the Bank of England) and MSCI world equity index data. The data 
consists of the ratio of equity and interest rates to the values a year earlier, sampled at 
monthly intervals from January 1970 to January 2010. It is a little odd to compare a 
sterling interest rate to a dollar denominated index, but in the interest of comparability we 
have continued to adopt that approach for the purpose of this paper. The data is shown in 
the scatter plot at Figure 34. Also plotted are some lines separating 10% of the data from 
90%. We will use these to construct four-sided correlations. 
 
Figure 34 Annual changes in UK interest rate and MSCI world equity index, 

monthly intervals (1970 – 2010)    
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12.3.6 It would be desirable to consider data over longer periods. We have examined the 
yield on 2.5% consols, and the equity index based on the FTA all share index of UK 
shares, back-filled with various predecessor indices from January 1923.The 
corresponding plot from this data set is shown in Figure 35. The estimated percentiles for 
equities are broadly similar, while the interest rates were less volatile when measured 
over the longer period. 
 
Figure 35 Annual changes in UK interest rate and MSCI world equity index, 

monthly intervals (1923 – 2010)    
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12.3.7 We now consider how these charts can be used to construct tail correlations. In 
section 5 we already saw a formula for aggregate quantiles in the case of elliptically 
contoured distributions. Letting Y = b.X, we have the formula: 
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12.3.8 We cannot expect this formula to hold in the general case of non-elliptical 
distributions. However, in the bivariate case, for particular values of b we can back-solve 
for the correlation R12 using the following formulas: 
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12.3.9 This formula is of little use if either of the b’s is close to zero. In that case, the 
numerator is the difference of two large numbers and the denominator is close to zero, so 
the ratio is unstable. It is of most use when X1 and X2 contribute in similar measure to the 
variability of Y, that is when    )()()()( 21221111 XqXqbXqXqb    .  

 
12.3.10 Some care is required in the interpretation of the signs for b1 and b2. In the 
example that follows, we investigate the case  = 0.9, so we are interested in the 90% of 
a distribution. In this case the variable Y = b.X must be interpreted as a firm’s losses or 
net liabilities. There are four ways in which this can occur, corresponding to the four 
possible sign combinations of b1 and b2. We identify those four cases by points of the 
compass, according to which quadrant contains the point (b1,b2). Working anticlockwise 
from the North-East corner, we have the four estimated correlations, which are set out in 
Table 18. 
 
Table 18 Pearson and Tail Correlations for Equity and Interest Data 
Compass point Sign of b 1 Sign of b 2 Estimated R 12 

1970-2010 data
Estimated R 12 

1923-2010 data
CRO Forum and 

CP 74 
Pearson correlation -10% -37%
NE b 1 > 0 b 2 > 0 -29% -46% N/A
NW b 1 < 0 b 2 > 0 20% -37% 0%
SW b 1 < 0 b 2 < 0 -25% -32% 50%
SE b 1 > 0 b 2 < 0 15% -38% N/A

Note: CEIOPS SCR Standard Formula Article 111(d) Correlations ("CP 74")  
 
12.3.11 If the underlying distribution were elliptically contoured then we would expect to 
get similar estimates of R12 for each quarter, at least within sampling error. The 
differences observed in our example give some support to CEIOPS suggestion of split 
correlations. The relevant quadrants for insurers arise when b1 < 0, denoting greater 
losses in the event of an equity fall. Insurers with long duration should have b2 < 0, that is 
the SW quadrant, while short duration insurers are more concerned with the NW quadrant 
where b2 > 0. 
 
12.3.12 This table shows a number of interesting properties. Firstly, we notice the 
significantly different results from the longer time period. We might think this is driven 
by data prior to 1970, but in fact this is not the case. Instead, the negative correlations 
arise because of the events of the early 1970’s, when UK shares collapsed and recovered 
at the same time as interest rates rose to new heights before falling again. This effect is 
not evident from the MSCI data set because the UK’s experience is dominated by other 
countries in the index which did not share the UK market’s volatility.  
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12.3.13 While the data set does offer some support for different implied correlations in 
different quadrants, the variations between quadrants are not dramatic, and this analysis 
does not offer much empirical support for abandoning simpler methods based on Pearson 
correlations and elliptical distributions. In particular, we note that the CRO forum and 
CEIOPS recommend the use of higher correlations in the SW corner relative to NW, 
while the empirical data suggests the reverse.  
 
12.3.14 Therefore, while the CFO forum and CEIOPS suggest that the classical 
correlation approach may be insufficiently prudent, our analysis suggests the reverse, that 
the classical approach is already prudent and firms may reduce their stated capital 
requirement by more accurate modelling of correlations in the tail. 
 
12.4 Half Space Definitions 
 
12.4.1 We now show how tail correlations can be useful in risk aggregation. This 
requires some mathematical background. Given a random vector X, a (closed) half-space 
means a set of the form: 

Hu,c ={x : u.x ≤ c} 
 
12.4.2 Here, u is a non-zero vector and c is a scalar. Equivalently, a half space is a set 
bounded by a hyperplane. We note that if u and c are multiplied by the same positive 
scalar then the half space is unchanged. There is no requirement that a half-space has 
probability 0.5, and it is entirely possible for one half-space to contain another – simply 
consider varying c in the definition. The use of half space probabilities is a promising 
alternative to the use of correlations to describe multivariate distributions. 
 
12.4.3 If the probability of every half space is known, this is enough to identify the 
multivariate probability of X. To see why this is the case, knowledge of the half-space 
probabilities allows us to construct the characteristic function of u.X for every u, hence 
the characteristic function of X itself using Fourier’s inversion formula. Calculating these 
in practice is a formidable numerical task, and we do not recommend it. However, this 
result can give some comfort that there is no loss of information in using methodologies 
based on half-space probabilities. 
 
12.4.4 Half spaces are particularly relevant for insurance work because in many cases the 
regions of solvency or insolvency are half spaces or close approximations thereof. Taking 
a non-life insurance example, suppose X is a vector of loss ratios, u is a vector of 
premiums and c denotes the available assets. The solvent region is precisely the half-
space Hu,c ={x : u.x ≤ c}.  
 
12.4.5 In life insurance, the solvent region may not be exactly a half-space. This is 
because the risks interact; liabilities cannot always be expressed algebraically as the sum 
of an interest effect and an equity effect and a lapse effect and a credit effect. As a result, 
the solvent region may be bounded by a curved surface rather than a hyperplane. 
 
12.4.6 Different methods of model calibration make use of different reference sets. 
Model calibration involves equating modelled probabilities of reference sets to historical 



100 
 

or judgemental frequencies. If the one of the reference sets happens to coincide with the 
solvent region then we have to worry only about estimation error for that region. If on the 
other hand, the solvent region is not the same shape as the reference set, then the choice 
of model becomes important in linking probabilities from one to the other. The model 
risk therefore depends on how closely the solvent region approximates the reference sets. 
 
12.4.7 Suppose we are given a choice between half space methods and copula methods. 
In the former case, the reference sets are half spaces; in the latter case, quadrants. It is an 
empirical question which of these is closer to a particular insurer’s solvent region. 
However, we consider that in many cases the half-space methods are the least bad option, 
given that solvent regions seldom exhibit the sharp corners of quadrants. 
 
12.4.8 We can also define an inner likely set, denoted by Λ-. This is defined as the 
intersection of all half spaces whose probability is α or more.  In mathematical symbols: 

   )(| ,, cucu HH Prob .  
 
12.4.9 This is the envelope of all the lines separating probability α from 1-α. While the 
outer likely set gives a sufficient condition for capital adequacy, the inner likely set gives 
a necessary condition. The condition is that a(x)≥0 for all x in the inner likely set Λ-.. 
Under mathematical convexity conditions, the outer likely set is the boundary of the inner 
likely set, in which case a(x)≥0 for all x in the inner likely set is both necessary and 
sufficient for capital adequacy. The construction for the 1970-2010 data set is show in 
Figure 36. 
 
Figure 36 90%-ile lines and the inner likely set based on 1970-2010 data     
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12.4.10 We can see that the inner likely set is closed and convex, as it is an intersection of 
closed convex sets. Furthermore, the inner likely set is easy to estimate empirically. 
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Intuitively, the result is a blob which touches the boundaries of probability-α half spaces. 
We plot this for the equity and interest rate data set below, noting that these are set at the 
90% level. We have also plotted the corresponding curve equivalent to the CRO forum 
and CEIOPS requirement for two-way correlations.  
 
12.4.11 The one-way tests in Figure 37 are based on the 45% equity fall as described in 
CEIOPS Advice for Level 2 Implementing Measures on Solvency II “Equity risk sub-
module” (formerly CP69) (2010) and the interest rate stress in which the 10 year rate is 
multiple by factors of 0.69 in the down stress and 1.42 in the up stress as described in 
CEIOPS Advice for Level 2 Implementing Measures on Solvency II “Calibration of 
Market Risk Module” (formerly CP70) (2010). This last blob is incomplete because the 
standard formula specifies tests only in respect of equity falls. 
 
Figure 37 Data-based likely sets and the CEIOPS proposals for Solvency II       
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12.4.12 We would naturally expect the 99.5%-ile to produce more extreme events than a 
90%-ile. The surprise, however, is in the shape of the likely set for CEIOPS proposal 
which is strikingly different to that implied by historic data. Figure 37 is a graphical 
representation of the contrasts in Table 18.   
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13. CONCLUSIONS 
 
13.1 Dependency is a very complex area of economic capital modelling allowing for a 
wide choice of model types and approaches to parameterisation. Issues that arise over a 
typical 12-month modelling time horizon are compounded using a multi-year model.    
 
13.2 Even something intuitively simple as a correlation coefficient can cause serious 
practical difficulties, including spurious relationships, availability of data and technical 
constraints. As was mentioned earlier on in the paper a simple scatter plot is likely to lead 
to a different interpretation than an historical time series using the same information.  
 
13.3 A few general messages coming out of our work are as follows:   

1) A single correlation coefficient is often not enough to describe the 
dependency between risks in more extreme scenarios, the distribution-
based copula approach to modelling dependency can be more meaningful. 
 

2) If copulas are used then the selection of an appropriate copula and its 
parameters should be based on sound analysis and judgement. However, 
there are considerable issues in trying to parameterise heavy-tailed copulas 
and so a pragmatic approach is often called for as described in section 8. 
 

3) A company needs to be extremely careful if it is using higher correlations 
within the variance-covariance framework as a substitute for tail 
dependence and copulas. The choice of correlations should not be based on 
the notion of a prudent margin in the absence of any analytical work 
underpinning the assumptions made. 

 
4) Copulas do not model the change of dependency structure over time, in 

particular at different points in the economic cycle, and in the case of non-
life insurance companies the underwriting cycle.  
 

5) Even a simple correlation matrix can cause quite a lot of issues including 
positive semi-definiteness, high dimensionality and filling in the missing 
terms.  

 
6) Casual modelling is an appealing modelling framework but there are 

considerable challenges in specifying both the structural dependencies and 
their associated parameters, such that they also hold in “stressed” states of 
a company. 

 
13.4 In our research, we have touched upon a number of different topics, some more 
complex than others. Whilst much valuable work within the sphere of dependency 
modelling has been accomplished over the last few years more still needs to be done in 
advance of the implementation of robust models and credible parameters within the 
Solvency II framework. We would like to think that the actuarial profession will be at the 
forefront of such developments as they affect insurance organisations. 
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APPENDIX A 

POSITIVE SEMI-DEFINITE MATRICES AND CHOLESKY DECOMPOSITION 
 
A1. Positive Semi-Definite Matrices 
 
A1.1 Let X be a p-dimensional random vector, each component having finite variance. 
The variance-covariance matrix V of X is defined by its (i,j) component 
 

Vij = Cov(Xi,Xj) ;   1≤i,j≤p. 
 
A1.2 For a deterministic vector u, it is easy then to see that Var(u.X) = uTVu  ≥ 0. 
 

A1.3 This property of variance-covariance matrices motivates the definition of the 
positive semi definite property. Let V be an arbitrary symmetric square p×p matrix. The 
matrix V is said to be positive semi definite (‘PSD’) if, for any real p-vector u, we have:  
 

uTVu  ≥ 0 
 
A1.4 The matrix is positive definite if strict inequality applies for any non-zero u. 
 
A1.5 The PSD property is important because of two mathematical results: the PSD 
necessity theorem and the PSD sufficiency theorem. 

 We have already proved the PSD necessity theorem, which states that variance 
covariance matrices are PSD. It then follows that correlation matrices are also 
PSD. It also follows that sample correlation matrices estimated from time series 
data (provided the same time points are available for all the data series) will be 
PSD. 

 The PSD sufficiency theorem states that for certain scalar reference distributions, 
and a PSD matrix R whose diagonal elements are 1, there exists a random vector 
whose components each have the specified reference distribution and for which 
the correlation matrix is R. 

 
A1.6 The importance of these two results is that, provided we stick to the distributions, 
in the sufficiency theorem, and consistent calibration data is available, then we can 
simply estimate historic correlation matrices and plug those into a projection model. We 
guarantee that the projection model will work, eliminating the risk of infeasible parameter 
inputs. 
 
A1.7 This guarantee has some limitations in practice, firstly because consistent time 
series are seldom available. Within a single correlation matrix, correlations may be 
estimated from time series of various lengths and frequencies; other correlations may be 
estimated using judgment or data overlaid by manual adjustments. In this case of mixed 
input sources, the PSD property of the resulting input matrices is not guaranteed, and 
indeed with large matrices is quite likely to fail. Nevertheless, even in this case, a test for 
positive definiteness provides a definitive assessment of whether a specified correlation 
matrix is useable (or not) within a stochastic projection model. 
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A1.8 A further limitation in practice is that the distributions to be used may not fall into 
the class of reference distributions for which the PSD necessity theorem holds. The 
sufficiency theorem is known to hold for normal distributions, and by extension to scale 
mixtures of normal distributions, including the Student T distribution. The sufficiency 
theorem cannot hold for asymmetric distributions; for example if X1 and X2 share a 
common asymmetric distribution their correlation cannot be -100%. 
 
A1.9 As far we are aware, it is an unsolved question whether the sufficiency theorem 
holds for other symmetric distributions, such as the uniform distribution. Within the 
theory of copulas, a rank correlation matrix is the correlation matrix of a random vector 
whose marginals are uniformly distributed. The difficulty is identifying what further 
restriction this uniformity imposes on the set of valid correlation matrices. PSD is clearly 
necessary but may or may not be sufficient. That means that there may or may not be 
valid correlation matrices that cannot serve as rank correlation matrices. We examine 
some possible numerical examples in Appendix B. 
 
A2. Cholesky Decomposition 
 
A2.1 The classical test of the positive definite property is to attempt a so-called 
Cholesky Decomposition. This is the calculation of a matrix L such that LLT = V. It turns 
out that if this can be done at all, then it can be done with a lower triangular matrix L 
(that is, where Lij = 0 for j>i). The Cholesky algorithm for computing L then takes the 
following inductive form (assuming Lij has already  been computed for previous values of 
i and all smaller values of j for the current value of i) 
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A2.2 It is conventional to take positive square roots, although the method works equally 
well with negative roots and indeed with randomly selected signs. The Cholesky method 
works if and only if V is positive definite. Otherwise, the square root step fails with a 
negative radicand. Thus, attempts at Cholesky decomposition provide a useful test of 
whether a proposed correlation matrix is positive definite or not. 
 
A2.3 In particular, in the 3×3 case, correlation matrices take the following form: 
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The Cholesky decomposition then proceeds as follows: 
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A2.4 The first radical works only if |r12|≤1. This is the familiar constraint that 
correlations must be between -1 and +1. The last radical can be computed only if the so-
called triangle inequality holds, that is: 
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A2.5 We can interpret this as saying that if X1 is strongly correlated with X2  and X1 is 
strongly correlated with X3 (ie, both r12 and r13 are close to 1) then X2 should also be 
strongly correlated with X3. 
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APPENDIX B 

RANGES FOR MISSING CORRELATIONS  
 
B1. Ranges 
 
B1.1 In some applications, a correlation matrix is partly known, with missing elements 
to be completed. It is desirable to complete the matrix with as correlation that is 
empirically plausible, but we also want the matrix to be a valid input for later states of the 
modelling. 
 
B1.2 In this appendix, we consider a specific numerical example. We examine the 
possible range for the missing element r34 in the matrix below. 
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B1.3 We can ask for what values of r34 certain properties hold, for example: 

 R satisfies the triangle inequality 
 R is positive semi definite (so is a valid correlation matrix) 
 R is a valid rank correlation matrix 
 R is the correlation matrix of a Gauss copula 
 R is the correlation matrix of a Spider copula 

 
B1.4 The table below shows that many of these alternatives can be achieved for 
different values of r34: 

Min value of r34 Max value of r34 Description 
-1.00 -0.866 Not PSD, triangle inequality fails 
-0.866 -0.833 Not PSD even though triangle inequality satisfied 
-0.833 -0.810 Positive definite, but cannot be a rank correlation 

matrix for gauss nor spider copulas 
-0.810 -0.500 Can be a rank correlation matrix for a Gauss 

copula but not a spider copula 
-0.500 0.428 Can be a rank correlation matrix for both Gauss 

and spider copulas
0.428 0.500 Can be a rank correlation matrix for a spider 

copula but not a Gauss copula 
0.500 0.866 Not PSD even though triangle inequality 

satisfied. This range provides interesting 
examples of matrices that are not PSD even 
though all elements are positive and the common 
sense triangle properties hold. 

0.866 1.000 Not PSD, triangle inequality fails.  
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We now examine each of these criteria in more detail. 
 
B2. The Triangle inequality 
 
B2.1 We defined the triangle inequality in Appendix 1. In our example, there are two 
triangle inequalities involving r34, one also involving r13, r14 and the other involving r23, 
r24. These inequalities are as follows:  
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B2.2 In our example, as r13 = r24 = 0 and r14 = r23 = 0.5, both these inequalities give the 
same constraints on r34, that it must lie between -0.866 and +0.866. 
 
B3. PSD Condition 
 
B3.1 The triangle inequality is necessary, but not sufficient, to ensure PSD. To 
determine the full implications of PSD we need to perform a Cholesky decomposition. 
Applying the process step by step, we find the following: 
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B3.2 From this, is clear that the last step will work only if r34 lies between -5/6 and ½. 
This is therefore the necessary and sufficient condition for positive definiteness.  
 
B4. Valid Rank Correlation Matrices 
 
B4.1 We now consider the possible range of valid rank correlation matrices. For the 
range -0.810 ≤ r34 ≤ 0.500 we have explicit constructions of random vectors with that 
rank correlation matrices, so the set of valid rank correlation matrices contains the range 
[-0.810, 0.500]. 
 
B4.2 We know that any rank correlation matrix must be PSD, so that the range [-0.833, 
0.500] contains the set of valid rank correlation matrices. 
 
B4.3 For -0.833 ≤ r34 ≤ -0.810 we are unable to establish whether or not the matrix is a 
rank correlation matrix. One approach to this problem is to think hard of more possible 
copulas and try to fit the matrix, but if this fails we have no way of testing whether this is 
for lack of trying or because the problem has no solution. 
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B5. Gauss Copula 
 
B5.1 We now consider the rank correlation matrices that can arise from the Gauss 
copula construction. We start with a Gaussian random vector with correlation matrix 
RGauss, so the correlation between Xi and Xj is rGauss(i,j). 
 
B5.2 The rank correlation between Xi and Xj  is equivalent to the correlation between 
Φ(Xi) and Φ(Xj) where Φ is the standard normal cumulative distribution function. The 
rank correlation rrank is not the same as the gauss correlation rGauss because Φ is not a 
linear function. Joag-Dev (1984) derived a formula for rrank in terms of rGauss. 
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B5.3 This is applied separately to each element of the correlation matrix. If the original 
correlation matrix RGauss is PSD, then the matrix Rrank derived from the Joag-Dev formula 
is automatically PSD. 
 
B5.4 Conversely, given a specified rank correlation matrix Rrank , we can try to solve 
for the corresponding Gauss correlation matrix. 
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B5.5 The problem with this approach is that it might not result in RGauss being PSD. In 
that case, there is no gauss copula producing the stated rank correlation matrix.  To 
identify the range of rank correlation matrices in our example, we have first to transform 
the original matrix to a gauss correlation matrix: 
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B5.6 The condition for RGauss  to be PSD is success in a cholesky decomposition. Using 
the same approach as our analysis of the PSD criterion, we finally determine that the 
feasible range is -0.810≤r34≤0.428. Comparing this to the PSD condition, we see that 
there are two ranges of r34 for which the input matrix Rrank is positive definite but the 
Gauss copula fails. These two ranges are [-0.833,-0.810] and [0.428, 0.500]. In the next 
section we find an alternative copula that covers the latter of these ranges. 
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B6. Spider Copula 
 
B6.1 Gauss copulas are not the only way to target a given rank correlation matrix. 
Other constructions may work where the Gauss copula fails. In this section we examine 
copulas where all components are related to each other by random sign changes. We call 
these “spider copulas”. 
 
B6.2 A spider distribution is defined as follows. The first component, X1, is drawn from 
a symmetric distribution with mean zero. The other components, X2 X3 and X4 are equal 
either to X1 or –X1, with the signs chosen randomly and independent of X1.This is called a 
spider copula because the locus of possible values in four dimensions consists of eight 
legs radiating from the origin. 
 
B6.3 The table below shows two examples of spider copulas, defined by the 
probabilities of each set of sign changes. 
 
Expressed as a function of X1 Probability for Different r34 

X2 X3 X4 r34 = -0.5 r34 = +0.5 
X2 = -X1 X3= -X1 X4 = -X1 Prob = 0 Prob = 0 
X2 = -X1 X3= -X1 X4 = X1 Prob = 0.25 Prob = 0.25 
X2 = -X1 X3= X1 X4 = -X1 Prob = 0 Prob = 0 
X2 = -X1 X3= X1 X4 = X1 Prob = 0 Prob = 0 
X2 = X1 X3= -X1 X4 = -X1 Prob = 0 Prob = 0.25 
X2 = X1 X3= -X1 X4 = X1 Prob = 0.25 Prob = 0 
X2 = X1 X3= X1 X4 = -X1 Prob = 0.25 Prob = 0 
X2 = X1 X3= X1 X4 = X1 Prob = 0.25 Prob =  0.5 
 
B6.4 For spider distributions, Pearson correlations and rank correlations are equal so 
there is no need for a Joag-Dev transformation to fit spider copulas. Our table contains 
two probability distributions for the sign changes; it is straightforward to verify that the 
tabulated probabilities do indeed replicate our example correlation matrix R with the 
specified values of r34=±0.5. Any intermediate values of r34 can be obtained by mixing 
the two distributions. However, any attempt to generate |r34| > 0.5 is doomed to failure. 
Algebraically we can solve for the probabilities but some of the proposed probabilities 
turn out to be negative which is not feasible. We deduce that spider copulas can produce 
r34 only in the range [-0.5, 0.5]. 
 
B6.5 It is instructive to compare the range of spider copula to Gauss copulas. There are 
values of r34which are consistent with Gauss copulas but not spider copulas, so it is not 
true to say that all valid rank correlation matrices can be expressed with a spider copula. 
There are also values of r34 consistent only with spider copulas and not Gauss copulas, so 
not all valid rank correlation matrices can be expressed as Gauss copulas either. In the 
substantial region of overlap, a copula from either family could replicate the chosen rank 
correlation matrix. However, as these copulas are not the same in the overlap region, the 
choice of copula family could still matter for risk calculations. 
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APPENDIX C 

ELLIPTICAL DISTRIBUTIONS – CAPITAL AGGREGATION PROOF AND OTHER MATTERS 
 

C1. The correlation formula for economic capital takes the form: 
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Here, Rij is a correlation matrix and {ci} is the capital required for the ith  risk.  

 
C2. Proof 
 
C2.1 To prove this, suppose the risk drivers  X have an elliptically contoured 
distribution with standardised cdf FS, mean m and scale matrix V.  
 
C2.2 Suppose also that the next assets function takes the form:  

 
Net assets = a+b.(X-m).  

 
C.2.3 We define the stand alone signed capital, ci, for risk i, by the formula: 

iiiSi VbFc )(1   

 
C2.4 The criterion for solvency at confidence level α>1/2  is that: 
 

   0.XbaProb  
 
C2.5 Substituting into the elliptically contoured distribution definition, this is 
equivalent to: 
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C2.6 Equivalently, the initial assets in the base case (X=m) must exceed the economic 
capital, that is: 
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C2.7 It is now clear by substitution that the economic capital satisfies the so-called 
‘correlation formula’. 
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C2.8 This formula appears in many guises. An equivalent representation expresses the 
α-quantile of b.X in terms of the α and 1-α quantiles of each component Xi .  
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C2.9 Denoting α-quantiles by qα, the formula (assuming α>½ ) is: 
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APPENDIX D 

ABC INSURANCE COMPANY – OTHER DISTRIBUTION  PARAMETERS 
 
Table19 Risk distribution assumptions 
Risk Type Distribution Mu Sigma E(X) SD(X) CV(X)
Equity Lognormal 7.4893 0.4724 2,000 1,000 50%
Property Lognormal 7.4893 0.4724 2,000 1,000 50%
Interest Rate Lognormal 7.4893 0.4724 2,000 1,000 50%
Credit Spread Lognormal 7.4893 0.4724 2,000 1,000 50%
Credit Default Lognormal 7.4893 0.4724 2,000 1,000 50%
UW - Cat Lognormal 7.4893 0.4724 2,000 1,000 50%
UW Non-Cat Lognormal 7.4893 0.4724 2,000 1,000 50%
Reserve Lognormal 7.4893 0.4724 2,000 1,000 50%
Expenses Lognormal 7.4893 0.4724 2,000 1,000 50%
Operational Lognormal 7.4893 0.4724 2,000 1,000 50%

Risk Type Distribution Mu Sigma E(X) SD(X) CV(X)
Equity Normal 2,000 500 2,000 500 25%
Property Normal 2,000 500 2,000 500 25%
Interest Rate Normal 2,000 500 2,000 500 25%
Credit Spread Normal 2,000 500 2,000 500 25%
Credit Default Normal 2,000 500 2,000 500 25%
UW - Cat Normal 2,000 500 2,000 500 25%
UW Non-Cat Normal 2,000 500 2,000 500 25%
Reserve Normal 2,000 500 2,000 500 25%
Expenses Normal 2,000 500 2,000 500 25%
Operational Normal 2,000 500 2,000 500 25%  
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APPENDIX  E 

ABC INSURANCE COMPANY – LOGNORMAL RISKS  (CV = 25%, Corr = 10% to 50%) 
 

Figure 38 Economic Capital Results using different methods 
Economic Capital - 10% Correlation % change cf Gaussian

Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV
75.0% 4 0.0% -7.6% -10.4% -23.1% -9.3%

90% 10 0.0% -1.4% -2.3% -6.4% 1.9%
95% 20 0.0% 2.0% 2.1% 4.4% 6.2%
99% 100 0.0% 7.7% 13.0% 23.5% 13.1%

99.5% 200 0.0% 11.2% 18.5% 31.7% 15.5%
99.95% 2,000 0.0% 21.8% 32.6% 62.9% 25.5%

Economic Capital - 25% Correlation % change cf Gaussian
Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV

75.0% 4 0.0% -4.2% -10.3% -19.3% -5.8%
90% 10 0.0% -2.1% -2.9% -7.3% 2.0%
95% 20 0.0% -0.4% 1.6% -0.8% 5.2%
99% 100 0.0% 6.6% 10.2% 21.9% 10.6%

99.5% 200 0.0% 8.3% 19.5% 31.7% 12.7%
99.95% 2,000 0.0% 25.7% 34.7% 67.3% 21.5%

Economic Capital - 50% Correlation % change cf Gaussian
Percentile Return Gaussian t - 10 df t - 5 df t - 2 df V CV

75.0% 4 0.0% -1.0% -5.9% -12.8% -2.2%
90% 10 0.0% -2.5% -2.4% -7.2% 1.1%
95% 20 0.0% -1.7% 0.2% -2.1% 2.6%
99% 100 0.0% 3.7% 7.6% 14.3% 6.6%

99.5% 200 0.0% 6.7% 10.6% 18.5% 8.7%
99.95% 2,000 0.0% 11.7% 11.7% 32.7% 7.9%  
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APPENDIX F 

CANONICAL MAXIMUM LIKELIHOOD – LIBOR 3M vs. FTSE ALL SHARE TOTAL 
RETURN 

 
Figure 39 Scatter Plot of values for LIBOR 3M vs FTSE All Share Total Return 
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Figure 40 Scatter Plot of [0,1] values for LIBOR 3M vs FTSE All Share Total 

Return 
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APPENDIX G 

RJEP(0.95) & R(0.95) – t COPULA 5 df, GAUSSIAN COPULA AND INDEPENDENCE 
 

Figure 41 Matrix of values of R(z) and RJEP(z) for different copulas, z = 0.95  
R(Z):  t Copula 5 d.f. z 95.0%

No. 1 2 3 4 5 6 7 8 9 10
Equity 1 17.58% 21.85% 21.61% 20.89% 19.68% 20.16% 17.98% 17.58% 19.68%
Property 2 21.18% 20.03% 19.87% 19.38% 20.03% 20.36% 19.38% 19.71%
Interest Rate 3 21.20% 19.98% 19.45% 20.82% 20.67% 19.68% 20.89%
Credit Spread 4 19.06% 18.46% 22.20% 18.91% 19.96% 21.82%
Credit Default 5 19.13% 20.71% 20.16% 19.61% 19.76%
UW - Cat 6 18.87% 18.46% 19.35% 21.62%
UW Non-Cat 7 19.27% 19.51% 21.74%
Reserve 8 21.06% 21.38%
Expenses 9 19.48%
Operational 10

RJEP(Z):  t Copula 5 d.f.
No. 1 2 3 4 5 6 7 8 9 10

Equity 1 0.87% 1.08% 1.07% 1.04% 0.98% 1.00% 0.89% 0.87% 0.98%
Property 2 1.04% 0.98% 0.97% 0.95% 0.98% 1.00% 0.95% 0.96%
Interest Rate 3 1.12% 1.06% 1.03% 1.10% 1.09% 1.04% 1.10%
Credit Spread 4 1.02% 0.99% 1.19% 1.01% 1.07% 1.17%
Credit Default 5 0.97% 1.05% 1.02% 1.00% 1.00%
UW - Cat 6 0.93% 0.91% 0.96% 1.07%
UW Non-Cat 7 0.97% 0.98% 1.09%
Reserve 8 1.04% 1.05%
Expenses 9 0.98%
Operational 10

R(Z):  Gaussian Copula
No. 1 2 3 4 5 6 7 8 9 10

Equity 1 11.14% 11.22% 11.88% 12.12% 11.06% 10.89% 11.47% 11.55% 11.71%
Property 2 11.31% 11.63% 12.68% 11.55% 11.47% 13.17% 13.09% 11.71%
Interest Rate 3 11.80% 10.98% 10.82% 12.45% 10.90% 10.66% 12.45%
Credit Spread 4 11.22% 11.85% 11.46% 11.69% 12.49% 13.68%
Credit Default 5 13.19% 12.30% 11.33% 11.89% 11.65%
UW - Cat 6 10.67% 11.99% 12.41% 12.82%
UW Non-Cat 7 14.12% 11.46% 12.19%
Reserve 8 11.88% 12.52%
Expenses 9 11.01%
Operational 10

RJEP(Z):  Gaussian Copula
No. 1 2 3 4 5 6 7 8 9 10

Equity 1 0.54% 0.55% 0.58% 0.59% 0.54% 0.53% 0.56% 0.56% 0.57%
Property 2 0.56% 0.58% 0.63% 0.57% 0.57% 0.65% 0.65% 0.58%
Interest Rate 3 0.58% 0.54% 0.53% 0.61% 0.54% 0.52% 0.61%
Credit Spread 4 0.56% 0.60% 0.58% 0.59% 0.63% 0.69%
Credit Default 5 0.65% 0.61% 0.56% 0.59% 0.58%
UW - Cat 6 0.52% 0.58% 0.60% 0.62%
UW Non-Cat 7 0.70% 0.57% 0.60%
Reserve 8 0.59% 0.62%
Expenses 9 0.56%
Operational 10

R(Z):  Independence 5.0%
RJEP(Z):  Independence 0.25%  
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APPENDIX H 
 

KENDALL TAU – t COPULA 5 d.f. AND GAUSSIAN COPULA   
 
Figure 42 Matrix of values of Kendall Tau for different copulas 
Kendall Tau:  t Copula 5 d.f.

No. 1 2 3 4 5 6 7 8 9 10
Equity 1 17.62% 16.72% 17.74% 18.31% 16.29% 17.73% 16.72% 16.49% 17.50%
Property 2 15.38% 15.92% 16.39% 15.72% 17.20% 16.43% 16.29% 17.25%
Interest Rate 3 16.02% 16.67% 17.29% 17.66% 16.68% 16.71% 17.02%
Credit Spread 4 16.27% 17.17% 16.70% 15.94% 15.96% 16.02%
Credit Default 5 16.35% 17.22% 15.75% 15.68% 17.25%
UW - Cat 6 15.61% 15.16% 16.71% 17.90%
UW Non-Cat 7 15.56% 15.86% 17.63%
Reserve 8 16.73% 17.26%
Expenses 9 16.19%
Operational 10

Kendall Tau:  Gaussian Copula
No. 1 2 3 4 5 6 7 8 9 10

Equity 1 16.25% 16.24% 15.64% 16.29% 15.97% 16.24% 15.53% 16.90% 15.58%
Property 2 16.13% 16.37% 15.35% 14.62% 16.00% 15.24% 17.53% 15.59%
Interest Rate 3 16.33% 15.90% 15.23% 14.50% 15.66% 16.78% 16.31%
Credit Spread 4 15.21% 15.30% 15.54% 15.16% 17.13% 16.62%
Credit Default 5 16.17% 13.69% 14.71% 14.85% 16.29%
UW - Cat 6 13.38% 16.68% 15.72% 16.85%
UW Non-Cat 7 14.64% 14.75% 15.54%
Reserve 8 16.97% 15.78%
Expenses 9 15.71%
Operational 10  
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