
SSRN (2024), 1–36

Privacy Preserving Neural Network Predictive
Modelling in Insurance using Horizontal Federated
Learning
Malgorzata Smietanka,* Dylan Liew, Scott Hand, and Harry Haoyuan Loh
Institute and Faculty of Actuaries Federated Learning Working Party
*Corresponding author. Email: malgorzata.wasiewicz.17@ucl.ac.uk

Abstract
Federated Learning is a novel method of training machine learning models, pioneered by Google, aimed
for use on smartphones. In contrast to traditional machine learning, where data is centralized and brought
to the model, Federated Learning involves the algorithm being brought to the data, ensuring privacy is
preserved. This paper will demonstrate how insurance companies in a market could use this technique to
build a claims frequency neural network prediction model collectively by combining and using all of their
customer data, without actually sharing or compromising any sensitive information with each other. A
simulated car insurance market with 10 players was created using the freMTPL2freq dataset. It was found
that if all insurers were permitted to share their confidential data with each other, they could collectively
build a model that achieved 5.57% of exposure weighted Poisson Deviance Explained (% PDE) on an
unseen sample. However, if they are not permitted to share their customer data, none of them can achieve
more than 3.82% exposure weighted PDE on the same unseen sample. With Federated Learning, they can
retain all of their customer data privately and construct a model that achieves a similar level of accuracy to
that achieved by centralising all the data for model training, reaching 5.34% exposure weighted PDE on
the same unseen sample.

Keywords: Federated Learning, Collaborative Modelling, Claims Frequency Prediction, Data Privacy, Insurance, Deep
Learning, Machine Learning, Flower, PyTorch, Actuarial Modelling

1. Introduction
This paper demonstrates how insurance companies can ensure the security, privacy, and confidential-
ity of their customer data while collaborating with other insurers. We propose utilising Federated
Learning (FL) in insurance to allow secure collaboration on machine learning models. FL operates
by bringing machine learning models to distributed data, fostering collaboration without direct data
exchange. This paper presents a novel contribution: a tailored FL framework designed specifically
for the insurance sector, complemented by a unique hyperparameter tuning approach. Access to the
complete codebase is available via the following link:https://github.com/actuari/IFoA-FL-WP.git
Code documentation can be found in FL_usecase_docs.pdf in the docs folder of this repo.

To motivate our use case, consider the scarcity that is often found in insurance data. For example,
a life insurer trying to predict mortality rates of a small population such as the very elderly. There is
often very little data on such a cohort e.g. those aged over 90 years old. Or a home insurer predicting
the chance of a natural disaster such as a hurricane, or estimating capital requirements for a 1:200
year event. Or consider launching a new insurance product in a new market with no prior claims
experience, or being exposed to a new emerging risk type.

Insurance data’s rarity and value provide insurers with some motivation to share it with each other
to some extent. While pooling data can enhance model performance, it also exposes the data. Whilst

malgorzata.wasiewicz.17@ucl.ac.uk
https://github.com/actuari/IFoA-FL-WP.git


2 Malgorzata Smietanka et al.

insurers do often exchange obfuscated, limited, data for fraud and claims underwriting purposes,
highly detailed, granular data is rarely shared.

Furthermore insurance data is often highly regulated and sensitive, which also prevents its
exchange. Many markets impose stringent requirements such as the General Data Protection
Regulation (GDPR) in the European Union. Insurance data can reveal a company’s strategy, pricing,
inner workings, and other commercial secrets. It can also contain highly sensitive data on their
customers such as their medical health history.

FL is a technique initially designed to build models such as text prediction on smartphones
without requiring any smartphone data to leave the device and be seen by an external party. In
this paper, the authors demonstrate how the same concept can be applied to insurance companies.
Specifically, the authors use the freMTPL2freq car insurance dataset to mimic an entire insurance
market’s claim experience. We then model this dataset being split between 10 different independent
insurers. The authors find that if all 10 insurer’s keep their customer data private, secure, and on
their own IT infrastructure, they can build a claims frequency prediction model just as accurate as if
they all freely shared and exchanged their customer data with each other.

This paper is organised as follows: section 2 explains in what settings insurance companies would
use FL; section 3 introduces the mathematics and theory that underpins how FL works, section
4 shows how certain kinds of encryption can allow insurance model parameters to be securely
aggregated and shared with other insurers. Our main study is in Section 5 where we apply this
theory to the freMTPL2freq car insurance dataset. The authors demonstrate FL achieving high
model predictive performance without needing any sensitive data to be compromised, with results
being discussed in Section 6. There are some unique hyperpameters in FL, and challenges in tuning
Federated Models. We propose a potential new solution to optimising these in Section 7. We then
discuss further considerations to FL in Section 8 and conclude the paper in Section 9.

2. When andWhy Insurance Companies Would Use Federated Learning
Consider an insurer in the following scenarios:

• They are unwillingly exposed to a new risk or peril. For example, a novel disease emerges which
leads to a new condition which health insurance customers can claim. Or a change in regulation
means they are required to cover a condition previously excluded.
• They wish to launch a new product or enter a new insurance market.
• They wish to insure against events that are rarely observed such as rocket launches, kidnappings,

terrorist attacks etc.
• Data drift causes their data to be no longer relevant e.g. inflation erodes the validity of their prior

claims, regulation or market and consumer tastes change etc.

In all four of these scenarios, the data are scarce and limited. The construction of statistically
credible models to predict claims (or any other behavior, such as lapses, conversion etc.) may be
infeasible, especially if using methods such as deep learning which typically require a lot of data.
These scenarios might prompt an insurer to consider enriching their database by collaborating with
another insurer, or plugging into external data sources.

This approach is not uncommon. In the UK, for instance, many life insurers send their mortality
data to the Continuous Mortality Investigation (CMI), which calculates average mortality rates for
the entire market. These industry average rates are then openly published and shared. The CMI
must take considerable measures to maintain the confidentiality of the data they receive, and the
insurers must have confidence that the CMI will not share or divulge their data to external parties.
It is then common practice for UK life insurers to adjust these industry average mortality rates to
reflect their own experience. Some life insurers may market to customers with lower mortality, or
enforce stricter underwriting, which results in fewer claims than their competitors.



SSRN 3

Similarly, many insurers share a limited form of claims data with one another, with the intention
of reducing fraud and other forms of operational risk. This data is usually obfuscated by a central
aggregator. The sharing of this data helps the insurance industry to reduce fraudulent claims. Insurers
also send their data to reinsurers. Reinsurers receive this data from numerous direct insurers and
effectively calculate average claim rates for the industry.

Nevertheless, these examples contain potential issues that arise when data is shared with another
party for aggregation or pooling purposes:

1. Firstly, there is the question of trust. It is possible that the party receiving the data could share or
leak confidential information to a third party.

2. Secondly, even if the party can be trusted, are they competent enough to keep the data private
hidden, safe, and secured? It is possible that the aggregating body that collects the data may not
have sufficient controls and guardrails in place to protect their data from malicious actors.

3. It is also important to consider whether the insurer is permitted to share their data with another
party. It may be the case that they are forbidden from sending it externally to protect their
customer data.

4. Even if the aggregating body collecting the data is trustworthy and competent, they may have
rules and regulations to comply with, such as how long they can hold the data for, minimum
standards and tests against bad actors. Complying with these regulations may be costly, especially
when sensitive data is stored.

5. Finally, it is necessary to consider how the data can be transmitted. It is probable that some form
of encryption will be required, which carries its own risks. These include the question of how to
share and store the encryption keys, where they can be backed up, and how received encrypted
data can be authenticated. Encryption alone is not a panacea unfortunately.

In FL, sensitive data is not transmitted or shared with another party, which addresses the afore-
mentioned issues. Nevertheless, even if insurers possess sufficient data on their own, FL may still
yield benefits, such as:

1. Enhanced Model Accuracy: The use of insights from a range of data sets from different
insurance providers provides a more complete picture of the risk that an individual insurer may
not otherwise have access to. A collective approach results in more accurate and robust predictive
models, improving the industry’s ability to assess and mitigate risks effectively.

2. Data Enrichment and Diversity: Collaboration enables access to a wider variety of data sources,
including different market segments, geographical locations, and demographic profiles.

3. Effective Risk Mitigation: Collaborative modelling facilitates the identification of emerging
risks and trends that may not be apparent within individual datasets. Insurance companies can
collectively respond to evolving risks, enhancing the industry’s overall resilience to unforeseen
challenges. FL involves holding data related to model parameter updates, meaning insurance
companies are less exposed to the risk of breaches, attacks etc. (as their sensitive customer data
are never shared or moved).

4. Regulatory Compliance: Greater use of privacy-preserving techniques like FL helps ensure
data is kept with their original owners. As less data is held by insurers, it is less likely that they
breach data regulation.

5. Ethical Standards and Marketing: Using FL helps ensure insurers collect less data from their
customers. Customers may feel as a matter of principle that companies should hold as little data
as possible. Some customers in turn may be attracted to companies that make more effort to keep
their data private. Apple and WhatsApp for example have stressed how they keep their customer
data private.

6. Industry Advancement: Collaboration fosters an environment of innovation and knowledge-
sharing within the insurance industry rather than everyone against one another.



4 Malgorzata Smietanka et al.

2.1 Considerations about Federated Learning
While Federated Learning presents multitude of advantages, there are scenarios where its application
might not be optimal. We outline several considerations below.

1. Regulatory Constraints: Regulatory implications in certain markets may limit the applicability
of FL. These constraints are thoroughly discussed in Section 8.1.

2. Feature Uniformity Requirements in horizontal FL This paper considers horizontal FL (as
opposed to vertical FL which we briefly discuss in Section 5.2.2 but is otherwise beyond the scope
of this research). This requires all insurers to use the exact same set of features, processed and
transformed in the exact same way. If insurers need to develop models using unique features
tailored to their specific needs, FL might not be the best approach.

3. Heterogeneity in Variables: If the variable to be modelled e.g. claims, lapses etc. are extremely
different between insurers then sharing and pooling experience together using FL could be
sub-optimal. If for example insurers have very different standards of underwriting and claims
experience it may be better to keep their modelling separate.

4. Imbalance in Data Contribution: Market dominant players in the market with the majority
of the data may be more likely to contribute more to FL, than they get out of FL. Sharing their
model parameters with other, smaller, players in the market may not be expected to add value to
them. Instead the expectation may be that smaller players gain morefrom FL. To address this
imbalance, it is essential to establish reward mechanisms for data contributions. These reward
mechanisms can include financial incentives, or other forms of compensation to ensure that major
contributors are fairly rewarded for their efforts.

5. Trust and Security Concerns: FL requires a degree of trust between insurers as the protocol
can be exploited by bad actors which we further discussed in Section 8.6. If the participants
in the model building process are suspected to be of bad faith, FL may not be suitable. To
mitigate security concerns, protocols such as secure aggregation, discussed in Section 4.1, can be
implemented.

6. Increased Complexity and Time Requirements: Implementing FL adds complexity to the
model building process so it can take longer to build, train, and process. In this paper to achieve
near the same model performance as freely sharing data, a substantial increase in training time is
required which we discuss in Section 8.4.

3. Federated Learning Background and Theory
The first known application of FL was by Google in 2016 (McMahan et al. 2023). They had initially
incepted the idea to apply to smartphones which frequently run machine learning models to predict
the next word in a text message sentence, convert audio data to text, select and classify photos, etc.
Such models typically use deep learning methods which encounter a key challenge:

1. They require a lot of Training data to calibrate.
2. However such data e.g. user’s text messages, photos, audio recordings etc. are often considered

highly private. This data is not often widely shared to other parties such as model builders.

Whilst there are large public text datasets available such as Wikipedia, these would not train text
message prediction models very well. The language used in Wikipedia is very different to the
conversational language used between people via text message. Thus Google, perhaps surprisingly,
found themselves often lacking in relevant data in the time of Big Data. This conundrum naturally
led them to ponder if they could train their models without having to see and collect the data itself.

Their work relied on previous findings that neural networks can be made more efficient by
splitting data across compute clusters (or cores etc.) on a single machine. Once the data is split
across the compute clusters on the machine, each cluster trains their own individual neural network



SSRN 5

model. This computes parameters in parallel across the computes. After each compute cluster has
their own trained model, the overall machine can aggregate these models by taking the average of
each cluster’s parameters (see McDonald, Hall, and Mann 2010, Povey, Zhang, and Khudanpur 2015,
and Zhang, Choromanska, and LeCun 2015). However, these related works were based on all of
the data being centralised and stored on a single machine (with the data being split across clusters
within that machine). McMahan et al. 2023 introduced the idea that the data does not get actually
get stored in a single location.

3.1 Horizontal Federating Learning Basics
In this section we will introduce FL approach by explaining how it differs from traditional machine
learning approach. For an exhaustive examination of FL principles, readers are encouraged to consult
this paper: Treleaven, Smietanka, and Pithadia 2022.

Traditional machine learning approach
Consider how 3 parties would traditionally combine their data together to build a model, which we
denote f (X). For example, perhaps 3 smartphone users want to combine their text message data to
build a (combined) text prediction model. Throughout this paper we will refer to these 3 parties
interchangeably as clients, agents, or parties.

They could send their data to a central entity such as Google for aggregation. This central body
would then build the text prediction model. The central body would then send this model, i.e. the
model parameters, to the 3 smartphone users for them to use.

Or perhaps 3 UK life insurance companies want to pool their mortality experience together.
They could send their data to a body such as the CMI for aggregation. After aggregation, the CMI
would publish the results of the pooled data for the 3 insurance companies to use. Or perhaps a
regulator, reinsurer, or consultancy could act as an independent central body, that is trusted with the
sensitive data. In general:

1. They would first centralise their data to a single location. As discussed, this first step is difficult in
practice. This may require many layers of encryption, rigorous compliance with data regulation,
large amounts of trust, getting consent from each client etc.

2. Once the data is centralised the central body trains and fits f (X) to the data.
3. This model, that has been trained on all the party’s data, can then be shared back with the clients.

Now all 3 parties can use f (X) for inference, testing, prediction etc. See Figure 1 for an outline
of how this might look.

Figure 1. Traditional approach: collaborating parties centralise Training data when fitting a machine learning model.



6 Malgorzata Smietanka et al.

Horizontal Federated Learning approach
In contrast, a federated approach would take the following steps:

1. Firstly, the 3 parties would train their own individual models on their own data to produce 3
different models, in private, on their own IT infrastructure, without any of their data leaving
them. As each of these 3 models are trained on just a subset of data e.g. a single smartphone’s text
message history, these models are likely to be not very accurate if used. Additionally, as they are
trained on data that doesn’t leave its source, we call these local models. Let us denote the local
model produced by client i as li(X) e.g. the first party produces l1(X).

2. The parameters, rather than the data, of l1(X), l2(X), and l3(X) are then sent to some central
body e.g. a regulator, reinsurer, or consultancy. These parameters are not constrained to the
same requirements as the original data. The centralised body then calculates the average of the
parameters l1(X), l2(X), and l3(X) , to produce f (X).

3. f (X) (the average of the model parameters) is then sent back to the 3 parties for inference, testing,
prediction etc. See Figure 2 for an outline of how this might look.

Figure 2. Federated Model training: parties don’t centralise or move Training data when collaborating on ML model.

In effect, each client’s data is converted and masked into model parameters before being sent. It
is important to note a key difference in both approaches:

1. In the "traditional" approach the data is "brought to the model"
The model is trained at the central location e.g. Google or the CMI.

2. In the Federated approach, the model is "brought to the data"
In FL, the data does not leave the 3 smartphones (or 3 life insurance companies). Whilst the central
body does aggregate and average the 3 models, the actual model training, fitting, and calculation
of the parameters occurs at source of the data e.g. the text prediction model’s parameters are fit
using the user’s smartphone processor, GPU, memory etc. The life insurance company themselves
each try fitting and calculating their own mortality experience first before sharing the results of
their calculation.

3.2 Horizontal Federated Machine Learning Specifics
In Section 3.1, we outlined the distinction between federated and traditional approaches to model
building without specifying the model type. Here, we address the adaptation of these principles to
machine learning models, particularly neural networks (NNs). It is worth noting that generalised
linear models (GLMs) which are often used in actuarial modelling, can be considered special cases of
NNs by:

1. Preprocessing the data in the same way e.g. dummy encoding categorical variables.



SSRN 7

2. Setting the number of hidden layers in the network to 0.
3. Using the appropriate negative log-likelihood loss function.
4. And using the appropriate link function on the last output neuron as shown in Wuthrich 2019

The methods presented in this paper are thus applicable to both NN and GLM approaches.
That is, it is possible to configure a NN to give the same model as GLM. NNs and other machine
learning methods however do not derive their model parameters via analytic solutions. Instead
iterative numerical methods such as gradient descent are used. These models update parameters
incrementally through batches of data for NNs or boosting rounds for Gradient Boosting Machines
(GBMs). Optimal performance is achieved with the right balance of parameter updates.

Denoting a model that has undergone s updates as f s(X), we observe the progression of training,
from initialization (f 0(X)) to subsequent updates (f 1(X), f 2(X), etc.). Figure 3 illustrates this process
for a NN trained over two epochs with collaborative data usage among three parties.

Figure 3. How 3 parties might traditionally collate their data to build a machine learning model trained for 2 parameter
update steps (such as epochs or boosting rounds)

In FL, the process mirrors the traditional approach but with a crucial difference: parameters are
derived from the average of local model parameters. The FL process works as follows:

1. The central aggregating entity such as a regulator, professional body etc. initializes the model with
starting parameters, typically randomly generated. This initial model f 0(X) is then distributed to
participating parties.

2. Each party customizes the initial model to their data, each generating distinct local models.
3. Parties transmit their local model parameters to the central entity for aggregation and averaging.
4. The central entity updates the Federated Model f 0(X) with the averaged parameters to form

f 1(X), which it shares back with the clients, typically outperforming the initial model.
5. Parties may find their prior local model fits better than f 1(X) due to f 0(X) being trained completely

on their own data and not using any other party’s data. They refine and tune f 1(X) to their own
data by carrying on the machine learning training update process locally on their own resources
to produce updated local models.

6. Updated local models undergo parameter transmission to the central entity for aggregation.
7. This process continues over several iterations, with model parameter updates frequently exchanged

between clients and aggregator, until reaching the optimal number of update steps, termed
communication rounds or rounds.

4. Federated Learning Aggregation Strategies
In the previous section we discussed how in FL, a central body such as a regulator, reinsurer, profes-
sional body etc. collects and averages model parameters. Specifically the protocol we introduced



8 Malgorzata Smietanka et al.

Figure 4. How 3 parties, for example, insurance companies would build a federated machine learning model with a central
body such as a regulator, reinsurer, professional body etc. aggregating encrypted model parameters. k denotes the training
round number.

was to take the simple arithmetic average of the parameters. However, in FL the aggregating body
could also aggregate parameters using more complex methods that could help increase the Federated
Model’s accuracy or security. The aggregating body could do more than just taking the average. We
term how the central body aggregates the parameters e.g. taking a simple average, the aggregation
strategy and give some brief examples below:

Strategies Improving Model Performance:

• Weighted Averaging: Some of the agents or insurers may possess higher quality or more
relevant data than others. It may then make sense to weight those insurer’s parameters with more
weight than the others.
• Selective Aggregation: Consider if a particular insurer’s parameters are extremely different

to its peers. It may make sense to only include and select parameters that meet some kind of
threshold like a similarity or variance measure to be included in the aggregation.

Strategies Enhancing Confidentiality:

• Secure Multi-Party Computation (SMPC): Model parameter updates could be encrypted in
certain ways such that the aggregation computation can only be completed if all (or some) of the
insurers are involved. This particular form of encryption prevents the central body colluding
with a subset of insurers and reduces the risk of intercepting the model parameter updates.
• Homomorphic Encryption: The model parameter updates could also be encrypted with

methods such as RSA which would increase security further, however it still requires the central
body to ultimately decrypt them which comes with its own challenges discussed in this paper.
Certain forms of encryption can encrypt data in such a way however, that the central body can
aggregate the encrypted data without the need to decrypt them, and yet still obtain the same
average model parameter.
• Differential Privacy: As the central body collects more and more data from the insurers, the

insurers could add more and more randomly sampled noise to their data. By carefully choosing
to add noise from certain statistical distributions they can ensure the overall average of their
parameters is still maintained. As more queries are made on the insurer’s data by the central body
e.g. querying what is the average of the parameters, the more noise is added, hence why this
approach is said to be "differentially private".



SSRN 9

Our paper uses a simple model parameter average update strategy, along with a novel custom
made SMPC security protocol for insurers which we describe below.

4.1 Making Federated Learning Parameter Aggregation Secure For Insurers
The main goal of FL is to keep data secure and private by not transferring it. Each agent, client,
or insurer need only send and share their model parameters. However, there is an issue if the
central body has to see and access the raw model parameters to aggregate them, as model parameters
themselves are also sensitive data to some extent.

Example 4.1.1. Consider a simple case where:

• 3 insurers labelled 0, 1, and 2, wish to build a federated claims prediction model.
• Assume the model takes a simple form of ŷ = β̂x i.e. a simple regression model just depending on

a single x variable and no intercept.
• β̂ = 1

n
∑2

i=0 βi where βi is the local model parameter of each of the 3 insurers.
• Each insurer will send their βi to some central third-party we call C, for example a regulator,

reinsurer, or professional body, for them to calculate the average model parameter β̂.

Let us imagine insurer 0 somehow sees the value of β1 and β2 (the model parameters of insurer 1
and 2). Perhaps they intercept the parameter en-route to C, or perhaps C colludes with insurer 0.
If insurer 0 compares the values of β2 and β1 with their value of β0, they could infer if the other
insurers have more or fewer claims than them. The model parameters themselves can be considered
sensitive data in their own right as you can infer data from them. △

4.1.1 Issues With Simply Encrypting The Model Parameters Updates
Each model parameter βi could be first encrypted before being sent to C to mitigate the risk that
bad actors intercept the parameters and share them. But then this would require C being able to
decrypt the data. And if C then possesses the unencrypted raw values of βi there is still the risk that
there are bad actors that could maliciously share the sensitive model parameters. Of course, if C
is appropriately chosen to be a trusted, independent third-party, the risk of collusion may be low.
However, we still run into issues of:

• As a holder of sensitive data C may have to comply with costly rules and regulations.
• C may thus need to be financially compensated for this.
• By possessing copies of the sensitive data, C is now an additional point of vulnerability that could

be hacked etc.
• The time required for vetting C, obtaining consent from data proprietors for data sharing with

C, adhering to regulatory protocols, and establishing requisite controls and systems, may extend
to a point where the data becomes unsuitable for modeling purposes.

4.2 Solution Requirements
We thus propose a protocol that allows:

1. Each insurer to encrypt their model parameters before sending to C
2. C to calculate the arithmetic average of the model parameters WITHOUT decrypting the data

4.2.1 Pairwise Padding or Masking The Data
To accomplish this we will borrow a concept from particle physics.

Example 4.2.1.1. Consider insurers i = 0, 1, 2, with model parameter’s βi’s as follows:



10 Malgorzata Smietanka et al.

Insurer i Model Parameterβi

0 1.6

1 0.9

2 1.4

The required average parameter value therefore being 1.6+0.9+1.4
3 = 1.3.

Let us imagine each insurer securely sends an encrypted arbitrary random number, which we
will call a ”Particle”, to each insurer in the modelling exercise. For example:

• Insurer 0 sends insurer 1 the ”Particle” 2.3, and insurer 2 the ”Particle” 17
• Insurer 1 sends insurer 0 the ”Particle” 99, and insurer 2 the ”Particle” 0.1
• Insurer 2 sends insurer 0 the ”Particle” 5, and insurer 1 the ”Particle” 20

These ”Particles” are exchanged pairwise with each insurer. Every insurer sends a ”Particle” to every
other insurer - resulting in them also receiving a ”Particle” from every other insurer. Let us call the
”Particles” received by an insurer ”Antiparticles”. Thus we have:

Insurer i Parameterβi Sent "Particles" Received "Particles" / "Antiparticles"

0 1.6 [2.3, 17] [99, 5]

1 0.9 [99, 0.1] [2.3, 20]

2 1.4 [5, 20] [17, 0.1]

Notice there is no meaningful relationship between each insurer’s model parameter and the ”Particles”
they send to the other insurers. When insurer 0 receives the ”Particle” 99 from insurer 1 they cannot
infer or read into that number. It does not suggest anything about the value of insurer 1’s model
parameter β1 i.e. if it is higher or lower than β0. Each insurer, in private and on their own, can
then sum up the total value of their received ”Antiparticles” and sent ”Particles”:

Insurer i Parameterβi Total "Particles" Total "Antiparticles"

0 1.6 2.3 + 17 = 19.3 99 + 5 = 104

1 0.9 99 + 0.1 = 99.1 2.3 + 20 = 22.3

2 1.4 5 + 20 = 25 17 + 0.1 = 17.1

Next consider if each insurer, again, on their own and in private, adds on the value of their ”Particles”
to their model parameters, and subtracts the value of their ”Antiparticles” to create a "Masked Model
Parameter" denoted β̃i:



SSRN 11

Insurer i Parameterβi Total "Particles" Total "Antiparticles" β̃i

0 1.6 19.3 104 1.6+19.3-104=-83.1

1 0.9 99.1 22.3 0.9+99.1-22.3=77.7

2 1.4 25 17.1 1.4+25-17.1=9.3

Each insurer could then send their β̃i to C whilst still keeping the underlying data private. β̃i is
effectively an encrypted piece of data and does not convey any meaningful information on its own.
If another party intercepted the β̃0 i.e. -83.1 sent from insurer 0 they would not be able to infer
what β0 is. Their model parameter could be higher or lower than -83.1 and may be on a completely
different scale unknown to the interceptor. The Particles added could be an order of magnitude
smaller or larger than the underlying parameter. However when C receives -83.1, 77.7, and 9.3:

1. They receive encrypted data from the insurers removing the risk of interception and colluding
with other insurers.

2. They can calculate the average on this encrypted data as –83.1+77.7+9.3
3 = 1.3 as shown in Figure 5.

As required. △

Figure 5. Example of how 3 insurers, labelled 0, 1, 2, could securely aggregate their private model parameters β0, β1, β2.
Only pairwise noise is exchanged between them so no sensitive data leaves the insurers. The aggregating body receives
only data with added noise so cannot infer anything about the parameters. However upon aggregating the data together
the noise cancels out so the average can still be calculated without compromising the data.

We can prove this approach works if:

1. We let pi,j represent the ”Particle” sent from insurer i to insurer j

2. Then each insurer i calculates β̃i = βi +
n∑

j ̸=i
pi,j︸ ︷︷ ︸

”Particle”

–
n∑

i ̸=j
pj,i︸ ︷︷ ︸

”Anti – Particle”

using their own private or sensitive

data and resources i.e. without transferring any private data
3. C then only receives β̃i (and cannot deduce the value of any βi)
4. C then calculates the average model parameter β̃ as



12 Malgorzata Smietanka et al.

n∑
i=0

β̃i

n
=

n∑
i=0

(βi +
n∑

j ̸=i
pi,j︸ ︷︷ ︸

”Particle”

–
n∑

i ̸=j
pj,i︸ ︷︷ ︸

”Anti – Particle”

)

n
(1)

But by summing over i - the ”Particles”
∑n

j ̸=i pi,j cancel-out with the "Antiparticles”
∑n

i ̸=j pj,i, a.k.a.
"annihilating" each other, leaving us with:

n∑
i=0

(βi +

�
�
�
�
��n∑

j ̸=i
pi,j︸ ︷︷ ︸

”Particle”

–

�
�
�
�

��
n∑

i ̸=j
pj,i︸ ︷︷ ︸

”Anti – Particle”

)

n
=

n∑
i=0

βi

n
= β̂ (2)

The concept of incorporating "Particles" and "Antiparticles," alternatively termed "one-time pad
masks," is attributed to Frank Miller (Bellovin 2011).

In our trivial example we only dealt with a single parameter β̂. But if a model were to use k
parameters say β̂0, β̂1, β̂2, ..., β̂k , the exact same masking procedure can work on each parameter
independently. One can simply in turn mask, and aggregate β̂0, β̂1, β̂2, ..., β̂k without any loss of
generality.

4.2.2 Practical Considerations
This relatively simple approach, or strategy, to securely aggregate the model parameters may not
work very well if used for smartphone applications as was initially concepted by Google for several
reasons:

1. Deep learning models often use a very large number of parameters. The GPT-3 model is said to
use around 175 billion parameters (Floridi and Chiriatti 2020). Exchanging pairwise masks for
billions of parameters, for millions of smartphones would be incredibly inefficient and costly in
terms of the amount of data needed to be exchanged.

2. As sending and exchanging model parameters costs data to transmit, and drains energy levels on
smartphones, it tends to only occur when a sample of smartphones are plugged in to their charger
and connected to WiFi. However, smartphone users do not all charge their phones for the same
length of time. Some will unplug their phone sooner than others. It is possible for a smartphone
to be unplugged after they have sent their "Particles" and received their "Antiparticles", but
before they have sent their masked model parameters β̃i to C. So the other smartphones will have
sent parameters to C, but the dropped smartphones won’t send the corresponding cancellation
figures, so the aggregation will fail e.g. a mask of +105 is sent to C but the -105 negative mask is
never received to cancel it out.

3. The potential millions of smartphone users building a FL will almost certainly be composed
of strangers. There will not actually be a communication medium to exchange these pairwise
"Particles" between them as these strangers won’t have peer-to-peer communication set-up
between them. A smartphone user does not generally exchange information (such as a "Particle")
with an unknown smartphone user. Google thus proposed the use of a Diffie-Hellman key-
exchange to allow users to indirectly talk to each other via the central body, without actually
communicating with each other.

This led to Google improving the protocol outlined in Section 4.2.1 with their "Secure Aggregation"
or SecAgg algorithm (Bonawitz et al. 2016). We do not believe these issues will materially affect
insurance companies doing FL as they do in the case of smartphones given:



SSRN 13

1. Insurance companies will have many more computational resources than individual smartphone
users. Their computation would likely be carried out on much larger computes than smartphones,
instead using computer servers, so the number of parameters should not be a limiting factor.
It is also unlikely they would be concerned with the cost of transmitting the data as a large
commercial entity.

2. For smartphones, FL involves millions of clients sharing a model. These millions of clients do
not generally talk or coordinate with each other i.e. they could not feasibly guarantee all the
smartphones will be plugged in and connected for at the same time. In our application, we
suggest a much smaller number of commercial enterprises would build a model together whom
would act very different to individual smartphone users. For example, in the UK Accident and
Health Insurance market, as at 2019, (the top) 10 companies controlled 83.9% of the market
(Guirguis 2019). Our study uses 10 companies as an example and we posit that these enterprises
could freely communicate with each other. We propose they would all set a fixed date and time
to commence FL. If any of the companies were to disconnect during training we posit that the
companies could simply wait for them to rejoin or even restart the Federated Model building
process. And as we believe insurance companies would quite happily talk and communicate with
each other, this eliminates the need for a Diffie-Hellman key-exchange.

5. Experiment
5.1 Key Findings
We have attempted to model and predict (car) insurance claim frequencies on the widely studied
freMTPL2freq dataset, available on OpenML1 using feed-forward artificial neural networks and data
privacy preserving FL strategies. We considered 3 distinct scenarios. In all 3 cases, we have assumed
there are 10 players in the market whom each own 1/10th of the industry’s claims experience. In
each scenario, we test every model against a randomly selected unseen Test dataset, by measuring
their exposure weighted "% of Poisson deviance explained" (%PDE). Our results show FL achieves
near the same accuracy as if insurers were able to freely share sensitive customer data between them,
but does not require data to be compromised.

1. Global Model Scenario

• Firstly, we consider a theoretical case where all the insurers work in total collaboration
without any restrictions (legal, ethical, commercial or otherwise) on data sharing.
• In this scenario, we pool together all the data to one single location and build a single predictive

model using the entire industry’s data. As this model is built using the entirety of the dataset
we refer to it as the "Global Model". Each insurer uses this same model, so if not adjusted,
they would give the same scores to every customer.
• We find that this model and approach is capable of explaining 5.57% exposure weighted PDE

of the Test dataset.

2. Partial Model Scenario

• Secondly, and perhaps more realistically, we consider a case where insurers refuse to share
any data with each other whatsoever.
• Each of the 10 insurers completely independently builds their claim frequency model on their

own. They will only have access to their own data - a partial subset of the entire industry’s
claims experience. We therefore call each of these 10 models a "Partial Model". No data is
exchanged or shared between them.

1. https://www.openml.org/search?type=data&sort=runs&id=41214&status=active



14 Malgorzata Smietanka et al.

• We find that out of the 10 models built by each insurer, no insurer can explain more than
3.82% exposure weighted PDE of the Test dataset, with the average performance of the 10
models to be 3.20% exposure weighted PDE.

3. Federated Model Scenario

• And lastly, we consider a case where the 10 insurers refuse to share any customer data with
each other similar to the "Partial Model" approach. However, they agree to securely share and
aggregate model parameters to build 1 single shared Federated Model. As with the "Global
Model" this "Federated Model" will be shared by all 10 insurers
• We find that this model can explain 5.34% exposure weighted PDE of the Test dataset -

significantly more than any of the "Partial Models" and slightly worse than if the insurers all
agreed to share their data and build the "Global Model".

This result indicates that insurance companies can effectively collaborate using the Federated Model
approach to construct more predictive models, all without the need to directly share any customer
data. Whilst our experience uses car insurance claim frequencies, the approach outlined here is
applicable to any line-of-business, frequency or severity, or indeed any supervised learning task
where data is limited and private.

5.2 Data
The freMTPL2freq car insurance claims dataset used for our experiment contains policyholder
information such as driver age, vehicle age, and their number of third-party motor liability claims
(which is the dependent y variable to be modelled) for a book of French car insurance business. Some
brief data definitions are provided in Table 1 along with their preprocessing data transformations.

Table 1. Description of data, fields, and preprocessing transformations used in experiment

Field Description Transformation

IDpol Unique policy number Dropped

ClaimNb Number of claims on the given policy Capped at 4

Exposure Total exposure in yearly units Capped at 1

Area France area code (categorical, ordinal) Ordinally encoded e.g. A : 1, B : 2, C : 3 etc.

VehPower Horse power of the car (categorical, ordinal) MinMaxScaler

VehAge Age of the car in years MinMaxScaler

DrivAge Age of the driver in years MinMaxScaler

BonusMalus Bonus-malus (i.e. No Claims Discount) level between 50
- 230

MinMaxScaler after capping at 150

VehBrand Car brand (categorical, nominal) One-hot-encoded

VehGas Diesel or petrol car (binary) Ordinally encoded i.e. Regular : 1, Diesel : 2

Density Density of inhabitants per km2 in the city of the residen-
tial address of the driver

MinMaxScaler after log transforming

Region Regions in France prior to 2016 (categorical) One-hot-encoded

We will treat this dataset to be representative of some insurance risk that insurers may wish to
model, which need not necessarily be third-party liability motor claims. For our purposes, the
claims in the ClaimNb column of freMTPL2freq that we are aiming to predict, could represent
motor, home, travel, sickness etc. insurance claims. The techniques presented here are agnostic to
the line-of-business and we do not wish to focus on domain specific issues related to any particular
insurance class such as motor liability. Our only requirement for the data is that insurers only have



SSRN 15

access to a small proportion of it, this is to ensure that every insurer participating in the Federated
Model approach would stand to benefit similarly. The freMTPL2freq dataset will be thus treated as
and assumed to represent the entire industry’s claims experience.

5.2.1 Test data
We hold back a random 20% sample of the dataset to serve as a Test set to evaluate all the models
on. This dataset will not be used in any training or tuning of the models in any of the scenarios.
Using this single shared Test dataset to evaluate all the models ensures the comparisons between the
3 modelling approaches are fair and consistent.

However, when building federated models in practice it may be difficult to produce such a dataset.
For example, perhaps n insurers would all agree to withhold X% of their Training data as Test.
They might then all agree to collate these n sets of private Test data to 1 single shared Test dataset,
to collectively evaluate the performance of their shared Federated Model. This could raise similar
challenges to those mentioned earlier. For instance, determining who would gather and manage
these (Test) datasets could pose difficulties. Customers of one insurer may be hesitant to share their
data with others, leading to potential legal and practical obstacles. In reality, having a single shared
Test dataset may not be feasible. Instead, each of the n insurers would probably assess the performance
of FL using their own distinct Test dataset, which they safeguard from other insurers to ensure
privacy and security. Consequently, there would effectively be n Test datasets. However, for the
sake of consistency in model comparisons, we maintain the same Test dataset across all experiments,
preventing variations in model performance solely due to differences in random Test sets.

5.2.2 Preprocessing and its Challenges
Once the training data is partitioned, we proceed to transform, scale, and preprocess the features,
utilising only the Training data to derive the scaling parameters to prevent any leakage. We rely
heavily on the work of Ferrario, Noll, and Wuthrich 2020 as a guiding framework for optimal
treatment of variables, given their extensive study and modelling of this specific dataset. It is
important to note that insurers typically would not have publicly shared research on their Training
data. They would conduct their own comprehensive Exploratory Data Analysis (EDA) to derive
the most appropriate transformations of their data. We rely on previously published analysis. The
data preprocessing transformations used are given in Table 1 which take the number of explanatory
columns to 39 after the dropping, encoding etc.

A crucial aspect of the presented Horizontal FL approach is the uniformity in feature usage,
including preprocessing. For example, in our application all the insurers need to log transform the Density
variable. If another insurer were to not scale Density or choose some other kind of transformation the
parameter aggregation would not work. Therefore, it’s essential for all insurers to reach a consensus
on data transformation procedures before initiating FL. This requirement also implies that insurers
cannot introduce their own custom features, a common practice in generalised linear modeling often
used in the insurance sector. This requirement to use the exact same features, processed, and defined
in the exact same way may be difficult for insurers to agree on and should not be overlooked.

If the feature space of each agent is different e.g. one agent has data on age but not gender, and
another has gender but not age, than a approach called vertical FL can be used. Whilst vertical FL can
work with different features, or columns, of data, it requires that the rows of data between agents are
linked. In our case this would mean that the agents have a mutually overlapping and intersecting set
of policyholders which is not likely for insurers in the same line-of-business. Customers would not
likely have multiple car insurance policies during the same exposure period from multiple insurers for
example. Horizontal FL which we use in this paper requires the opposite i.e. each agent posses the
same columns as each other, but the rows (policyholders in this instance) are different. A vertical FL
approach would be better suited to a cross-industry application e.g. a health insurer and pharmacy



16 Malgorzata Smietanka et al.

may have a customer on both their systems; both parties could benefit from sharing say their claims
information and medicine purchasing history with each other to build a predictive model to forecast
claims and sales.

Another interesting challenge is how to apply the MinMaxScaler in FL. This transformation needs
to apply to the whole Training dataset. In this context, the 10 insurers must collectively determine
the maximum and minimum values of DrivAge across all datasets. This shared knowledge is essential
because each insurer must apply identical transformations to their respective datasets.

Example 5.2.2.1. Consider a scenario involving just two insurers, labeled as 0 and 1, with the
following characteristics:

• Insurer 0’s youngest driver is 17 years old.
• Insurer 1’s youngest driver is 25 years old.
• Consequently, the minimum driver age across both datasets is 17.

Both insurers would need to scale their data using the minimum age of 17. Insurer 0 should not
use their value of 25. However, insurer 0 may not want to, or be allowed to reveal their minimum
driver age of 17 to insurer 1. This could also be considered sensitive data. △

It is proposed that in practice companies may be willing to disclose the minimum and maximum
driver and vehicle ages etc. without much data privacy or commercial risk. Insurers would likely
not vary much in these domains. For example most car insurers would likely all have their youngest
drivers as the youngest possible legal driving age in their market. It is also unlikely that much could
be gleaned from knowing the oldest vehicle a competitor insures. It is unlikely that insurers will have
wildly different minimum and maximums. Even if they did, it may not reveal much about their data.
However, for a more robust approach, companies could use similar SMPC techniques in Section 4.1
to securely calculate the maximum and minimum of their data without revealing which insurer has
the highest/lowest driver age etc. This is a similar problem to Yao’s Millionaire Problem whereby 2
millionaires wish to find out which of them is richer than the other. The challenge is how can they
find the maximum of their wealth without telling the other millionaire what their wealth is.

Insurers could theoretically address this issue by utilising homomorphic encryption. This would
involve encrypting the data in such a specific manner that would enable certain functions to perform
calculations on the encrypted data, while still yielding the same output as if the unencrypted data has
been used.

Example 5.2.2.2. For example insurer 0 and 1 from Example 5.2.2.1 could privately and individually
encrypt their driver age data using a certain encryption algorithm. Say:

• Insurer 0’s youngest driver being 17 gets encrypted to an arbitrary value 649572
• Insurer 1’s youngest driver being 25 gets encrypted to an arbitrary value 587419

The function m(a, b) = min(a, b) could clearly be run over the unencrypted values of 17 and 25 to
give the correct answer. However this requires both parties (or an aggregator party) knowing and
seeing the values of 17 and 25. Instead, they could both send in the values of 649572 and 587419 to a
central body. For an appropriate choice of encryption method, there exists a certain function h(a, b)
such that the central body could compute h(649572, 587419) = 17 as required.

In other words, m(a, b) = h(a∗, b∗) where a∗ and b∗ are encrypted values of a and b. This is the
main idea of homomorphic encryption - to encrypt data in such a way, that certain functions can
output the same value as if they were computed on the raw data. △

Using this we believe insurers could securely compute their combined minimum and maximum
feature values for FL preprocessing. However, we consider homomorphic encryption beyond the



SSRN 17

scope of this paper. See Langer and Bouwmeester 2016 for more detail on how this technique works
for computing minimum and maximum values.

There may also be some challenges encoding variables as well. For example consider how the
insurers might encode a factor such as region or vehicle brand. This would entail the insurers agreeing
to encode say brand name "B2" as a 1 in column number 30, "B3" as a 1 in column number 31
etc. or some other location in the data. All of the insurers would have to agree and use this exact
encoding and transformation for FL to work. The insurers can not use their own individual method
to encode this factor. However this poses the question, how would they agree brand "B2" belongs in
column 30, "B3" in column 31 etc.? The exact location (e.g. column number 30, 31 etc.) where
the factor is encoded in the data is arbitrary, but the levels of encoding are not. For example if a
more forthcoming insurer bravely suggests to their peers before building the FL model, that they
use an encoding scheme such as: "B2" belongs in column 30, "B3" in column 31 etc. this may reveal
to their peers that they insure "B2", "B3" etc. vehicles. Again, this could potentially be considered
sensitive data to some degree depending on the feature. If they put forward how region might be
encoded, it could reveal where they do and don’t write business. So the encoding strategy needs
to be put forward in a way that doesn’t reveal anything. For example if encoding region, an insurer
could propose an encoding strategy with reference to a public list, grouping, hierarchy, structure,
or mutual definition, and suggest encoding levels whether or not they have any policies in those
regions. The UK for example can be divided into 124 publicly known postcode areas, or France
uses 18 administrative regions, or they could agree an area of more than X square kilometers with
a population of more than Y according the last known public census constitutes their modelling
definition of "region".

5.2.3 Splitting the Data Between Different Insurers
After separating the Test dataset from the rest, we uniformly and randomly split the freMTPL2freq
dataset into 10 evenly sized sets, each containing an equal number of rows. This approach aims to
simulate a scenario where each insurer possesses an equal share of the data. However, in real-world
scenarios, such uniformity is unlikely due to several factors:

• The market is dominated by a single player that possess 80% of the data rather than 1/10th of it.
• Some of the insurers sell more business to certain types of car, businesses, buildings, sectors,

customer ages,or to customers in certain regions.
• Some of the insurers enforces stricter underwriting than others and therefore have fewer claims

in their data.

Instead of uniform allocation, stratified sampling could be considered, allocating more claims, data,
or certain customer demographics to specific insurers. For simplicity, we overlook this complexity
and assume a high degree of homogeneity among insurers.

Increased heterogeneity among insurers theoretically undermines the benefits of FL. Greater
dissimilarities would necessitate tailored models for each insurer, reducing the advantages of aggre-
gating model parameters.. The more similar insurance companies and their data are, the more likely
their models would benefit from FL. However, it is worth noting FL is frequently used in highly
unbalanced and non-IID datasets. For example when using on smartphones for sentence prediction:

• Some users may contribute more text data than others, resulting in uneven data distribution
among agents.
• Sometimes the model will be trained on a specific, biased, subset of users. FL training occurs at

certain times of the day when phones are charging and connected to WiFi. Training between
00:00 - 07:00 GMT time will train the models almost exclusively on British English, but will also
be used by those speaking American English later on, leading to model bias.



18 Malgorzata Smietanka et al.

Despite these challenges, Google’s original paper on FL found that the protocol to be resilient against
non-IID and imbalanced datasets, as demonstrated in their original paper(McMahan et al. 2023).
Future research in this area could experiment with how more heterogeneous data splits (coupled
with more complex aggregation strategies) could affect the results of this study. It

5.2.4 Validation Data
After the data is split between the 10 insurers, we assume each insurer randomly selects 10% of
their own data to use as Validation data to tune their models. As we are mimicking situations where
each insurer holds a very limited amount of data they may not want to use too much of their data
as Validation data. Insurers may also want to consider if any Validation data needs stratifying e.g.
ensuring there are sufficient claims in the Validation as well as Training data.

5.2.5 Exploratory Data Analysis
Each insurer conducts Exploratory Data Analysis exclusively on their respective Training datasets.
No party examines the Test or Validation data. Given our research’s primary aim to illustrate the
practical implementation of FL, as opposed to prioritizing the development of highly predictive
models, our allocation of resources towards EDA is relatively conservative. Instead, we rely heavily
on the work of Ferrario, Noll, and Wuthrich 2020 which has previously studied this dataset. In
practice, insurers would not have previous academic research on their data, so EDA would be a
crucial component of the modelling exercise.

Our limited EDA exercise in this section aims to simply show that the uniform sampling we have
made between insurers unsurprisingly leads to insurers with similar data distributions. That is, no
one insurer has materially more younger/older drivers, or one insurer has more/fewer claims than
the others. Whilst FL can work on unbalanced and non-IID data (Bonawitz et al. 2016) our analysis
here shows our exercise considers balanced data that appears to come from similar distributions
between insurers. There does not appear to be any meaningful difference in any of the 10 agent’s
explanatory variables. Figure 6 illustrates dissimilarities observed within insurers 8 and 9 where they
do not have policies that have 4 claims. Conversely, a relatively uniform distribution of claim counts
is evident across all 10 agents. Figures 7, 8 and 9 reveal negligible disparities in distribution patterns
among the 10 agents.

Figure 6. Distribution of Number of Claims and Exposure



SSRN 19

Figure 7. Distribution of Vehicle Power and Age

Figure 8. Distribution of Driver Age and Bonus Malus

Figure 9. Distribution of Vehicle Gas and Vehicle Density



20 Malgorzata Smietanka et al.

5.3 Global Model Scenario
In this instance a single central entity has access to all of the Training and Validation data. We will
use all of this data to build and tune the "Global Model".

5.3.1 Model Design, Architecture, and Tuning Search Space
In all 3 scenarios we will fit a feed-forward artificial neural network multilayer perceptron to the
data using the PyTorch package in Python. Every model will use the same architecture given in
Table 2. We will use a Random Grid Search to tune only the learning rate, batch size, neurons in layer 1
and neurons in layer 2 considering 40 possible hyperparameter configurations given in Table 3.We
note that whilst NAdam does adaptively tune the learning rate we do find some improvement over its
default by slightly tuning this hyperparameter who’s default originated from computer vision tasks
rather than regression (Dozat 2016).

Table 2. Neural Network Architecture used in all 3 Scenarios

Hyperparameter Selection

Input neurons 39 based on the preprocessing done in Section 5.2.2

Hidden Layers 2

Output Layer 1 output neuron with exponential link function (to ensure only positive fre-
quencies are predicted)

Optimiser NAdam

Activation Function tanh

Loss Function Negative Poisson Log Likelihood

Initialisation Xavier

Epochs 300

Table 3. Hyperparameter Search Space Considered in all 3 Scenarios

Hyperparameter Search Space

Learning Rate [0.001, 0.002, 0.01]

Number neurons in Hidden Layer 1 [5, 10, 15, 20]

Number neurons in Hidden Layer 2 [5, 10, 15, 20]

Batch Size [500, 1,000, 5,000, 10,000]

5.3.2 Global Model Hyperparameter Tuning And Test Results
The results of the top 5 Global Model hyperparamter tuning combinations are given in Table 4. We
find the Global Model performs best when using a batch size of 5,000; 15 neurons in the first hidden
layer; 10 in the second; and a learning rate of 0.01.



SSRN 21

Table 4. Top 5 hyperparameter sets for the Global Model’s

Layer 1 Neurons Layer 2 Neurons Batch Size Learning Rate Train. %weighted PDE Val. %weighted PDE

15 10 5,000 0.01 6.84 5.53

10 10 5,000 0.002 6.46 5.52

15 5 10,000 0.01 6.32 5.48

15 10 500 0.002 6.77 5.47

15 5 500 0.001 6.21 5.45

We see the Global Model fits the Training data better than the Validation data due to generalisation
error as expected. For the best performing set of hyperparameters this drop in performance is relatively
small indicating the model is not significantly overfitting. After selecting the hyperparameters, the
Global Model is retrained using the entire combination of both the Training and Validation datasets.
No data outside of the Test dataset is unused to train the model.

We find after hyperparameter tuning the Global Model achieves a 5.57% exposure weighted
PDE and a 0.2956 Gini. This is a similar level of performance achieved on this dataset in Mayer and
Lorentzen 2020.

5.4 Partial Model Scenario
Under this scenario we assume 10 insurers act totally independently. They do not share any data with
each other and each try to build the best model they can, using only the data that they themselves
posses. We will use the same model design, architecture, and tuning search space as in the Global
Model scenario in Section 5.3.

5.4.1 Partial Model Hyperparameter Tuning And Test Results
We show each agent’s best chosen hyperparameters in Table 5. As per the Global Model, each agent
refits their final chosen model using both the Training and Validation Dataset. No data is shared
between agents in this scenario, including any results of hyperparameter tuning. Insurance
company i does not know what insurance company j gets on their Validation loss for a given
hyperparameter set to ensure privacy is maintained and one insurer cannot infer data from another
based on hyperparameter tuning results.

Table 5. Chosen hyperparameters of each insurer using just their own private, unique data

Agent Layer 1 neurons Layer 2 neurons Batch Size Learning Rate Train. %weightedPDE Val. % weighted PDE

0 10 10 1,000 0.001 7.14 3.76

1 5 5 500 0.002 6.12 4.42

2 10 10 500 0.001 6.95 3.58

3 15 15 5,000 0.001 4.71 0.89

4 5 5 500 0.001 5.92 4.06

5 15 5 500 0.001 5.92 4.07

6 20 20 10,000 0.002 4.23 4.32

7 10 10 1,000 0.001 6.54 2.21

8 15 5 500 0.002 6.25 6.67

9 5 15 1,000 0.001 7.26 4.39

The results of each insurer’s performance against the Test set is given in Table 6. We can see
when acting individually each agent performs significantly worse than the Global Model on the



22 Malgorzata Smietanka et al.

Test as one might expect. Each agent only has access to 10% of the Global Model’s data. The best
performing agent can only score 3.82% exposure weighted PDE on the Test set, achieving 68.57%
of the Global Model’s performance. We summarise the agent’s performance as a Box plot in Figure
10. The Global Model’s Test performance is included in the Box plot for comparison purposes only -
it is not an outlier w.r.t. the agent’s performance.

Table 6. Performance of each insurer’s model against the Test set using just their own private data

Agent Gini Test % exposure weighted PDE

0 0.2366 3.22

1 0.2471 3.42

2 0.2319 2.94

3 0.2099 2.80

4 0.2350 3.17

5 0.2392 3.82

6 0.2133 2.92

7 0.2295 3.12

8 0.2326 3.23

9 0.2321 3.36

Figure 10. Box plot of each insurer’s performance on the test set using just their own private data. The Global Model
performance is also shown here for reference and not an outlier. We can see none of the insurers acting individually can
approach the performance of the Global Model where data was freely shared between them

5.5 Federated Model Scenario
Under this scenario we use the same initial set-up as in Section 5.4. 10 agents will all possess the
exact same data (which is a randomly selected 10% of the entire dataset). They will not share or
transfer any private data between them unlike the Global scenario, but as per the Partial scenario
they will keep their customer data to themselves. They will use the same model architecture and
hyperparameter search space as in Section 5.4 and 5.3 with the exception of the number of epochs
which we will discuss in Section 7.3. They will agree to keep all their private data on their own



SSRN 23

servers and infrastructure. However, they will securely share model weights to collectively build a
shared Federated Model which they can all use to make model predictions.

5.5.1 Federated Model Hyperparameter Tuning And Test Results
FL poses a unique challenge in hyperparameter tuning. We propose a novel method using SMPC
which insurance companies could use in Section 7, with the results of the top 5 shown in Table 7.

Our approach uses the average hyperparameter tuning results from the Partial Model scenario.
We find that, on average across the local agents, 0.001 learning rate coupled with using 15 neurons in
layer 1, 5 in layer 2 and a batch size of 500 appears to be the best combination. We thus select these
for the Federated Model’s hyperparameters. We can see in the Partial model scenario no insurer
found this selection to be their own unqiue private best set of hyperparamters i.e. left to their own
devices these particular hyperparameters would be suboptimal, so this may be an area of compromise
between them.

Unlike the Global and Partial scenarios, we also need to specify the number of rounds and local
epochs which we set to 300 and 10 respectively. We provide more details of these hyperparameters in
Section 7.3. A more precise description of the FL hyperparameters selection is given in Section 7).

Table 7. Top 5 Results of the novel hyperparameter tuning method proposed in Section 7

Learning Rate Layer 1 neurons Layer 2 neurons Batch size Average Local Val. weighted % PDE

0.001 15 5 500 3.18

0.001 5 5 500 3.17

0.002 10 10 5,000 3.06

0.001 10 10 1,000 3.02

0.002 5 5 500 3.01

We find the Federated Model achieves an exposure weighted PDE% of 5.34% on the Test
dataset, significantly higher than any of the individual insurers working alone in the Partial scenario.
Importantly, we observe the Federated Model achieves model performance slightly below the Global
model which we consider an "upper limit" in this study of what is achievable in terms of model
performance. The Federated Model achieves nearly the same performance as if the insurers freely
shared their data with each other, whilst keeping it private. We graphically compare the results of all
3 approaches finally in Figure 11.



24 Malgorzata Smietanka et al.

Figure 11. Comparison of the performance of the 3 modelling approaches on the Test set. Using only the data available to
each insurer leads to very poor performance as shown in the Box plot compared to the either completely sharing the data
with each other, or using FL. We can see that FL achieves nearly the same model performance as if the insurers were to
completely share their sensitive data

6. Results Analysis
We can see that the Federated Model achieves a lower, albeit, similar test performance to the Global
Model. In Figure 12 we show a double lift chart comparing these 2 models, which demonstrates
how the Global Model predicts the Test set better. Whilst both models over and under predict claims
for certain customers, we can see the Global Model’s predictions are closer to the actual number of
claims than the Federated Model. However, the Global Model’s performance can only be achieved if
the insurers were to freely share all their data amongst them.

In a more likely scenario insurance claims data would not be shared and each insurer would have
to rely on their own private data, to build their own partial individual model on. In Figure 13 we
show a double lift chart comparing insurer 5’s model against the Federated Model - insurer 5 being
the insurer with the best scoring Partial individual model on the Test set. This chart shows agent 5 is
significantly more accurate in predicting claims by using FL, without having to compromise and
share its sensitive data.

Compared to using the Federated Model we can see that they could over predict claims by more
than 125% for some customer segments, likely leading to them massively overcharging and as a
result losing customers. On the other side we can also see agent 5’s model under predicting claims
by nearly 40% which would lead to under-pricing these customers. We can see this in Figure 14
which shows the claims predicted by the Global Model (red line), and by the Federated Model (green
line) match the actual claims (blue line) fairly well. However agent 5 (orange dotted line) appears to
over predict claims for all areas indicating a very poor fit. We also show the Gini coefficient of each
model in Figure 15 which shows that the Federated Model is almost as accurate as the Global Model
at ranking customers. Whilst it does not reach as high a Gini we can see that it still outperforms all
agent’s models in terms of ranking ability.



SSRN 25

Figure 12. Double lift chart comparing the performance of the Federated Model against the Global Model on the Test dataset,
with the Global Model showing slightly better performance than the Federated Model. The "X" shape by the orange and
green lines show model performance by the 2 models is fairly even.

Figure 13. Double lift chart comparing the performance of the Federated Model against agent 5 on the Test dataset. The
Federated Model shows significantly higher model prediction accuracy compared to just using agent 5’s own data. Unlike
the Global Model vs. Federated double lift, the green and orange line do not show a symmetrical "X" shape. The green line
showing the Federated Model’s prediction lie significantly closer to the actual claims on the blue line.



26 Malgorzata Smietanka et al.

.

Figure 14. Actual vs. expected of Federated, Global, and the best performing individual insurer (agent 5) by Area, showing
that whilst the Federated and Global Model predict the actual claims fairly well (being close to the blue line), agent 5’s
model using just their own data leads to high over predictions

Figure 15. Gini index by model demonstrating each model’s ability to rank policyholders correctly in terms of their relative
risk to one another. We can observe that like with the Poisson deviance the Federated Model achieves similar performance
to the Global however the Partial Models do not perform as well on this metric either. The "Oracle" shows the theoretical
perfect model that would rank policyholders in perfect order without any error and included for benchmarking.



SSRN 27

7. Federated Hyperparameter Tuning
As discussed in Section 5.5.1 tuning the Federated Model hyperparameters requires a particular
approach not found in the other scenarios. The choice of hyperparameters is usually done by
selecting the set of hyperparameters that maximises or minimises some relevant metric on some
kind of Validation dataset. However, the Validation data and performance of a particular set of
hyperparameters is also sensitive data that should not be centralised. This presents a unique challenge
to tuning the Federated Model.

Example 7.1. Consider a case where 2 insurance companies (Insurer A and Insurer B) wish to tune
their Federated Model’s learning rate. Let us assume they wish to choose between 0.01 and 0.001.
They could try training a Federated Model on both these hyperparameters, and each could measure
some kind of Validation loss. Suppose for this they observe:

Insurer Federated Model Learning Rate Local Validation Loss

Insurer A 0.01 0.54

Insurer A 0.001 0.15

Insurer B 0.01 0.26

Insurer B 0.001 0.09

The insurers would need to compute the average Validation loss for the 0.01 and 0.001 learning rate
in order to compare which hyperparameter fits their data better (on average) i.e.:

Federated Model Learning Rate Average Local Validation Loss

0.01 0.54+0.26
2 = 0.4

0.001 0.15+0.09
2 = 0.12

Which would lead them to use the 0.001 rate.

However, we find 3 problems:

1. Insurer A and B must not see each other’s Validation loss. Just like sharing unencrypted model
parameters, the results of hyperparameter tuning could be sensitive data. Observing how another
agent’s model performs under different hyperparameters could imply how their data are structured.
It may be possible to infer if another company has higher or lower claims as they add more
neurons or layers for example. Thus the above table cannot be observed by any party. We will
thus have to employ some form of SMPC like those outlined in Section 4.1 to securely aggregate
the results.

2. Due to the added complexities of encrypting and securely aggregating the parameters not present
in traditional methods, Federated Models can take substantially longer to train and fit than training
traditional ML models. Tuning can thus be very time-consuming for large grids. Therefore we
seek to avoid wasting resource training Federated Models that will not be used (like the 0.001
learning rate in this example).



28 Malgorzata Smietanka et al.

3. Hyperparameter optimisation can be sped up with algorithms like Successive Halving or HyperBand.
However common Python hyperparameter optimisation packages like Scikit-learn or Optuna do
not currently integrate easily with FL packages. They are not currently built with the encryption
and secure aggregation functionalities required for FL.

△

7.1 Proposed Federated Learning Hyperparameter Protocol

We thus propose a novel approach. Rather than tune the hyperparameters of the Federated Model
itself, it may be quicker and practically easier for each insurer to first tune their own local models
independently i.e. build their Partial Models. Indeed even when doing FL, in practice it is likely
each insurer would still build their own internal private model in any case to test and trial against the
Federated Model.

We suggest the same steps performed in Section 5.4 are performed at first, with each insurer tuning
and finding their own set of hyperparameters on their own local data. The local hyperparameter
tuning results of each insurer can then be used to set the Federated Model’s hyperparameters.

Example 7.1.1. Let us imagine the same set-up as in Example 7.1 but without any kind of FL. In this
example, insurers A and B want to fit their own learning rate to their own data. This is essentially
the same case as the Partial Model scenario in Section 5.4. Suppose they observe:

Insurer Local Model Learning Rate Local Validation Loss

Insurer A 0.01 0.18

Insurer A 0.001 0.63

Insurer B 0.01 0.12

Insurer B 0.001 0.22

Unlike Example 7.1 this would:

• Be easily implemented in many open-source packages
• Not require any encryption aggregation steps - leading to significantly faster computation

It is then relatively easy to implement a SMPC protocol as outline in Section 4.1 to compute the
average of 0.18 & 0.12 and 0.63 & 0.22, even using open source. Both insurers could then produce:

Local Model Learning Rate Average Local Validation Loss

0.01 0.18+0.12
2 = 0.15

0.001 0.63+0.22
2 = 0.43

△

We in essence suggest picking the hyperparameters that, on average, fits the Partial Models the best,
rather than the hyperparameters that actually fits the Federated model the best due to computational
difficulties. This approach also has further benefits including:



SSRN 29

1. Insurers can locally use whatever hyperparameter tuning framework they wish

• A simple RandomGridSearch from Scikit-learn or State-of-the-Art Tree of Parzen Estimators
(TPE) from Optuna can easily be integrated with this approach, allowing each insurer, to at
least locally find a suitable set of hyperparameters. This approach works with either framework
as long as the results of hyperparameter tuning are saved, and each insurer considers the same
hyperparameters.
• However, it may be difficult to compare different insurer’s hyperparameter results if employing

some kind of search algorithm with pruning or exploration. For example if 9 out of 10 insurers
all prune networks with say more than 3 layers, but 1 insurer experiences very low loss with
more than 5 layers, then the other insurers will not want to use this architecture when they
have never even tested such a hyperparameter set up.
• It may be necessary then to modify this approach to only consider mutually tested hyperpa-

rameters. For example, perhaps any hyperparameter set needs at least 50% of the insurers
to have explored and tested it. So, in the above point the 5 layer network (tested by just 1
insurer) wouldn’t meet the criterion.

2. Computational Efficiency
• As a byproduct of this approach, insurers will get their own unique private model. Even

when doing FL it is likely that insurers will still want their own internal model to test against.
They would likely want to A/B test the Federated Model against their own Partial model to
see which is more accurate in practice.
• Or flipped around - insurers may already have local hyperparameter tuning results from

models they have already built that this method can leverage off. Even when doing FL it may
be a natural first instinct to still try and build a local model on whatever data is available. This
would serve as a starting point to see its performance, before trying to collaborate with other
parties first.

7.2 Limitations of approach
However this approach relies on a critical and hard to prove assumption - that the local optimal
hyperparameters are the same (or similar) to the Federated Model’s optimal hyperparameters. Observe
in Example 7.1 when the Federated Model was "fully" tuned (which would be computationally and
technically challenging) that the ideal learning rate was found to be 0.001.

If insurers instead implement our approach in Example 7.1.1 they would unfortunately select an
unoptimal learning rate rather than the "correct" one. But insurers would have no way of knowing
or verifying the key assumption without actually doing the federated tuning which this method
seeks to avoid. It is practically difficult to prove this assumption. For the likely circumstances of how
we envisage this method being used (bearing in mind the number of insurers, volume of data, model
forms etc). We therefore assume this is not an unreasonable a priori assumption. We are in essence
assuming that the if insurers find a certain number neurons, layers etc which fits their own limited
data well, then it will fit the entire data well too.



30 Malgorzata Smietanka et al.

Algorithm 1 Formalised Expression Of Proposed Federated Hyperparameter Tuning Protocol
1: All n insurers agree on a shared hyperparameter search space H comprised of j sets of hyperparameters hj with

⋃
hj = H

2: Each n insurers records their own local Validation loss metric LocalVn
j by employing some kind of search algorithm e.g.

Random Search, Bayesian etc. across H on their own private data. Some insurers may prune, halt, or stop training on
some hj if their LocalVn

j does not sufficiently decrease fast enough

3: The average local validation loss of each hj is then calculated using 1
n∗

∑n∗
i=0

LocalV i
j =

GlobalV̂j where n∗ is the number of
insurers that considered hj as some insurers may not have trialled every hj due to their search algorithm. The average
however is calculated using the SMPC technique outlined in Section 4.1 so no party sees any LocalVn

j beyond their own

4: Now for each hj all insurers (securely) know its GlobalV̂j so they then select h∗ = arg minhj

GlobalV̂j as the chosen shared
hyperparameters

7.3 Federated Communication Rounds and Local Epochs Hyperparameters
Another unique facet of the federated scenario is the number of communication rounds, which is
the number of times the agents average their weights together. Recall that in FL each agent goes
through cycles of training their model locally, then sending their parameters, and receiving new
average parameters. Figure 4 showed what this would look like with 2 communication rounds.

More communication rounds means more averaging of the parameters between the agents. This
hyperparameter is akin to epochs in a traditional deep learning modelling approach. Every round is a
(federated) update to the neural network’s weights and biases. Much like epochs, too many rounds
could lead to overfitting, and too few could lead to underfitting. No insurer has a concept of rounds
on a local, traditional deep learning, basis. They can only train their own partial model for a certain
number of epochs. We thus cannot use the proposed method in Section 7.1 to select the appropriate
number of rounds as it has no analogue in the Partial scenario. Instead we propose insurers would
have to use a method of tuning similar to Example 7.1. That is, they would have to:

1. Try training different Federated Models with a varying number of rounds.
2. Each of the 10 agents would record their own private validation performance on each of these

Federated Models.
3. For each of these Federated Models trained with a different number of rounds the 10 insurers

would have to securely compute the average Validation performance between them using a
SMPC method outlined in Section 4.1.

4. The 10 insurers would then select the Federated Model trained with the number of rounds that
experienced the best average Validation performance between them.

Again this approach may be difficult to agree in practice if each insurer finds a particular number
of rounds fits their local validation data a lot better than the average selected number of rounds. In our
experiment we consider the 10 insurers training their Federated Model 250, 300, and 350 rounds,
before testing on their Validation data individually. We show the average validation performance
of each of these rounds in Figure 16 which shows 300 to be the optimal number on average which
we assume the insurers can compute securely between them. We can see that the Federated Model
improves with more rounds up until 300, whereby more rounds appears to lead to overfitting and
worse validation performance. After selecting the number of rounds the Federated Model is then
re-trained using 300 rounds on all of the insurers training and validation data.



SSRN 31

Figure 16. Average Validation performance of the Federated Model against various different number of rounds. We can see
performance begins to decrease after 300 rounds so we assume the insurers would select this as the optimal amount of
training.

As well as setting the number of rounds, the Federated Model must also assume a local number of
epochs. Recall that every time an insurer receives an updated Federated Model, they need to re-fit
this Federated Model to their own data. To fit this Federated Model to their own data, they need to
select how many epochs are required for the local training steps.

The main idea of FL is that locally each agent possesses little data, so it may make sense to use a
low number of local epochs as to avoid overfitting before broadcasting . In this scenario we suggest
that insurer trains their model for just 10 local epochs before they (securely) broadcast their parameters.
As with the number of rounds this hyperparameter can be tuned in the same way if required.

8. Further Considerations for Federated Learning
8.1 Regulation
FL is an innovative approach that could assist practitioners to adhere to current data protection
regulations, including the EU GDPR, as multiple participants collaboratively train a model, ensuring
that their data remains decentralized and private. Further, by processing data at its source, FL
enhances privacy. This decentralised training could fast become the standard for handling and
storing private data, particularly in a world where privacy concerns are paramount (Fernandez
et al. 2023).

The EU GDPR emphasise principles such as data minimisation, purpose limitation, and user
consent. Organisations implementing FL should ensure compliance with such regulations and
consider incorporating other privacy-enhancing techniques like differential privacy. Transparency
and explainability are also becoming important considerations. As FL involves multiple participants
contributing to a model, it is crucial to establish clear guidelines and transparency around how the
model is trained, how data is collected, and how decisions are made.

Regulations increasingly seeks to address issues related to model biases, fairness, and accountability.
As FL relies on diverse datasets from different sources, it is essential to ensure that biases are carefully
identified, measured and mitigated to prevent any discriminatory outcomes. Because FL involves
combining more diverse data, biases may be easier to address than in a centralised approach. However,
bias propagation could occur in FL if participants could potentially influence all parties in the network,



32 Malgorzata Smietanka et al.

thus aggravating the fairness problem globally (Chang and Shokri 2023) as mentioned in Section 4.1.
For example, when Google first launched FL for text prediction for Android mobile devices, model
training occurred nightly at a specific time, when devices were idle and plugged in. This meant
that the data was from the same timezone and used the same language, i.e. training could have been
done for devices using English in the US and hence the text prediction would not have accounted for
nuances in how English is used across other English speaking nations (McMahan and Ramage 2017).

8.2 Federated Learning Ecosystem
FL is still a relatively new modelling approach and there are many different packages and implemen-
tations for practitioners to utilise, each of which will have various pros and cons.

It is difficult to choose the best framework given FL is a nascent technology. We initially started
with usingPySyft but found that whilst it worked well with theoretical examples, it struggled to
implement FL it in practice. We chose the Flower framework ultimately as it worked well in practice.
It is worth noting this research used Flower version 1.1.0 which does not come with SMPC built in.
However the Flower package is very adaptable, which allowed us to implement and plug in our own
SMPC protocol which we coded in Python from first principles.

8.3 Hyperparameter Tuning
Tuning hyperparameters is an important but tedious part of the machine learning pipeline, and this
is no different for the FL paradigm. However, hyperparameter optimisation cam be even more
challenging in FL. In federated networks, Validation data is distributed across devices, preventing the
entire dataset from being available simultaneously (if any exists at all - recall FL is used in times of
data sparsity). Below are some FL specific hyperparamter tuning approaches that have been proposed:

1. FedEx, can be used to accelerate federated hyperparameter tuning by alternating the minimisation
of weights with exponential updates of the standard SGD algorithm which can lead to quicker
convergence (Khodak et al. 2021).

2. Bayesian optimisation can also be used with FL via Thompson sampling (which reduces the
number of parameters needed to be communicated between clients) whereby a prior distribution
e.g. Gaussian is assumed, whilst ensuring convergence (Dai, K. H. Low, and Jaillet 2020). This
can be further extended with distributed exploration, whereby local agents will search for their
own local optimum at initialisation. Dai, B. K. H. Low, and Jaillet 2021.

In this paper, we have also implemented a novel hyperparameter tuning protocol, whereby all
insurers would agree on a shared hyperparameter search space and a minimum global Validation
Loss parameter could be computed to optimise hyperparameters.

8.4 Training Times
Whilst this paper finds that FL can achieve near the same model performance as if data was freely
shared between insurers, this does come at the expense of a large increase in training times. We have
used the skorch package in Python to perform hyperparameter optimisation for the Local and Global
models using Random Grid Searching. For each set of potential hyperparameters skorch records the
wall time taken to fit the model, using just the Training data (the models ultimately used for Test
evaluation are refit using Training and Validation data). We compare the wall time taken to train
the Federated Model, the average time taken to train each of the 10 Local models, and the Global
Model in Figure 8.4 (a). As expected the Partial Models taken c.10% of the time to train compared
to the Global Model as they effectively split the data into 10 chunks and train 10 models in parallel.
However the Federated Model takes c2.5x longer to train than the Global Model. This comparison is
not quite like-for-like however. Recall that the Federated Model is trained for 300 rounds of 10 local



SSRN 33

epochs. This is essentially 300 ∗ 10 = 3000 parameter update steps coupled with encrypted averaging
computations. Meanwhile the Global and Local models both used 10x fewer updates by just using
300 epochs.

During the final fitting of the Global and Partial Models (using both the Training and Validation
data) skorch records the (exposure weighted) % PDE of the models against the Validation data at
each epoch. As these models are trained using Validation data, and the metric is calculated against
Validation data, it does not indicate model performance. However, it can be used to observe if the
model parameters are converging by observing any plateaus which indicate the model’s optimiser
is no longer substantially updating weights and biases. We can see in Figure 8.4 (b) that training
the Global Model for more than c.250 parameter update steps leads relatively little to no change
in model parameters. In contrast the Federated Model still benefits from training until c.2,500
parameter update steps. The additional encryption mechanisms of FL may thus not be increasing the
training times of the model substantially. The observed longer wall times may instead be due to the
model needing more parameter update steps. This could be a facet of the simple federated averaging
aggregating process we use here, where we spread and average out the updated parameters of the
federated neural network. This process may be inefficient compared to the parameter updates used
in the Global and Local Models.

(a) Relative increase in observed wall time to train the models
compared to training the Global Model. (b) Exposure Weighted Validation % PDE of the Global and Fed-

erated Models over different number of parameter update steps.

Figure 17. Comparison of Federated Model training times. Whilst the observed wall time for FL appears to be longer in a)
this may be due to FL requiring more update steps to reach the optimal set of parameters as shown in b).

8.5 Sustainability
Sustainability and climate change is a key consideration when training ML and FL models as these
infrastructures use great amounts of energy and specialised hardware, which in turn generates carbon
emissions. Traditional AI training methods require vast amounts of data to be transmitted to and
processed by centralized data centres.

Further, it is possible that FL training could emit less carbon than data centre GPUs even though
FL models take longer to converge. However, this observation was noted to be highly sensitive to
the data used for training as well as the ML setting (Qiu et al. 2021). Further research also suggested
other forms of consensus driven distributed FL that could potentially reduce energy consumption on



34 Malgorzata Smietanka et al.

the server side (Savazzi et al. 2023).

8.6 Adversarial Attacks
Ensuring FL training is secure against adversarial attacks is key to ensuring participants trust the
decentralised ecosystem. There could be risks of poisoning attacks (Jere, Farnan, and Koushanfar
2021), whereby some unethical companies could report anomalous results leading to inaccurate FL
results. Further, bad actors could monitor how the FL subsequently updates its parameters, they
could potentially infer the claims frequencies of the other insurers (Rodríguez-Barroso et al. 2023).
This means it is key to ensure all FL participants are trustworthy partners.

The study of adversarial attacks to FL is an ongoing field of study which is becoming increasingly
important as it helps ensure FL remains a robust machine learning technique that safeguards data
privacy. By the nature of how FL is being run, where there are many distributed underlying data
systems and centralised aggregation servers, these could make the infrastructure more vulnerable to
potential cyber crime.

8.7 Use of neural networks compared to other modelling methods in FL
FL was initially implemented for non-tabular data related tasks such as text prediction or image
recognition on smartphones. As such it has historically focused on deep learning methodologies
where this approach excels. However whilst deep learning has made great strides in the world of AI,
GBMs have typically outperformed them on most tabular regression tasks which are common to
actuarial work. This has been the case in many Kaggle’s competitions(Carlens 2023). Grinsztajn,
Oyallon, and Varoquaux 2022, Shwartz-Ziv and Armon 2021, and Popov, Morozov, and Babenko
2019) have discussed possible reasons driving this phenomenon. Industry surveys also show little
use of Deep Learning in actuarial science by practitioners (Rioux et al. 2019 and Modelling and
Data (MAID) Working Party 2017).

FL can be extended to GBMs. One natural way is to consider each agent computing the gradients
of a particular tree that’s part of the Global GBM. These can be aggregated using some form of
SMPC by a central body. This is the approach taken by Tian et al. 2022 which they called FederBoost
however, as the decisions tree grows, each node naturally possess less and less data. This leaves this
approach exposed to some privacy leakage as explained in Yamamoto, Ozawa, and Wang 2022 and
is computationally expensive. Alternatively rather than each agent considering a Global GBM that
they all try to build together, they could each simply build their own set of local trees on their own.
As these would be built on their own limited data we can consider them weak learners like trees in a
Random Forest. These Local trees then need some form of secure aggregation. A sequential boosting
aggregation based approach is described in Zhao et al. 2018 which can address some of the privacy
concerns of Tian et al. 2022 at the expense of some model accuracy. Another potential approach
is to combine each agent’s weak set of trees by securely bagging their predictions which can be
implemented in Flower (Beutel et al. 2020) and Nvidia’s FLARE package.

In practice many insurers will still use GLMs (Baribeau 2017) for actuarial modelling due to their
ease of deployment and explainability or even regulation. As outlined in Section 3.2 we can however
easily configure the approach given in this paper to apply to GLMs by considering them to be a
special case of a NN.

9. Conclusion
FL is a new machine learning research area which has contributed greatly to many industries for
example enabling mobile phones to collaborative learn a shared prediction model whilst keeping all
the Training data on personal devices. In our paper we simulate (motor) insurers openly and freely
sharing private and sensitive customer data with each other to build an actuarial claims prediction
neural network model. We find that the same insurers could build a model with nearly the same



SSRN 35

performance using FL which would take significantly longer to train. However by using FL these
insurers would not need to share any of their sensitive customer data. The small drop in model
performance, and large increase in training times may be a worthy trade for insurers to increase the
accuracy of their predictions whilst keeping their customer data private. Whilst our results show
a great deal of promise for the potential of FL in insurance numerous challenges still exists such as
best practice, training times, regulation, and expertise in this area. However, given the insurance
industry’s history of pooling data and risk together, FL should be an area of continued development.

Acknowledgement
The Institute and Faculty of Actuaries (IFoA) Federated Learning Working Party would like to
thank the IFoA for the continued support in this research. We would like to express our gratitude to
Claudio Giancaterino for his valuable contributions to this project, Michelle Chen for her assistance
in reviewing the codebase and the article, and the Flower development team for their support and
guidance.

References
Baribeau, Annmarie Geddes. 2017. Predictive modeling – actuaries blaze new analytical frontiers. CAS Actuarial Review,

https://ar.casact.org/predictive-modeling-actuaries-blaze-new-analytical-f rontiers/.

Bellovin, Steven M. 2011. Frank miller: inventor of the one-time pad. Cryptologia 35 (3): 203–222. https://doi.org/10.1080/
01611194.2011.583711. eprint: https://doi.org/10.1080/01611194.2011.583711. https://doi.org/10.1080/01611194.2011.
583711.

Beutel, Daniel J, Taner Topal, Akhil Mathur, Xinchi Qiu, Javier Fernandez-Marques, Yan Gao, Lorenzo Sani, et al. 2020.
Flower: a friendly federated learning research framework. arXiv preprint arXiv:2007.14390.

Bonawitz, Keith, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar Patel, Daniel Ramage,
Aaron Segal, and Karn Seth. 2016. Practical secure aggregation for federated learning on user-held data. arXiv: 1611.04482
[cs.CR].

Carlens, Harald. 2023. State of competitive machine learning in 2022. Https://mlcontests.com/state-of-competitive-machine-
learning-2022, ML Contests Research.

Chang, Hongyan, and Reza Shokri. 2023. Bias propagation in federated learning. In The eleventh international conference on
learning representations. https://openreview.net/f orum?id=V7CYzdruWdm.

Dai, Zhongxiang, Bryan Kian Hsiang Low, and Patrick Jaillet. 2021. Differentially private federated bayesian optimization with
distributed exploration. arXiv: 2110.14153 [cs.LG].

Dai, Zhongxiang, Kian Hsiang Low, and Patrick Jaillet. 2020. Federated bayesian optimization via thompson sampling. arXiv:
2010.10154 [cs.LG].

Dozat, Timothy. 2016. Incorporating Nesterov Momentum into Adam. In Proceedings of the 4th international conference on
learning representations, 1–4.

Fernandez, Joaquin Delgado, Martin Brennecke, Tom Barbereau, Alexander Rieger, and Gilbert Fridgen. 2023. Federated
learning: organizational opportunities, challenges, and adoption strategies. arXiv: 2308.02219 [cs.CY].

Ferrario, Andrea, Alexander Noll, and Mario V Wuthrich. 2020. Insights from inside neural networks. Available at SSRN
3226852.

Floridi, Luciano, and Massimo Chiriatti. 2020. Gpt-3: its nature, scope, limits, and consequences. Minds and Machines 30:681–
694.

Grinsztajn, Léo, Edouard Oyallon, and Gaël Varoquaux. 2022. Why do tree-based models still outperform deep learning on tabular
data? arXiv: 2207.08815 [cs.LG].

Guirguis, Michel. 2019. Measuring market concentration and performance persistence of the uk life and general insurance
companies. Available at SSRN 3354624.

Jere, Malhar S., Tyler Farnan, and Farinaz Koushanfar. 2021. A taxonomy of attacks on federated learning. IEEE Security
Privacy 19 (2): 20–28. https://doi.org/10.1109/MSEC.2020.3039941.

https://ar.casact.org/predictive-modeling-actuaries-blaze-new-analytical-frontiers/
https://doi.org/10.1080/01611194.2011.583711
https://doi.org/10.1080/01611194.2011.583711
https://doi.org/10.1080/01611194.2011.583711
https://doi.org/10.1080/01611194.2011.583711
https://doi.org/10.1080/01611194.2011.583711
https://arxiv.org/abs/1611.04482
https://arxiv.org/abs/1611.04482
https://openreview.net/forum?id=V7CYzdruWdm
https://arxiv.org/abs/2110.14153
https://arxiv.org/abs/2010.10154
https://arxiv.org/abs/2308.02219
https://arxiv.org/abs/2207.08815
https://doi.org/10.1109/MSEC.2020.3039941


36 Malgorzata Smietanka et al.

Khodak, Mikhail, Renbo Tu, Tian Li, Liam Li, Maria-Florina Balcan, Virginia Smith, and Ameet Talwalkar. 2021. Federated
hyperparameter tuning: challenges, baselines, and connections to weight-sharing. arXiv: 2106.04502 [cs.LG].

Langer, Martin, and Jasper Bouwmeester. 2016. Reliability of cubesats – statistical data, developers’ beliefs and the way forward.
August.

Mayer, Michael, and Christian Lorentzen. 2020. Peeking into the black box: an actuarial case study for interpretable machine
learning. SSRN Electronic Journal (May). https://doi.org/10.2139/ssrn.3595944.

McDonald, Ryan, Keith Hall, and Gideon Mann. 2010. Distributed training strategies for the structured perceptron. In Human
language technologies: the 2010 annual conference of the north American chapter of the association for computational linguistics,
edited by Ron Kaplan, Jill Burstein, Mary Harper, and Gerald Penn, 456–464. Los Angeles, California: Association for
Computational Linguistics, June. https://aclanthology.org/N10-1069.

McMahan, Brendan, and Daniel Ramage. 2017. Federated learning: collaborative machine learning without centralized training data.
https://blog.research.google/2017/04/f ederated-learning-collaborative.html.

McMahan, H. Brendan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas. 2023. Communication-efficient
learning of deep networks from decentralized data. arXiv: 1602.05629 [cs.LG].

Modelling, Analytics, and Insights from Data (MAID) Working Party. 2017. IFoA Member Survey on the Data Science
Universe. Institute and Faculty of Actuaries, https://www.actuaries.org.uk/system/f iles/f ield/document/MAID%
20Research%20Member%20Survey%20February%202017.pdf /.

Popov, Sergei, Stanislav Morozov, and Artem Babenko. 2019. Neural oblivious decision ensembles for deep learning on tabular data.
arXiv: 1909.06312 [cs.LG].

Povey, Daniel, Xiaohui Zhang, and Sanjeev Khudanpur. 2015. Parallel training of dnns with natural gradient and parameter
averaging. arXiv: 1410.7455 [cs.NE].

Qiu, Xinchi, Titouan Parcollet, Daniel J. Beutel, Taner Topal, Akhil Mathur, and Nicholas D. Lane. 2021. Can federated
learning save the planet? arXiv: 2010.06537 [cs.LG].

Rioux, Jean-Yves, Arthur Da Silva, Harrison Jones, and Hadi Saleh. 2019. The use of predictive analytics in the canadian life
insurance industry. Schaumburg: Society of Actuaries and Ottawa: Canadian Institute of Actuaries.

Rodríguez-Barroso, Nuria, Daniel Jiménez-López, M. Victoria Luzón, Francisco Herrera, and Eugenio Martínez-Cámara.
2023. Survey on federated learning threats: concepts, taxonomy on attacks and defences, experimental study and
challenges. Information Fusion 90 (February): 148–173. https : / / doi . org / 10 . 1016 / j . inf f us . 2022 . 09 . 011. https :
//doi.org/10.1016%2Fj.inf f us.2022.09.011.

Savazzi, Stefano, Vittorio Rampa, Sanaz Kianoush, and Mehdi Bennis. 2023. An energy and carbon footprint analysis
of distributed and federated learning. IEEE Transactions on Green Communications and Networking 7 (1): 248–264.
https://doi.org/10.1109/TGCN.2022.3186439.

Shwartz-Ziv, Ravid, and Amitai Armon. 2021. Tabular data: deep learning is not all you need. arXiv: 2106.03253 [cs.LG].

Tian, Zhihua, Rui Zhang, Xiaoyang Hou, Jian Liu, and Kui Ren. 2022. Federboost: private federated learning for gbdt. arXiv:
2011.02796 [cs.CR].

Treleaven, Philip, Malgorzata Smietanka, and Hirsh Pithadia. 2022. Federated learning: the pioneering distributed machine
learning and privacy-preserving data technology. Computer 55 (4): 20–29. https://doi.org/10.1109/MC.2021.3052390.

Wuthrich, Mario V. 2019. From generalized linear models to neural networks, and back. ERN: Neural Networks & Related
Topics (Topic), https://api.semanticscholar.org/CorpusID:215949185.

Yamamoto, Fuki, Seiichi Ozawa, and Lihua Wang. 2022. Efl-boost: efficient federated learning for gradient boosting decision
trees. IEEE Access 10:43954–43963. https://doi.org/10.1109/ACCESS.2022.3169502.

Zhang, Sixin, Anna E Choromanska, and Yann LeCun. 2015. Deep learning with elastic averaging sgd. In Advances in neural
information processing systems, edited by C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, vol. 28. Curran
Associates, Inc. https://proceedings.neurips.cc/paper_f iles/paper/2015/f ile/d18f 655c3f ce66ca401d5f 38b48c89af -
Paper.pdf .

Zhao, Lingchen, Lihao Ni, Shengshan Hu, Yaniiao Chen, Pan Zhou, Fu Xiao, and Libing Wu. 2018. Inprivate digging:
enabling tree-based distributed data mining with differential privacy, 2087–2095. April. https://doi.org/10.1109/
INFOCOM.2018.8486352.

https://arxiv.org/abs/2106.04502
https://doi.org/10.2139/ssrn.3595944
https://aclanthology.org/N10-1069
https://blog.research.google/2017/04/federated-learning-collaborative.html
https://arxiv.org/abs/1602.05629
https://www.actuaries.org.uk/system/files/field/document/MAID%20Research%20Member%20Survey%20February%202017.pdf/
https://www.actuaries.org.uk/system/files/field/document/MAID%20Research%20Member%20Survey%20February%202017.pdf/
https://arxiv.org/abs/1909.06312
https://arxiv.org/abs/1410.7455
https://arxiv.org/abs/2010.06537
https://doi.org/10.1016/j.inffus.2022.09.011
https://doi.org/10.1016%2Fj.inffus.2022.09.011
https://doi.org/10.1016%2Fj.inffus.2022.09.011
https://doi.org/10.1109/TGCN.2022.3186439
https://arxiv.org/abs/2106.03253
https://arxiv.org/abs/2011.02796
https://doi.org/10.1109/MC.2021.3052390
https://api.semanticscholar.org/CorpusID:215949185
https://doi.org/10.1109/ACCESS.2022.3169502
https://proceedings.neurips.cc/paper_files/paper/2015/file/d18f655c3fce66ca401d5f38b48c89af-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/d18f655c3fce66ca401d5f38b48c89af-Paper.pdf
https://doi.org/10.1109/INFOCOM.2018.8486352
https://doi.org/10.1109/INFOCOM.2018.8486352

	Introduction
	When and Why Insurance Companies Would Use Federated Learning
	Considerations about Federated Learning

	Federated Learning Background and Theory
	Horizontal Federating Learning Basics
	Traditional machine learning approach
	Horizontal Federated Learning approach

	Horizontal Federated Machine Learning Specifics

	Federated Learning Aggregation Strategies
	Making Federated Learning Parameter Aggregation Secure For Insurers
	Issues With Simply Encrypting The Model Parameters Updates

	Solution Requirements
	Pairwise Padding or Masking The Data
	Practical Considerations


	Experiment
	Key Findings
	Data
	Test data
	Preprocessing and its Challenges
	Splitting the Data Between Different Insurers
	Validation Data
	Exploratory Data Analysis

	Global Model Scenario
	Model Design, Architecture, and Tuning Search Space
	Global Model Hyperparameter Tuning And Test Results

	Partial Model Scenario
	Partial Model Hyperparameter Tuning And Test Results

	Federated Model Scenario
	Federated Model Hyperparameter Tuning And Test Results


	Results Analysis
	Federated Hyperparameter Tuning
	Proposed Federated Learning Hyperparameter Protocol
	Limitations of approach
	Federated Communication Rounds and Local Epochs Hyperparameters

	Further Considerations for Federated Learning
	Regulation
	Federated Learning Ecosystem
	Hyperparameter Tuning
	Training Times
	Sustainability
	Adversarial Attacks
	Use of neural networks compared to other modelling methods in FL

	Conclusion
	Acknowledgement
	References

