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Abstract 

This paper argues that all reserving methods based on claims triangulations (the “triangle trick”), no matter 
how sophisticated the subsequent processing of the information contained in the triangle is, are inherently 
inadequate to accurately model the distribution of reserves, although they may be good enough to produce 
a point estimate of such reserves. The reason is that the triangle representation involves the compression 
(and ultimately the loss) of crucial information about the individual losses, which comes back to haunt us 
when we try to extract detailed information on the distribution of incurred but not reported (IBNR) and 
reported but not settled (RBNS) losses. 

This paper then argues that in order to avoid such loss of information it is necessary to adopt an approach 
which is similar to that used in pricing, where a separate frequency and severity model are developed and 
then combined by Monte Carlo simulation or other numerical techniques to produce the aggregate loss 
distribution.  

A specific implementation of this approach is described, whose core feature is a method to produce a 
frequency model for the incurred but not reported claim count based on the empirical distribution of 
delays (delay = the time between loss date and reporting date), after adjustments to make up for the bias 
towards smaller delays. The method also produces a kernel severity model for the individual losses, from 
which the severity distribution of each year of occurrence can be derived. By combining the frequency and 
severity model in the usual way (e.g. through Monte Carlo simulation), an aggregate model for IBNR and 
UPR losses can be produced. 

As for RBNS losses, we suggest using one of the many methods to analyse the distribution of IBNER 
(incurred but not enough reserved) factors to produce a possible distribution of outcomes. 

A case study based on real-world liability claims is used to illustrate how the method works in practice. 

Also, in a first step towards validating the method for calculating IBNR and comparing it with existing 
methods, a series of experiments with artificial data sets was undertaken, which show a drastic reduction in 
the prediction error of both the IBNR claim count and the IBNR total amount with respect to the 
standard chain ladder method. And what is perhaps most promising, the experiments show that the 
distribution of IBNR reserves is much closer (in terms of the Kolmogorov-Smirnov distance) to the “true” 
one than that based on Mack’s method in the way it is normally applied. The method promises therefore a 
more accurate assessment of the uncertainty around reserves. 

Keywords. Report delay, individual claims, frequency/severity modelling, IBNR, IBNER, RBNS, UPR, 
kernel severity distribution, chain ladder, reserving uncertainty, reserve distribution, granular reserving 
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1. INTRODUCTION 

 

1.1 The “triangle trick”: glory and limitations 

 
The idea behind most reserving techniques – that of compacting historical loss 

experience into a loss development triangle, and using these triangles to project the total 
claims amount to ultimate for every accident period (what one may call the “triangle 
trick”) – has proved to be a powerful tool for underwriters and actuaries, and has 
enabled them to have an at-a-glance view of the way that the total amount of claims 
develops over the years.  

 

THE TRIANGLE TRICK – ILLUSTRATION 

 

 

Development year
0 1 2 3 4 5 6 7 8 9

1 758,859        6,712,563     7,295,862     8,481,698     8,581,273     8,929,061     9,406,673     9,421,491     9,425,375     9,547,636    
2 588,009        1,786,021     2,187,149     2,365,737     2,474,465     2,842,739     2,842,739     2,882,701     3,398,944    
3 514,089        1,532,487     2,331,175     8,377,877     8,954,659     9,117,566     9,138,301     9,147,275    
4 419,422        2,882,030     4,009,785     4,413,923     4,468,089     4,616,335     4,823,964    
5 261,482        2,089,735     3,050,709     3,684,369     4,130,221     5,036,548    

Accident year 6 893,053        2,121,944     4,368,448     4,546,849     6,942,262    
7 481,366        954,766        2,026,609     2,481,851    
8 696,678        1,505,950     2,283,808    
9 4,336,497     5,355,547    
10 433,625       

Fig. 1. An example of a claims development triangle. E.g., there’s a total of £4,368,448 in claims that 
occurred in accident year 6 and were reported in development year 2 (i.e. by accident year 8). 

 

This method has been used not only to obtain a point estimate of the projected loss 
amount for each policy year, but also to obtain a measure of the uncertainty around that 
point estimate, through what has been called stochastic reserving. Two popular methods are 
Mack’s method of calculating standard errors (Mack (1993)) and the bootstrap (England 
& Verrall (2002). With some suitable distributional assumptions (e.g. that the distribution 
of outstanding reserves is a lognormal distribution), these methods can be used to 
estimate the full distribution of outstanding reserves. 

 

The problem with triangulation methods: information compression 

The triangle trick has been very successful and has the charm of simplicity. It is also, 
however, the “original sin” of reserving, and the most severe limitation of reserving 
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techniques. By compacting the information into a small triangle, a large amount of 
information is lost and cannot be retrieved, no matter how clever one gets at 
manipulating the triangle itself. 

It’s a bit like taking a picture with a high-resolution camera, then compressing it into a 
logo-like image of 16kB, and based on this compressed picture trying to reconstruct the 
content of the scene (see Fig. 2). Your 16kB compressed picture will give you some sense 
of the main features of the scene: in Fig. 2 (right) you can certainly see that this is a 
waterfront scene, with a number of houses, some small and some large, and with some 
cars parked in front of the water. However, if you want to recover the details – e.g., the 
name of the hotel on the waterfront, or the brands of the cars parked in front of it, or 
even the hour that the clock on the bell tower is showing – you have no alternative but 
to go back to your original image and analyse that instead. This is exactly what this paper 
is proposing to do with your loss data set: give up on the heroic struggle of extracting 
information from your logo-like picture of past claims (the triangle), and go back to the 
original, information-rich image (the full loss data set), and start again from there with 
different methods. 

 

A NON-ACTUARIAL EXAMPLE OF INFORMATION COMPRESSION 

 

Size: 595 kB Size: 16 kB

Fig. 2. A waterfront scene from South Devon, at high (left) and low (right) resolution. Enlarge it to 
find out the name of the hotel, the brand of the cars on the waterfront, the time of the day as shown on the 
clock of the bell tower – then try to do the same with the image on the right! 

 

Leaving metaphors aside, if one has for example 5,000 losses over a period of 10 
years, and uses them to build a triangle such as that in Fig. 1, one is left with only 

ଶ
ൌ 55 points to go by to project the losses to ultimate and to estimate the 

distribution of outstanding reserves. Is it any surprise that the infamous 99.5th percentile 
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(Graham (2011)) is so difficult to capture with any accuracy2?  

The situation is not too dissimilar to the more traditional approach to pricing, where 
underwriters and actuaries rely solely on a burning cost exercise. In burning cost 
analysis, one looks at the total amount of losses incurred over a number of years, adjusts 
for claims inflation and possibly for IBNR (incurred but not reported) losses and other 
factors, then divides the exposure over the whole period to obtain the expected losses 
per unit of exposure. By analysing the volatility over the years, one can also estimate the 
standard deviation of the aggregate loss distribution and even venture to express an 
opinion on a few percentiles of the distribution. However, it is impossible to use burning 
cost to get an idea of the aggregate loss distribution with sufficient accuracy. For this 
reason, the modern approach to pricing, which is based on the collective risk model (see 
for example Klugman et al. (2008)), is to develop a frequency and a severity model based 
on individual loss information, and combine the two models (plus complications, such as a 
payment pattern model) with a Monte Carlo simulation or other numerical methods. 

 

Pricing and reserving: two misaligned valuation frameworks 

This leads us, by the way, to another dissatisfying feature of current triangle-based 
methods: whilst triangle-based reserving methods were “aligned” with the burning cost 
methodology for pricing, in the sense that the output of the claims triangle projection 
could be used as the input for an IBNR-adjusted burning cost exercise, the current state 
of the art is using stochastic methods based on a separate frequency and individual 
severity model for pricing and triangle-based methods based on the analysis of aggregates 
for reserving. This means that we have two very different valuation frameworks for what 
is essentially the same risk, but looked from two different points of view: prospectively 
(pricing) and retrospectively (reserving)!  

 

1.2 A triangle-free reserving approach 

 
This paper proposes a reserving method which, like in pricing, is based on building a 

separate model for the frequency and severity components of IBNR losses using 
individual loss information, and on using Monte Carlo simulation to produce the IBNR 
distribution. IBNER (incurred but not enough reserved/reported) is taken into account 
more traditionally by analysing the empirical distribution of the ratio between successive 
reserve estimates of open claims (and, where possible, studying the dependency on 
different variables such as development year, size, etc.). IBNER affects both the reserves 

 
2 Admittedly, one can use a more granular loss triangle, e.g. intervals of three months instead of one year:  
however, that shifts the problem rather than solve it, and has some side effects, such as the fact that some 
periods may have no losses from one particular year and it may not be possible to use some of the 
projection techniques.  
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for the reported but not settled (RBNS) claims and the estimated severity distribution of 
the IBNR claims. The method is not only “triangle free”, but also avoids aggregating 
individual losses in any other way when projecting the total claims to ultimate. 

At the core of the method is (i) the use of the distribution of reporting delays (time 
between loss occurrence and loss reporting) to calculate the IBNR claim count, in the 
spirit of works such as that of Kaminsky (1987), Weissner (1978) and Guiahi (1986); (ii) 
the use of the distribution of the individual loss amounts, as in modern pricing 
techniques. 

 

In simple terms, the method works as follows: 

 

A. IBNR losses 

(1) Estimate the delay distribution, based on the empirical distribution of delays but 
adjusting for the bias towards smaller delays that is the inevitable consequence of 
observing delays through a limited time window. 

(2) Use the delay distribution in (1) to estimate the number of incurred but not 
reported (IBNR) claims based on the number of claims reported to date. Also 
determine the most suitable frequency model (e.g. Poisson, Negative Binomial) 
accordingly. 

(3) Model the severity distribution for the IBNR claims (this may be different for 
each loss year, or at least depend on claims inflation), also taking IBNER 
(incurred but not enough reserved/reported) claims into account 

(4) Combine the frequency and severity distributions via Monte Carlo simulation or 
another method (e.g. Fast Fourier Transform, Panjer recursion…) to produce an 
estimate of the aggregate distribution of IBNR losses 

 

B. Future losses (UPR) 

(5) As a by-product of Steps (1) to (4) we have a frequency/severity model of future 
losses from those policies that have already been written but are not completely 
earned yet (what is normally referred to as UPR – unearned premium reserves). 
Producing a model for future losses is, by the way, a standard pricing exercise.  

 

C. Reported but not settled (RBNS) losses 

(6) Separately analyse RBNS losses with one of the standard methods for IBNER 
analysis and produce a distribution of currently outstanding claims 
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D. Overall reserve distribution 

(7) Combine the distributions produce in A, B, C to produce the overall distribution 
of reserves. 

 

The result of the reserving exercise looks therefore something like in Fig. 3 

 

TYPICAL OUTPUT OF A RESERVING EXERCISE WITH THE TRIANGLE-
FREE APPROACH 

 

Return 
Period 
(Years)

Percentile Total Loss Total 
Number

1 in 1.33 25% 14,205,625 230             
1 in 2 50% 16,630,426 245             
1 in 4 75% 19,631,593 260             
1 in 5 80% 20,369,140 264             

1 in 10 90% 22,627,203 274             
1 in 20 95% 25,143,560 283             
1 in 50 98.0% 29,441,708 292             

1 in 100 99.0% 32,382,767 298             
1 in 200 99.5% 35,057,817 304             
1 in 500 99.8% 64,920,594 311             
1 in 1000 99.9% 66,937,322 318             

Mean 17,363,917 245.1          
Std Dev 4,948,653   22.2            

Fig. 3. The typical output of a reserving exercise with the triangle-free approach is very much like the 
standard input of a gross loss model for pricing. 

As can be seen from Fig. 3, the output is very much like that of a standard pricing 
exercise, giving the expected value of both the total losses and the total number of 
IBNR/UPR losses, the standard deviation of the same two variables, and various 
percentiles.  

 

1.3 The comparison with the basic chain-ladder approach 

 
The workings of this approach to a case study with real-world data are illustrated in 

Section 7. This is certainly important to understand how the method works in practice. 

Anecdotal evidence based on a number of case studies is however not sufficient to 
validate the method – ultimately, a large-scale controlled experiment where different 
methods are allowed to compete is necessary. 

 

In a first step towards model validation and comparison with competing methods, in 
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ൌ 100
ൌ 9.52, ߪ ൌ 1.70

߬ ൌ 3

this paper we have assessed the triangle-free method against the chain ladder by using 
controlled experiments where the underlying loss process was assumed to be known and 
the data was produced artificially based on that loss process. It is therefore possible to 
compare the estimated IBNR with the “true” IBNR. 

Based on this, we have found that 

(i) The triangle-free approach normally leads to a more accurate estimate of the 
ultimate value of the claim count and of the total claim amount over a period. 
The difference in accuracy may be partly explained by the experimental set-up, 
but the main reason behind it lies probably in the fact that the triangle-free 
approach does not need to produce a different projection for every loss year, 
including loss years that are too immature and for which the ultimate outcome is 
therefore very uncertain. However, this is not a very exciting result: why do we 
need an umpteenth method that claims to be more accurate at the price of extra 
complication? 

 

TRIANGLE-FREE APPROACH v CHAIN LADDER 

COMPARISON OF PREDICTION ACCURACY 

 
Fig. 4. Prediction error (in GBP)  calculated as the mean squared error between the true value 
and the projected value for 100 different random data sets. The underlying model was in all 
cases a compound Poisson distribution (ߣ ) with a lognormal severity distribution 
ߤ) ). The delay distribution was assumed to be exponential with an 
average delay  years. For simplicity’s sake (although this is not a crucial assumption) the 
underlying loss model has been assumed to be inflation-free and the reserving process has been 
assumed to be IBNER-free. 

 

Chain 
ladder

Triangle-free 
(empirical)

Triangle-free 
(model)

Prediction error 7,392,262     4,423,237              3,842,561          
Prediction error (%) 44.7% 26.8% 23.3%

(ii) What’s more exciting, the experiments show that the reserving distribution 
produced by the chain ladder method is inadequate. It’s not that it is more 
conservative or more optimistic – it’s just not the right reserving distribution, and 
we should think twice about using it for deciding important matters, such as how 
much capital your company needs to satisfy Solvency II. The triangle-free 
approach produces a far more realistic result, or in other terms has more 
predictive power. 

 



Triangle-free reserving 
 

 8 

A larger-scale experiment on this has not been undertaken yet, but Fig. 4 shows an 
example in which the triangle-free approach and the chain ladder method have been used 
to calculate the IBNR distribution. Since we’ve already established that the triangle-free 
method performs better than the chain ladder on average, we have focussed on a 
simulation where the projected ultimate was similar for the chain ladder and the triangle-
free method. 

 

 

 
Fig. 5 The cumulative distribution function (CDF) of the IBNR distribution as calculated by the 

triangle-free distribution method and the chain ladder method (with different assumptions on the resulting 
distribution), all of them compared with the true distribution, both graphically and (more formally) with 
the Kolmogorov-Smirnov statistic. The triangle-free distribution shows a far closer fit to the true 
distribution (the two distributions are almost indistinguishable on the chart). Note that the role of 
parameter uncertainty has been taken into account both in the triangle-free method and in the 
“true” distribution – as well as in the chain ladder method. The same assumptions for the tail were used 
in the two methods, to avoid introducing extraneous differences. 

 

 

Apart from the question of accuracy and predictive power, the triangle-free approach 
has several advantages. Some of these are listed below: 

Normalised KS 
distance from 

"true" 
distribution

Triangle‐free 2.3
Chain ladder 
(lognormal)

18.5

Chain ladder 
(normal)

18.2

Chain ladder 
(lognormal, 
based on 
ultimate)

17.6
0

0.2

0.4

0.6

0.8

1

1.2

‐10,000,000 0 10,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000

Reserving distribution - Comparison of methods
Poisson rate = 100

Triangle‐free method True distribution CL (logn) ‐ based on IBNR

CL (Normal) CL (logn) based on  ultimate

• The approach can incorporate naturally any further information that we have on the 
risk: e.g. we can use a different model for losses above a given threshold, for which 
we only have market information and not client information; 

• it doesn’t break down as easily as the chain ladder when the number of claims per 
year becomes small and some of the accident years start with no claims at all; 

• the calculation of the tail factor can be done more scientifically rather than in the 
heuristic fashion that is typical of triangle-based approaches; 
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• the methodology is completely aligned to the state-of-the-art methodology used in 
pricing, and therefore provides a consistent valuation framework of the risk under 
investigation, regardless of what use this valuation is put to. 

 

 

1.4 This is a framework rather than a specific method 

 
It should be stressed that although this paper often describes triangle-free reserving as 

“a method”, it is actually more of a framework for estimating reserves and their 
uncertainties. If we accept that this framework is useful, we still have to agree on a 
particular implementation of it. E.g., what distributions do we use to model the 
frequency and the severity of IBNR claims? How do we deal with IBNER? As in pricing, 
there is not a unique answer to these questions, but there is a framework that allows (and 
actually requires) to address them and, where necessary, make explicit assumptions. 

If we embrace this different framework, this has consequences not only on the way 
we carry out the reserving analysis but also on the data requirements, since we need 
more detailed information on the losses and their characteristics: specifically, we need 
individual loss information including (for IBNR analysis) loss date and reporting date for 
each loss, and (for IBNER analysis) historical information on the reserve amount for 
each claim. The method can easily be used when some of this information is not 
available, but at the price of replacing empirical data with assumptions or at least 
approximations. 

 

1.5 Limitations 

 
The main limitation of this approach is that it is more complex than the approaches 

based on claims triangulations. This paper makes no apology for this – after all, the 
frequency/severity approach used in pricing to calculate the aggregate loss distribution 
describing a risk is more complex than a straightforward burning cost analysis. The extra 
granularity adds complexity but is necessary to a more in-depth understanding of the risk. 

Another limitation is that the triangle-free approach doesn’t provide an at-a-glance 
view of the inputs and outputs as the triangle-based methods do. No matter how 
sophisticated our tools are going to be in the future, triangles are here to stay at least as a 
representation tool and as a check and benchmark. 

Finally, data requirements are more substantial in this approach, and good data 
capture and management is necessary (although nothing which is not already captured in 
insurance companies which follow good practice). 
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Despite all this, it should be noted that this approach is not a theoretical proposal but 
is currently routinely used in the author’s company, often in a simplified fashion 
depending on the data available, and hybridised with triangulation methods as needed. 

 

1.6 Further research 

 
And then there’s the question of the limitations of this research rather than the 

limitations of the approach itself. It is almost a cliché but further research is obviously 
needed. 

What is needed the most is probably a large-scale experiment (we have limited 
ourselves to 100 different data sets here) with a number of different reserving methods 
(not only a simple chain ladder) competing with each other, possibly with data provided 
by an independent party or possibly produced with CAS’s loss generator, in order to give 
more weight to the claim that the triangle-free approach actually gives better results (at 
least in estimating the reserving distribution if not the point estimate) than any method 
for which information has been compressed into a triangle. 

Also, a systematic comparison of the approach presented here with other approaches 
that also advocate the use of more granular data for reserving should be undertaken. 
Since the first presentation of this approach at the GIRO conference in 2012 (Parodi 
(2012b)), several people have dug out references to works are similar in spirit to the 
present paper. Examples are the papers by Norberg (1993, 1999), by Taylor et al. (2008) 
and by Antonio & Plat (2012). 

 

1.7 Outline 

 

The core of the approach is the estimation of IBNR claim count based on the 
empirical distribution of delays, and therefore Section 2 (“Predicting IBNR claim 
counts”) is the biggest chunk of the paper. Sections 3 to 6 illustrate how an aggregate loss 
model for the overall liabilities can be produced based on the triangle-free approach. 
Section 7 illustrates the application of triangle-free reserving to a real-world case study. 
Section 8 shows how the triangle-free approach can be validated and compared to the 
chain ladder methodology, and Section 9 explains what further research is needed. 
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2.2.1 The continuous case with known delay distribution ܨ 

Assume first that the delay distribution ܨሺݐሻ is known. Assume ݐ is the current date, and 

s a file
alit

 

2. PREDICTING THE IBNR CLAIM COUNT 

2.1 The problem 

Suppose your company had a number of losses ܺ  over a period of k years. For 
each loss ܺ  we have the loss date ܦܮ  and the reporting date ܴܦ , normally (but not 
always) expressed with the precision of one day. By aggregating the accident year we have 

 reported losses for years 1 to k. The objective is to calculate the projected 
number of losses ܰ  for each year:  

The traditional approach to this problem is to aggregate losses in a frequency 
development triangle analogous to that in Fig. 1, which gives the number of losses for 
each accident year (rows) and for each development year (columns), then project to 
ultimate using a triangle projection technique, such as the chain ladder. 

The main issue with this approach is that aggregating claim counts in a triangle throws 
away most of the information we have: e.g. if we have 1,000 losses over 10 years, we will 
compress the information on the reporting delay (which is made of 1,000 different 
numbers) into a small triangle (which is made of 55 different numbers). Bizarrely, 
increasing the number of losses from, say, 1,000 to 10,000 does not increase at all the 
information that we can use to project to the final number of claims! This information 
compression is helpful for visualisation purposes and made sense in an age when 
calculations were performed by hand, and is surprisingly resilient in terms of finding an 
accurate projected number of claims for each year, but it ties our hands when trying to 
calculate the distribution of possible outcomes, making the uncertainty difficult to assess. 

In Section 2.2 we propose an alternative approach. This approach is in the same spirit as 
the works by Kaminsky (1987), Weissner (1978) and Guiahi (1986).  

 

2.2 A method for frequency projection 

The method we propose is based on using the distribution ܨሺ  which gives the 
cumulative probability that a loss occurred at time 0 will be reported by time ݐ.  

 

that we want to estimate the total number of claims that will ultimately be reported for 
the period ሾ0,  it can also be –ݐ ሻ the frequency density of claims at timeݐሺߥ ሿ. Letݐ
interpreted a risk pro  – where ߥሺݐሻ is higher, the probability of having a claim is 
also higher. This may be due to season y (e.g. ߥሺݐሻ may be higher in winter) or to non-
seasonal systemic effects. The total (unknown) number of claims expected to occur in
ሾ0,   ሿ will beݐ
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௧ሻߤሺܧ ൌ න ሺ߬ሻ݀߬ߥ
௧


 

(2)

The expected number of claims to be reported by time ݐ  is 

௧ሻݎሺܧ ൌ න ݐሺܨሺ߬ሻߥ െ ߬ሻ݀߬


 
(3)

Normally ݎ௧, the number of reported claims, will be known, whereas ߤ௧ is to be 
th ௧ ௧

௧ߤ̂ ൌ
 ሺ߬ሻ݀߬௧ߥ



 ݐሺܨሺ߬ሻߥ െ ߬ሻ݀߬௧


௧

estimated: e estimated value of ߤ ߤ̂ , , is given by 

 

 ௧ݎ
(4)

௧ߤ̂ ൌ
ݐ

௧

If the probability of having a claim can be assumed to be uniform, this simplifies to  

 

 ݐሺܨ െ ߬ሻ݀߬

 ௧ݎ

 to pro n
ᇱ ᇱ

ݐ

Ԣݐ

(5)

If we wish ject to ultimate the frequency for a period ሺ0, ᇱሻ which is completely iݐ  
the past (ݐ ൏ ݐ ሻ then it is sufficient to replace the upper limit of the integral withݐ  
(note that the point  inside the integral from which the CDF is calculated remains 
unaltered): 

௧ᇱߤ̂ ൌ
 ݐሺܨ െ ߬ሻ݀߬௧ᇲ



 ௧ᇱݎ
(6)

Formulae (5) and (6) have a simple geometric interpretation, which is illustrated in Fig. 6. 

GEOMETRIC INTERPRETATION OF THE IBNR CALCULATION 
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n (6) can be 
ctured as the area below the CDF, between the y-axis and the axis ߬ ൌ  and the numerator as the ,’ݐ 

s. 

 

2.2.2 The discrete case 

urse, the number of reported claims in a period ሾ0,  ሿ will only beݐ
nown for disc ete values of ݐ, typically expressed in days: The estimated delay 

distribution ܨሺݐሻ (more on it later) will also be a distribution known at discrete values. It 
is perhaps helpful, therefore, to give a discrete version of the formulae above. 

 

es 

௧ߤ̂ ൌ
ݐ

∑ ܨ

 

Fig.6. The denominator of the fraction in Equation (5) can be pictured as the gray area below the CDF 
and to the right of the y-axis (“Expected reported”) and the numerator as the rectangle with sides ݐ 
and 1 (“Expected IBNR” + “Expected reported”). The factor to ultimate for the whole period ሾ0,  ሿ isݐ
therefore the ratio of the two areas. Analogously, the denominator of the fraction in Equatio
pi
rectangle of sides ݐ’ and 1. The factor to ultimate for the period ሾ0, ሿ is again the ratio of the two area’ݐ

 

In practice, of co
k r

In particular, if the time ݐ is expressed in days, Equation (5) becom

 

ሺݐ െ ݇ሻ௧
ୀ

௧ (7)ݎ

Now if we define 
 

# of earned days in the period  ሾ0, ሿݐ ൌ  ሺܶܨ െ ݇ሻ
௧



 
(8)

ୀ

 

0 t

100%

F(t-τ)

Expected reported

Expected 
IBN

Probability of 
being reported

R

t' τ [years]
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We can rewrite the equation above in a much more intuitive way: 
  
 
 

# of days in the period ሾ0, ሿݐ
௧ߤ̂ ൌ

# of earned days  in the period ሾ0, ሿݐ
 ௧ݎ

 

(9)

 
Analogously, Equation (6) becomes, in discrete time: 

௧ᇱߤ̂ ൌ
# of days in the period ሾ0, Ԣሿݐ

# of days in the period ሾ0, ᇱሿݐ earned by time ݐ

 

 ௧ᇱݎ

 

(10)

Fig. 7 shows an example of calculation based on formulae (9) and (10) above, in 
which the number of earned days is calculated either for the whole period lumped 
together and for different accident years separately.  

                                    

 

 
 
                                                                                                                               
PROJECTION TO ULTIMATE -- ALL YEARS TOGETHER

Period
Days 

elapsed
Earned 

days
Factor to 
ultimate Exposure

Latest 
reported

Ultimate 
losses

Standard 
error

2001‐10 3,652.00   1,967.62        1.86 10,000         352 653.33 31.85

PROJECTION TO ULTIMATE -- YEAR BY YEAR

Year
Days 

elapsed
Earned 

days
Factor to 
ultimate Exposure

Latest 
reported

Ultimate 
losses

Standard 
error

2001 365 347.94           1.05 1,000            56 58.75 3.16
2002 365 302.13           1.21 1,000            59 71.28 6.06
2003 365 275.29           1.33 1,000            43 57.01 7.24
2004 366 254.25           1.44 1,000            41 59.02 8.07
2005 365 220.78           1.65 1,000            42 69.44 9.18
2006 365 190.62           1.91 1,000            41 78.51 10.10
2007 365 158.90           2.30 1,000            23 52.83 10.98
2008 366 119.16           3.07 1,000            30 92.15 12.00
2009 365 71.35             5.12 1,000            14 71.62 13.10
2010 365 27.19             13.42 1,000            3 40.27 14.05

Mean 65.09

Variance‐to‐mean ratio 3.28
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he 
posure has been assumed constant in this specific case, although this is not a necessary assumption, as 

t 
r each individual year. This will also allow us to estimate the year-on-year volatility.  

he problem with calculating the IBNR separately for each year is of course that the 
stability. In the most extreme case, there 

ear(s), and the projection would always yield zero. 

e a credibility approach, much in the same way as it is 
one with Bornhuetter-Ferguson (which uses a prior estimate of the loss ratio) or by 

 

ng t  uncertainty 

The standard error on the projected number of claims can be easily calculated if we can 
make a reasonable assumption of what the underlying claim count process is – e.g. 
Poisson, negative binomial, etc. 

the process is also 
െ ௧ߤ̂ ௧ሻ, which can be estimated from the data asݎሺܧ െ  ௧. The square root of this canݎ

s.e.ሺIBNR ൌ ඥ̂ߤ௧ െ ௧ݎ

 
Fig. 7. An example of calculation for the factors to ultimate, both when all years are lumped together 
(top) and when the calculations are carried out separately for each individual accident year (bottom). T
ex
the case study in Section 7 shows.  
 
The method that lumps all years together leads to more accurate results, since the 
projection of isolated years is affected by large errors for the more recent years. 
However, in many circumstances it will be useful to identify the IBNR in the claim coun
fo
 
T
more recent years may have some numerical in
might be no claims at all in the last y
 
This problem is common to triangulation methods such as the chain ladder. To get 
around this problem one can us
d
Cape-Cod (which uses an average of the previous years). Section 7.1.3 shows in detail the 
workings of a possible credibility approach for triangle-free reserving in a practical case. 
 

 

2.2.3 Calculati he

 
If underlying claim count process is Poisson with rate ߤ௧, it can be easily proved that the 
number of IBNR claims also follows a Poisson distribution with rate ߤ௧ െ  ௧ሻ. Sinceݎሺܧ
the variance of a Poisson process is equal to its mean, the variance of 
௧ߤ
be used as an estimate of the standard error by which we know the ultimate claim count 
for the period ሾ0,  :ሿݐ
 

ሻ  (11)
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standard error on the estimated Poisson rate, 

a negative binomial process, this 
ethod can be easily modified by setting the standard error equal to  

1  ௧ߤሻሺ̂ݎ െ ௧ሻݎ

 (Note that we are not speaking here of the 
which would be much smaller, but of the standard error of the projected claim count. 
This is why we do not need to divide by the number of observations.) 
  
n case of an overdispersed Poisson process, e.g. I

m
 

s.e.ሺIBNRሻ ൌ ඥሺ  (12)

where 1   .is the variance-to-mean ratio ݎ
 

ial delays 

 is often the c se that the delay distribution can be well approximated by something 
simple,  
e.g. an exponential distribution with average delay τ : 

െ exp ሺെݐ/߬ሻ (13)

2.2.4 A special case: exponent

It a

 
ሻݐሺܨ ൌ 1

 
In this case Equation (5) simplifies to:  

 

ሺܶሻ்ߤ̂ ൌ
ܶ

ܶ െ ߬ ቀ1 െ exp ቀെ ܶ
߬ቁቁ

ݎ்  (14)

and Equation (6) simplifies to:  
 

ሺܶᇱሻ்ߤ̂ ൌ
ܶԢ

ܶԢ െ ߬ exp ቀെ ܶ
߬ቁ ൬exp ൬ܶԢ

߬ ൰ െ 1൰
ݎ் ᇱ 

(15)

(note that ܶ  ܶ’ in the equation above). 
 
Although the exponential approximation may be viewed as simplistic, it becomes handy 
when the delay data is very scarce. In this case it might make sense – rather than relying 

nential distribution and just calculate 
e observed mean. Also, it provides a first rough approximation of the development 

year started on 1/1/2010 and finished on 31/12/2010. The number of reported claims 

on a patchy delay distribution – to assume an expo
th
factors without embarking on any complex calculation: e.g., assume we have a general 
liability risk with an average reporting delay of ߬ ൌ 3 years. We look at the reported 
claims as at 31/8/2012, and we want to project to ultimate the experience of the policy 
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 average of three years and we arbitrarily use the start date of the 
olicy (1/1/2010) as ݐ ൌ 0, we can plug in the numbers ܶ’ ൌ ܶ ,ݕ 1 ൌ ߬ ,ݕ 2.67 ൌ  ,ݕ 3

for the 2010 policy year is 10 claims. If you assume that the distribution of delays is 
exponential with an
p
ݎ் ᇱ ൌ 10  in Equation (15), obtaining 
 

ଶ.ሺ1ሻߤ̂ ൌ
1

1 െ 3 exp ቀെ 2.67
3 ቁ ቀexp ቀ1

3ቁ െ 1ቁ
10 ൌ 19.5 

2.3 Estimating the reporting delay distribution 

 
In Section 2.2 we have assumed that we knew the reporting delay distribution. In 

ractice, all we typically have is a collection of claims for each of which the delay can 

 dis on  a proxy for the true 
nderlying report delay distribution. However, such empirical distribution will 

ys, as no reporting delay bigger than the 
bservation period can of course be observed, and delays of length near the length of 

In t  l distribution for this bias.  

As w P
empiric ion of 

e distribution ݂ሺݐሻ, which gives the probability that a delay of length ݐ is observed 
 the observation window ሾ0, ܽሿ. In order to reconstruct the unbiased ݂ሺݐሻ, we need 

to be able to determine the relationship between ݂ሺݐሻ and ݂ሺݐሻ. 
 
First of all, let’s introduce some notation: 
 

• Let ܶ be a random variable representing the delay between occurrence and 
reporting 

• Let ܶ be the time at which the loss occurs 
 

p
be calculated as the difference between the reporting date and the occurrence date. We 
can then sort these delays from the smallest to the largest obtaining the empirical 
delay distribution. 
 
One may be tempted to use this empirical tributi as
u
inevitably be biased towards shorter dela
o
the observation period will also be very rare. 
 

nhis sectio  we show how to correct the empirica
 
 
2.3.1 Calculating the bias-corrected empirical distribution 

 
e said above, we do not observe the true DF ݂ሺݐሻ of the delays but an 

al, biased version of it. More accurately, we observe an empirical vers
th
in
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ሺݐሻ is by definition the probability that the delay ܶ is equal to ݐ given that the time 
ܶ   ܶ at which the loss is reported falls within ሾ0, ܽሿ. Using Bayes’ theorem, 

As a consequence, ܶ  ܶ represents the time at which the loss is reported. 
 

݂

 
 

݂ሺݐሻ ൌ Prሺܶ ൌ ܶ|ݐ  ܶ  ܽሻ ൌ

ൌ
Prሺܶ  ܶ  ܽ|ܶ ൌ ሻݐ Prሺܶ ൌ ሻݐ

Prሺܶ  ܶ  ܽሻ ൌ

Prሺ ܶ  ܽ െ ሻݐ Prሺܶ ൌ ሻݐ
ൌ

Prሺܶ  ܶ  ܽሻ

 

ming for the moment that the loss is equally likely to happen 
t any time within the interval3 ሾ0, ܽሿ, we can write: 

 

Prሺ ܶ  ܽ െ ሻݐ ൌ 1 െ
ݐ
ܽ

(16)

 
The uniform case. Assu
a

 

 
nd (by definition) 

(17)

a
 

Prሺܶ ൌ ሻݐ ൌ ݂ሺݐሻ (18)

s usual, calculating the denominator of the Bayes rule (the probability  Prሺܶ  ܶ 
ሻሻ is not crucial as this is only a normalising factor4.  

 
We can therefore write 
 

                                                

 
A
ܽ

 

ሺܽሻܩ  ൌ Prሺܶ  ܶ  ܽሻ 
ܽሻ ܶ



݃ሺݐሻ ൌ ࣦିଵ ൭

3 This is not a crucial hypothesis and can be easily modified if we have more information on, e.g., the 
different exposure or risk profile of different years. 
4 For completeness, however, the calculation goes as follow: define  


where ܩሺ  is the cumulative distribution of ܶ  , which can be obtained as the convolution of the 
distributions of ܶ and ܶ , which in turn can be obtained using Laplace transforms: 
 

ࣦ൫݂ሺݐሻ൯ࣦ ቆ
ሻݐሺߠ െ ݐሺߠ െ ܽሻ

ܽ ቇ൱ 

ሺ௧ሻିఏሺ௧ି


 

In the expression above, ࣦ is the Laplace transform, and ఏ ሻ is the uniform distribution between 
0 and ܽ. 
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݂ሺݐሻ ൌ

ە
ۖ
۔

ۖ
ቀ1ۓ െ ݐ

ܽቁ ݂ሺݐሻ

ሺܽሻܩ for ݐ ൏ ܽ (19)

0 elsewhere

 

 
 
Which we can invert to derive an expression for ݂ሺݐሻ. 
 

݂ሺݐሻ ൌ

ە
ۖ
۔

ۖ
ۓ ሺܽሻܩ

ቀ1 െ ݐ
ܽቁ

݂ሺݐሻ for ݐ ൏ ܽ
 

undefined elsewhere

(20)

here is no strictly empirical way of deriving ݂ሺݐሻ for ݐ  ܽ. However, if we make 
some assumption on the way the empirical distribution tails off based on 
behaviour for ݐ ൏ ܽ, this derivation becomes possible. This is explored further in 
Section 2.5. 

ned above, Equation (17) and all the equations 
erived from it only hold if it is equally likely that a loss comes from any point inside 

Prሺ ܶ  ܽ െ ሻݐ ൌ
 νሺݐሻ݀ݐ

ି௧


 νሺݐሻ݀ݐ




 
T

the 

 
 
The non-uniform case. As mentio
d
ሾ0, ܽሿ. In actual fact, this will almost never be the case, because of changes in the 
exposure and in the risk profile. All of this can be captured in the variable ߥሺݐሻ 
introduced in Section 2.2.1, which we then called the “frequency density”. 
 
Equation (17) can now be rewritten as 
 
 

ൌ න
νሺݐሻ

 νሺݐԢሻ݀ݐԢ


ି௧



ݐ݀ ൌ න νሺݐሻ
ି௧



 ݐ݀
(21)

 
here νሺݐሻ is the normalised version of ߥሺݐሻ. Equations (19) and (20) can now be 

s a simple but very typical example, consider the case in which the risk profile from 
ne year to the other only changes because of the different exposure (e.g. number of 

nce, or wageroll/number of employees for employers’ 
ability). Following the standard (and rough) practice, we’ll assume that the exposure 

undergoes step changes at the beginning of every accident year. 

w
amended to take (21) into account. 
 
A
o
vehicle years for motor insura
li
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ሻݐ


ݐ݀ ൌ
ିہ∑

ୀ

∑ ߝ  ۂہߝ ൈ ሺܽ െ ଵିۂہሻۂܽہ
ୀ

 
Under these assumptions, it is easy to see that  
 

Prሺ ܶ  ܽ െ ሻݐ ൌ න νሺ
ି௧

ߝ  ۂି௧ہߝ ൈ ሺܽ െ ݐ െ ܽہ െ ଵିۂሻ௧ۂݐ

 

݅

2.3.2 Geometric interpretation 

 
he calculation in Section 3.1 has a simple interpretation in terms of stochastic 

segm length of ݐ follows a given distribution ݂ሺݐሻ, and 
e segment starts at a point ݐ א ሾ0, ܽሻ, with an equal probability of starting at any 

point inside that interval. 
 
The probability of a segment of length ݐ being fully contained inside the slot ሾ0, ܽሻ is 
then  
 
 

Prሺsegment is inside ሾ0, ܽሻሻ ൌ
ܽ െ ݐ

ܽ

(22)

 
where ߝ  is the (on-levelled) exposure in year ݅ and  ۂݔہ is the integer part of ݔ. 
 
 
 

T  
geometry, as illustrated in Fig. 8. Imagine you have a machine that generates random 

ents with of length ݐ, where the 
th

ൌ 1 െ
ݐ
ܽ

 (23)

 

probability of observing a delay of length ݐ. Assume we are 
generating segments of random length ݐ (according to the probability ݂ሺݐሻ) with initial point between 0 
and ܽ and “letting them fall” – what is the likelihood that they’ll make it through the slot? If the length 

0

 
and the probability that a segment of random length t is fully contained in the slot is 

݂ሺݐሻ as calculated in Equation (21). 
 

t

 
Fig. 8. A geometric illustration of the 

t0 t+t0

a
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the length of the slot, because it is impossible for the segment to go through a slot 
which is smaller than the segment itself. . The probability of a segment of random length making it 

rough the slot is instead ݂ሺݐሻ. 
 
 

We have seen in Section 2.2.4 that the expression for the factor to ultimate at 
simplifies when the underlying distribution ݂ሺݐሻ is an exponential distribution with 
average delay τ : 

is given, this probability is simply 1 ݐ െ  the length of the segment as a proportion of the length of) ܽ/ݐ
the slot), which decreases as the length ݐ of the segment increases – and becomes zero when the length of 
the segment exceeds 

th

2.4 The case of exponential delays  

 
somewh

 
 

݂ሺݐሻ ൌ
1
߬

exp ሺെݐ/߬ሻ (23‐i) 

Using this approximation, the observed distribution in a time window ሾ0, ܽሻ becomes  
 

݂ሺݐሻ ൌ
1
߬ ቀ1 െ ݐ

ܽቁ exp ሺെݐ/߬ሻ

1 െ ߬
ܽ ቀ1 െ exp ቀെ ܽ

߬ቁቁ
 

(23‐ii) 

and zero elsewhere. 
 
 

s a consequence, the observed average delay is 

obs ൌ ॱሺܶሻ ൌ

ൌ
1

1 െ ߬
ܽ

A
 

 
߬

ቀ1 െ exp ቀെ ܽ
߬ቁቁ

න
ݐ
߬

൬1 െ
ݐ
ܽ

൰ exp ൬െ
ݐ
߬

൰



ݐ݀ ൌ

ቌ1 
݁ି

ఛ
ൌ ߬

െ ߬
ܽ ቀ1 െ ݁ି

ఛ ቁ

1 െ ߬
ܽ ቀ1 െ ݁ି

ఛ ቁ
ቍ

 (23‐iii)

 

 
The true underlying average delay can be estimated from Equation (23-iii) by finding ߬ 
numerically. 
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 from the distribution 

maller than ܽ. In order to estimate the “tail factor” 
– i.e al factor by which we have to multiply our projected ultimates in 
ord  ܽ – we need to have a prior model for 
݂ሺݐ
 

al distribution with average mean delay 
qual to ߬, then of course the PDF above ܽ can be modelled as ݂ሺݐሻ ൌ ଵ

ఛ

 
 

2.5 Calculating the tail factor 

 
Equation (22) shows how to calculate the delay distribution ݂ሺݐሻ
observed through the slot ሾ0, ܽሿ,  ݂ሺݐሻ.  However, this prescription works by 
definition only for delays that are s

., the addition
er to take into account delays larger than
ሻ.  

If ݂ሺݐሻ can be assumed to be an exponenti
e exp ሺെݐ/߬ሻ. 

 general, even if ݂ሺݐሻ is not an exponential distribution, we can make a broad 
approximation and do as follows: 

 
(i) Calculate the average observed delay ߬obs based on our delay data se
(ii) Assume that the delay distribution is exponential and invert Equation (23-

iii) to calculate the implied average delay ߬ 
(iii) Approximate the delay distribution as 

݂ሺݐሻ ൌ

In

t 

 
 
 

ە
ۖ
۔

ۖ
ۓ

ሺܽሻܩ

ቀ1 െ ݐ
ܽቁ

݂ሺݐሻ for ݐ ൏ ܽ

1
߬

exp ሺെݐ/߬ሻ for ݐ  ܽ

 
 
Note that in practice this corresponds to a tail factor ߮tail given by 
 

 iv)

߮ ൌ
1

(23‐

tail 1 െ exp ሺെܽ/߬ሻ
           

In any case, there’s no reason to get married to this first approximation 
 can always make a more thorough study of the tail of the 

(23‐v) 

This is of course a rough approximation, but it gives reasonable results in most cases, 
unless the tail of the delay distribution has a behaviour which is distinctly not 
xponential. e

and if the data are there one
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istribution by using extreme value theory and finding the parameters of a 
Generalised Pareto distribution for the tail.  

he main risk, as is often the case, is to become a bit too clever and quibble about the 

n ݂ሺݐሻ remains constant over time. The method, however, can be easily 

date forwards 
r all accident years. The key thing is to make sure that one has enough data to support 

ny time-dependency of the delay distribution in order not to introduce spurious 

n time כݐ for 

ibution. In the same way, we can test whether the hypothesis that 
the delay distribution is the same for claims of
di en
differen  class. 

O sim ttritional and 
la lo

ring them all to 

ii. eshold for which the difference in the average mean delay 

d

 
T
exact behaviour of the tail of the delay distribution when there’s actually not enough 
data to support anything more than a simple, one-parameter distribution such as an 
exponential. 
 
 

2.6  Other considerations 

 
Non-constant delay distribution. The results above depend on the assumption that the delay 
distributio
modified to reflect changes of the delay distribution, e.g. by using a different delay 
distribution depending on the loss occurrence date. The exact calculations will depend on 
whether one can consider that the delay depends only on the loss occurrence date (i.e., all 
losses occurred around a given time have the same average delay) or whether the 
remaining time to reporting is “accelerated” for all claims from a certain 
fo
a
accuracy. 

Note that the fact that the delay distribution is constant over time is itself a hypothesis 
that can be easily tested statistically if enough data is available, e.g. by comparing the 
delay distribution (after the bias correction) before and after a certai
different values of כݐ with the two-sample Kolmogorov-Smirnov statistic.  

 

Size-dependent delay distr
 all sizes or if, on the contrary, we need a 

ffer t delay distribution for, e.g., attritional and large losses. We can then apply 
t IBNR corrections for claims of different size

ne ple approach in the case that all we need is a distinction between a
rge sses is as follows: 

i. Revalue all claims with some measure of claims inflation, to b
current terms 

Identify the thr
between attritional and large losses is highest 

iii. Produce a separate delay distribution for attritional and large losses 
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nal and large losses, based 
on Steps iii to v 

 dependence of the delay on the size of the loss is not a 
showstopper

elationship with claims triangles. As we mentioned before, accident years can be developed 
individually to ultimate as well as all together. Considering IBNR as a whole leads to a 
mo ars individually to 
ultimate intr

3. AN AGGREGATE LOSS MODEL FOR IBNR LOSSES 

In order to estimate the IBNR distribution, we need to have not only a point estimate of 
full frequency model (e.g. Poisson, Negative 

inomial) with an estimate of its parameters and of the uncertainty (standard error) on 

ine the two models in order to produce 

parameter uncertainty, the dispersion of the 
oisson distribution (for which the variance-to-mean ratio is 1) may not be sufficient to 

iv. Estimate the number of IBNR attritional losses and IBNR large losses 

v. Produce a separate severity model for attritional and large losses 

vi. Produce two different aggregate loss models for attritio

vii. Combine the two models with a Monte Carlo simulation 

The details of how to produce the severity model and how to set up a Monte Carlo 
simulation will be addressed later on in the paper – at this stage, we just think that it’s 
important to show that a possible

. However, we caution against using too many fine distinctions in the case 
one can’t really support them with sound experimental results. 

 

R

re accurate result, since the development of the more recent ye
oduces a large error. 

Interestingly, the method can also be used as a complement to the usual claims 
triangle projection, when the last diagonal is not complete, as a means for grossing up the 
last diagonal. However, this is perhaps not worth the effort! 

 

the expected number of IBNR losses but a 
B
the parameters themselves, as well as a severity model for IBNR losses (e.g. lognormal, 
GPD…). Finally, we’ll need a protocol to comb
an aggregate loss model for IBNR losses. 

 

3.1  A frequency model for IBNR losses 

 

In this paper we will assume that the underlying frequency distribution is either a Poisson 
distribution or a negative binomial distribution.  

The Poisson distribution has its theoretical justification as the natural model for rare 
independent events arising from a stationary process. In the presence of systemic 
volatility, clustering of claims or simply 
P
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y. The negative binomial distribution is simply one way to account for 

tion. It is very seldom the case that one 

 Poisson rate itself (as this is the best estimate of how much variation we 
expect from one simulation to the other). 

 process is assumed to be Poisson, when we use this frequency 

tive binomial approximation by assuming a 
vari c
uncerta

 

The nega

Under the negative binomial assumption, the IBNR claim count can be represented as a 
NB distribution for which: 

• 

• 
number of claims for differ  

• The effective variance-to-mean ratio can then be derived from the variance-to-
mean ratio by adding an allowance for the parameter uncertainty as in the 

                                                

reproduce realit
this additional dispersion, and there is nothing fundamental about this distribution – it’s 
just that it can be easily represented as a Poisson distribution whose Poisson rate is itself 
a random variable drawn from a Gamma distribu
has such a wealth of experimental data that the use of the negative binomial can be 
challenged! 

 

The Poisson case 

Under the Poisson assumption, the IBNR claim count can be represented as a Poisson 
distribution for which: 

• The Poisson rate is the point estimate of the IBNR claim count, as calculated by 
Equation (5) (or Equation (7) for the discrete case); 

• The standard error on the Poisson rate can be approximated as the square root 
of the

Note that although the
distribution later on for Monte Carlo simulation, we will need to take the parameter 
uncertainty into account and this will be equivalent to having an overdispersed Poisson 
distribution: specifically, we will use the nega

an e-to-mean ratio of 2 (as in this case the process variance is equal to the parameter 
inty). 

tive binomial case 

The rate is the point estimate of the IBNR claim count, as calculated by 
Equation (5) (or Equation (7) for the discrete case); 

The variance-to-mean ratio can be estimated by calculating the projected 
ent years, as in the “Ultimate losses” column of Fig. 7, 

calculating the variance based on those ultimate losses5, and dividing it by the 
average of the ultimate losses; 

 
5 This, at least, is true in the simple case where the exposure is uniform over the years. If this is not the 
case, the formula for the calculation of the variance gets a bit more complicated. We won’t get into the 
details here. 
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thumb (using a rough application of the central 

al occurrence date for 
e claims, the distribution from which we sample the random loss amounts will in 

eneral be different depending on the occurrence date. This dependency is analysed in 
Section 4.1. 

with in Section 4.2. 

Once we take these two elements into account, we’ll have a way of sampling the severity 

clai
hav
writ

that drive the dependency of the severity 

• 

                                                

Poisson case.  As a simple rule of 
limit theorem), the effective variance-to-mean ratio can be written as ሺܸ/ܯሻeff ൌ
ሺܸ/ܯሻ  1/݊ where ݊ is the number of years over which the variance was 
calculated. (It can be seen that in the case of Poisson this gives back the 
“variance-to-mean ratio = 2” rule stated for the Poisson case.) 

 

3.2  A severity model for IBNR losses 

We now need to produce a severity model for IBNR claims, with the ultimate goal of 
producing an aggregate loss distribution for IBNR claims via Monte Carlo simulation. 
Since one of the things that we’ll need to simulate will be the actu
th
g

Another thing we need to take into account is IBNER, which is dealt 

of claims. The algorithm is illustrated in Section 4.3. 

 

 

3.2.1 Dependency of the loss distribution of IBNR claims on the occurrence date 
 

As in experience rating, the main difficulty in obtaining a severity model is that IBNR 
ms will come from different years of experience, and each accident year may well 
e a different severity distribution, depending on the specific business mix that was 
ten in that particular year6. 

There are at least two different elements 
distribution on the accident year. 

The proportion of different types of claims may change, as a result of changing 
business conditions or simply the changing nature of risk due to 
environmental/technological changes (e.g., the relative number of “slips and trips” 
public liability claims might be increasing due to a more litigious environment, or 
decreasing due to better risk control mechanisms such as anti-slippery carpets) 

 
6 Actually the subdivision in accident years (or accident periods) is rather artificial and simply 
corresponds to the frequency by which the information on the business relevant to the claims 
experience is updated, and we can say that the severity distribution of losses changes continuously 
through time. 
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• 
s occurred a number of years ago. Furthermore, the severity 

distribution of losses that have not been reported yet might also be conditional on 

 shortly. Only empirical evidence can help us make an 
informed stance.) 

e 

h
e to current terms (or 

ther, to the mid-term of the policy one wishes to rate) all past claims by a 
certain index (e.g. a wage inflation index, perhaps amended to include e or 
a flat inflation rate which is assumed to incorporate all necessar  elements o

ܨ ሺݔሻ that a loss ܺ be   conditional to ܺ having occurred at ݔ 
me ݐ(assume the time is given in years) and being reported after ߜ years. 

   ሻߜ

nflicting) effects: that of claims inflation and that of 
eing reported after a number of years. 

 

Ultimately, only empirical evidence helps tell us what this distribution looks like. One 

 

Claims inflation – losses occurring now will generally have a different cost (usually 
higher) than losse

the reporting delay: e.g., losses that have occurred five years ago and were reported 
then might not follow the same distribution as losses that have occurred five years 
ago and are reported today. (It is not obvious whether they will be bigger or smaller – 
one can argue that a menial loss will either be reported immediately or not be 
reported at all, but might also argue that if a loss is really big it will be more evident 
and will certainly be reported

 

In the following, we will focus on claims inflation and ignore changes coming from 
changes in business mix or in the type of claims: if this is not the case, we always have 
the option of splitting the loss experience into claims of different type and analyse them 
independently, assuming that the severity distribution within each segment remains th
same except for claims inflation. 

 

So how do we take claims inflation into account? In experience rating w at one normally 
does is to analyse the past experience over a period and revalu
ra

xtra inflation) 
f inflation.  y

In determining the severity model for IBNR losses, we need to go through a similar 
process, with the complication explained above and repeated here more formally: we are 

௧బ,ఋinterested in the probability 
ti

 
ܨ

௧బ,ఋሺݔሻ ൌ Pr ሺܺ  ,ݔ ܺ occurred at ݐ, reported at ݐ           (23‐vi) 

There are therefore two (possibly co
b

approximation that we can often use is to assume that ܨ
௧బ,ఋሺݔሻሺݔሻ is simply a scaled 

version of the kernel distribution ܨሺݔሻ, where the scaling depends on both the year of 
occurrence and the reporting delay: 



Triangle-free reserving 
 

 28 

ܨ
௧బ,ఋሺݔሻ ൌ ܨ ቆ

ሺ1  ݔሻ௧ି௧బݎ
ሺ1  ሻఋݏ ቇ 

          (23‐vii) 

where ݐ is the current time, ݎ is the claims inflation (assumed constant here for 
simplicity),  is an inflation that captures the effect of the reporting delay: e.g., if ݏ
claims tend to become larger when ߜ increases, then ݏ  0. Vice versa, it is ൏ 0. 

 and 

liability losses for a large UK company for the same accident year (2006) and different 
reporting years (2006, 2007, 2008 and later). Even without any delay-related inflation (i.e., 

elay inflation and set ݎ equal 
to a standard claims inflation rate for the line of business under consideration: e.g. 
ݎ ൌ ݏ  ,5% ൌ 0. 

The situation needs of course to be assessed on a case-by-case basis and ultimately only 
empirical evidence can lead us one way or another – the important thing to remember as 
usual is that models that are more sophisticated than Equation (23-vii) need to be 
supported by a proportionate wealth of empirical evidence. 

any 
 the food services industry, after some scaling to make the losses unrecognisable. The empirical 
tributions for 2006 losses that have been reported in 2006, 2007 and 2008 or later have been 

ng any delay-related inflation. The empirical distributions are visually very 
milar, and this is confirmed by the Kolmogorov-Smirnov statistical test: the normalised KS distance 

between the differen pairs is KS(RY=2006,RY=2007)=1.22 (p=10%), 

This is just a rough working assumption, but it is often a good approximation of reality, 
as it is shown for example in Fig. 9, which shows the empirical distribution of employers’ 

assuming ݏ ൌ 0 in Equation (23-vii)), we see that the empirical distributions are quite 
close, e.g. there is no obvious effect on the severity distribution due to reporting delay. 

A rough approximation may therefore be to simply ignore d

 
Fig. 9. The graph shows the empirical distribution of employer’s liability losses for a large UK comp

100
1.0%10.0%100.0%

Cl

Exceedance probability

1,000

10,000

100,000

1,000,000

ai
m
 a
m
ou

nt
  [
£]

AY2006/RY2006 AY2006/RY2007 AY2006/RY2008+

in
dis
compared, without addi
si



Triangle-free reserving 
 

 29 

008+)=0.74 (p>>10%). 

data uncertainty which we denote generically as “IBNER” 

The idea of IBNER analysis is to identify systematic underestimation or overestimation 
of claims and to put it right by adding the relevant (possibly negative) amount to all open 
claims.  

For large losses (and especially in reinsurance), this is normally done by using an 
individual claims development table which is made of triplets of rows like that in Fig. 10.  

 

CALCULATION OF IBNER FACTORS 

ig. 10. The history of a claim occurred in 2000 and reported in the same year. For each year of 
estimated) amounts are given. The outstanding ratio 

fiable information (Figure borrowed from Parodi (2012a)). 

The calculation of the IBN  years of development of 
the claims is usually performed by an average (weighted or unweighted) over all open 
claims (settled claims will of course have no IBNER, unless they are re-opened) as in Fig. 
11.  

KS(RY=2006,RY=2008+)=1.36 (p=5%), KS(RY=2007,RY=2

 

  

 

3.2.2 Determining IBNER in order to derive the severity distribution 
 

Many of the losses that make up the loss data set and that we need to use to derive the 
severity distribution are still outstanding (not paid up) and as such are still liable to 
change in value. This is a type of 
(incurred but not enough reserved/reported). IBNER has an impact on both the 
selection and the parameterisation of the severity distribution.  

 

2000 2001 2002 2003 2004 2005 2006 2007 2008
Paid 19,792 363,306 487,648 1,735,328 1,922,504 1,922,504 1,922,504 1,922,504 1,922,504

4

0

 

O/S 967,500 877,200 753,360 147,060 0 0 0 0 0
Incurred 987,292 1,240,506 1,241,008 1,882,388 1,922,504 1,922,504 1,922,504 1,922,504 1,922,50

O/S ratio 98.0% 70.7% 60.7% 7.8% 0.0% 0.0% 0.0% 0.0% 0.0%
IBNER factor 1.256 1.000 1.517 1.021 1.000 1.000 1.000 1.00

F
development, the paid, outstanding and incurred (
(outstanding amount divided by incurred amount) is also given for each year. The last row shows the 
IBNER factors for this claim, calculated as the ratio between the incurred amounts of two successive 
years. The claim shown here is a real claim after scaling by a random amount and the removal of any 
identi

 

ER factors between two successive
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EXAMPLE IBNER CALCULATION 

 (settled claims 
 year 1 to 2: IBNER(1->2) = 

,535,000+85,960+…)/(2,486,700+116,660+…). If the data is abundant it is also possible to 

te the volatility of the IBNER factors 
round the mean value and actually the whole distribution of the IBNER factors, as in 

Fig. 12. 

 

DISTRIBUTION OF THE IBNER FACTORS (YEARS 1 TO 2) 

 
Fig. 11. Claims listing in a format suitable for IBNER calculation. The claims are actual anonymised 
general liability claims from a single large company (only the first three years of development of only the 
first few claims are shown). The IBNER factor, e.g., from year 1 to year 2 is calculated as a weighted 
average of the individual IBNER factors of non-zero claims that are still outstanding

Year 1 -> 2 Year 2->3 Year 3->4
IBNER factors 1.219         1.019       0.839       

Year 1 Year 2 Year 3 Year 4

Date of Loss
Loss 
Year

Year 
reported as 

non-zero Estimate O/S % Estimate O/S % Estimate O/S % Estimate O/S %
03/07/2004 2004 2004 2,486,700 100.00% 1,535,000 100.00% 472,780    61.00% 438,321    57.93%
04/07/2004 2004 2004 116,660    100.00% 85,960      100.00% 85,960      100.00% -           0.00%
10/07/2004 2004 2004 30,700      100.00% 52,190      100.00% 39,910      66.50% 31,278      0.00%
15/07/2004 2004 2004 162,710    100.00% 184,200    100.00% 184,200    100.00% 6,844       100.00%
16/07/2004 2004 2004 1,334       0.00% 1,334       0.00% 1,334       0.00% 1,334       0.00%
12/07/2004 2004 2004 921,000    100.00% 921,000    100.00% 1,019,133 0.00% 1,019,133 0.00%
02/07/2004 2004 2004 1,123       0.00% 1,123       0.00% 1,123       0.00% 1,123       0.00%
23/07/2004 2004 2004 68,400      100.00% 49,120      100.00% 49,120      83.31% 49,120      83.31%
03/07/2004 2004 2004 39,910      100.00% -           0.00% -           0.00% -           0.00%
28/07/2004 2004 2004 151,658    100.00% 168,850    100.00% 116,342    0.00% 116,342    0.00%
24/07/2004 2004 2004 171,920    100.00% 196,480    100.00% 35,682      0.00% 35,682      0.00%
26/07/2004 2004 2004 214,900    100.00% -           0.00% -           0.00% -           0.00%
26/07/2004 2004 2004 4,169       100.00% 2,541       0.00% 2,541       0.00% 2,541       0.00%
03/08/2004 2004 2004 493          0.00% 493          0.00% 493          0.00% 493          0.00%
07/08/2004 2004 2004 127,098    100.00% 61,400      100.00% 61,400      100.00% -           0.00%
10/08/2004 2004 2004 1,245       0.00% 1,245       0.00% 1,245       0.00% 1,245       0.00%
27/07/2004 2004 2004 1,588       0.00% 1,588       0.00% 1,588       0.00% 1,588       0.00%
07/08/2004 2004 2004 844,250    100.00% 905,650    100.00% 905,650    100.00% 905,650    100.00%
15/08/2004 2004 2004 33,770      100.00% 36,840      100.00% 36,840      100.00% -           0.00%

obviously have no IBNER) from
(1
measure the volatility of this IBNER factor and the distribution around the mean value. 

 

If the data is abundant, it is also possible to estima
a
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Fig. 12. The distribution of the IBNER factors from development year 1 to development year 2, based 
on the data set whose first few rows are shown is Fig. 11. Note that the largest factors (>2) have been 
removed for legibility’s sake. Also note the peak at 1, showing that many claims did not change their 
value from the first to the second year of development. 

 

A more refined analysis 

The simple method described above focuses on the dependence of the IBNER factor 
from the year of development, be it from the loss year or from the reporting year. 
However, it is obvious that the IBNER factor will depend in general on many factors, 
such as: 

• development year d (the younger the claim, the more scope there is for it to deviate 
from the incurred estimate), as already mentioned; 

• size of claim x (larger claims may have more uncertainty about them); 
• outstanding ratio r (the larger the outstanding amount, the more conjectural the 

estimate of the incurred value will be); 
• type of claim t (for example, bodily injury claims will be more difficult than property 

claims to estimate reliably as the victim's health may worsen unexpectedly); 
• ... 

 

 

As in all situations in which one needs to understand how different factors impact a 
given variable, this is a problem of statistical learning (see for example Parodi (2012a), 
where the problem of IBNER analysis was specifically addressed as an example). A 
typical technique used in insurance to solve statistical learning problems is generalised 
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ሺܴ݀ܧܰܤܫ , ,ݎ ݐ … ሻ  ൌ ݄ሺܽଵ

linear modelling. According to this approach, we can write IBNER factors as a linear 
combination of different variables, possibly further transformed by a function h:  

 
, ݔ ଵ݂ ሺ݀, ,ݔ ,ݎ ݐ … ሻ  …  ܽ ݂ ሺ݀, ,ݔ ,ݎ ݐ … ሻሻ  

 ଵ݂ ݂ ܽଵ, …  

,ሺܴ݀ܧܰܤܫ ,ݔ ሻݎ ൌ ݁ିሺభାమௗାయ௫ାరሻ 

i  is a special case of the more general Eq. (24), where ݂  ሺ݀, ,ݔ ,ݎ ,ݐ ݏ … ሻ ൌ

exp ሺݔሻ. 

 

Output of the IBNER analysis 

lysis – or even if we use the simple approach outlined at the 

a. The IBNER factors to project each existing claim to ultimate. We can then use 

b. IBNER factor, which will allow us to 

 

ote that the fact that there is uncertainty around the ultimate value of each claim, as 

ote, finally, that there is no theoretical reason why we need to separate the claims 

(24)

and identify the relevant functional form of h, ,..   and the parameters  that 
are suitable to describe the IBNER factors. For example, one might consider a very 
simple model such as  

 ܽ

 

(25)

wh ch ଵ

1,  ଶ݂ ሺ݀, ,ݔ ,ݎ ,ݐ ݏ … ሻ ൌ ݀, ଷ݂ ሺ݀, ,ݔ ,ݎ ,ݐ ݏ … ሻ ൌ ,ସ݂ ሺ݀ ,ݔ ,ݔ ,ݎ ,ݐ ݏ … ሻ ൌ ሻݔሺ݄ ,ݎ ൌ

As a result of this GLM ana
beginning of this section – we will have: 

 

the projected values of the outstanding claims along with the settled claims to 
derive the severity distribution 

A distribution of values around each 
consider each outstanding claim not as a point estimate but as a distribution of 
possible ultimate values 

N
captured by the distribution in Point (b) above, has the consequence of increasing the 
parameter uncertainty on the parameters of the severity distribution, as discussed for 
example in Parodi (2012a). 

 

N
estimates into accident years, as if claim reserves only could be revised at regular 
intervals, so the variable d in the equations above may be a continuous as well as a 
discrete variable. 
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racticalities 

 practice, the historical development of each claim may not be available, especially for 

 and then the final settlement 

•  a claim is open or closed, we may 

• little or no 

• levant to IBNER, that is, we have no 

 

3.2.3 Overall algorithm to create a severity model for IBNR claims 

No  w n 4.1) and to adjust for 

he policy we wish to 

P
 

In
small claims, in which case other solutions must be used: 

• If we have at least an initial estimate for the claim
value, we can use those to estimate IBNER; 

If we only have the information on whether
want to check whether the distribution of the open and closed claims are close 
enough (in terms, e.g., of the Kolmogorov-Smirnov distance) and if not, we may 
want to only consider closed claims to derive the severity distribution. However, 
this is often dangerous and risks underestimating the average loss severity a great 
deal as large losses often take much longer to settle and therefore they may be 
hugely underrepresented. This method should be used only if most claims are 
settled quickly, and making sure that no significant bias is introduced; 

In some cases we may have both a database of individual losses with 
information on the history of claim reserves, but we may be given a pre-cooked 
claims triangle (which is sometimes the only input used for reserving studies) 
with both the non-zero claim count and the aggregate losses. In this case we can 
derive a triangle for the average claim amount and from that derive a rough 
measure of IBNER, which we can then use to modify the individual claim 
amounts. This is a hybrid method which is unlikely to be satisfactory but it may 
be better than ignoring IBNER altogether. 

If we have no information at all which is re
average claim triangles and we do not even know which claims are open and 
which are closed, then as a first approximation we’ll simply need to assume that 
there is no IBNER, or use industry IBNER factors. E.g., in the US market 
IBNER factors are provided by institutions such as the NCCI and the ISO for 
different classes of business (e.g. workers’ compensation, auto liability), by 
territory and by type of risk. 

 
w that e have methods for revaluing IBNR claims (Sectio

IBNER (Section 4.2) we can put the pieces together and produce a severity model for 
IBNR claims. This is a bit different from what one does in pricing. 

In the case of pricing, all we need is the severity distribution for t
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tribution to

 slightly more complicated object, 

ܨ
IBNRሺݔ, ,occݐ as‐atሻݐ ൌ Pr൫ܺ  |ݔ oܶcc ൌ ,occݐ rܶep  as‐at൯ (26)ݐ

 

A possible algorithm to create a severity model for losses ܺ occurring at time ݐocc and 
ot yet reported as at ݐas‐at is as follows: 

 the individual past losses to current terms with some agreed 

om all years, as if all losses were to occur today 

3. Mo  
method btaining 

4. 
y transforming the kernel severity 

distribution according to the method explained in Section 3.2.1 (perhaps 

 

The algorit  4 (and which simply collects all observations dealt 
ith in Sections 3.2.1 and 3.2.2) gives the theoretical background for the severity model 

of IBNR losses. In Section 3.3 we will see how we can actually sample from the IBNR 

price. The severity model is simply a statistical distribution ܨሺݔሻ that gives the 
probability that a given loss ܺ has a value less than or equal to ܨ :ݔሺݔሻ ൌ Prሺܺ   .ሻݔ
This can be estimated empirically by fitting a suitable statistical dis  the past 
losses after they’re revalued and adjusted for IBNER. 

The severity model for IBNR claims will need to be a
as we will need to take into account the fact that the size of the claim will also depend on 
when the claim occurred. What we need is therefore the probability that a loss ܺ is less 
than or equal to ݔ conditional on the fact that the loss has occurred at time ݐocc and has 
not been reported by the as-at date (ݐas‐at): 

 

n

Input. The inputs to the severity analysis are the individual claim amounts (both paid 
and estimated) 

1. Adjust individual past losses for IBNER, as in Section 3.2.2. 

2. Revalue
index/inflation rate  

• This we need to do so as to determine the joint underlying severity 
distribution fr

del the severity distribution in current terms, according to standard 
s (e.g. a lognormal distribution plus separate tail modelling), o

what we will refer to as the kernel severity distribution (since this is the 
nucleus from which the distribution for the different years will be 
constructed through transformations). 

Estimate the severity distribution for losses that occurred at time ݐocc and 
that have not yet been reported b

using the approximation that there is no delay inflation), or any alternative 
valid method.  

hm outlined in Steps 1 to
w

distribution. 
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3.3  A protocol for simulating IBNR losses 

Now that we have a frequency model and a severity model, we can combine them in the 
spir gregate loss distribution. This can be 
one, e.g., by a Monte Carlo simulation. 

f these losses is assumed to have occurred, and 

ion 2.2.1 is constant): an assumption 

r b
we can assume that the number of losses in each of these small 

ሺݐԢ, Ԣݐ  Δݐሻ

istributed 
as a Poisson variate  equal to
the years) of random iformly f
reproduce h inate as the simulated time of 

 the geometric figure must be warped a bit: instead of the rectangle 

iving the expected 

 

 

 

it of the collective risk model to produce an ag
d

We need a “simulation protocol” which takes all the subtleties of the IBNR distribution 
into account: we need to determine not only how many losses there will be in each 
simulated scenario, but also when each o
from what severity distribution we need to sample.  

There are many ways in which we can do this, but as an illustration we are going to use a 
property of the Poisson distribution – assuming, for now, that the Poisson rate is 
uniform over the years (i.e., the variable ߥሺݐሻ in Sect
we’ll drop shortly.  

If we subdivide the period from which the losses are assumed to originate (normally 
there will be some constraint on how fa ack we can go) into small intervals ሺݐԢ, Ԣݐ 
Δݐሻ of length Δݐ, 
intervals is either 1 or 0 (see, e.g., Ross (2003)), and that it is 1 with probability  

ሺ1ߣ െ ݐሺܨ െ ݐሺܨ where ,ݐԢሻሻ Δݐ െ  Ԣሻ is the probability that a loss from the intervalݐ
 has been reported by time ݐ (see Section 2).  

This has a simple geometric interpretation: it is exactly like drawing a number (d
with rate  the point estimate of the IBNR claim count over 
 dots un rom inside the dark green area of Fig. 6 (which we 

ere for convenience), and select the ݔ-coord
occurrence.  

In the general case, the Poisson rate is not uniform, and the process may actually be a 
negative binomial process). Let’s deal with these two aspects in turn. 

Non-uniformity. The geometric interpretation above is still valid if the Poisson rate is not 
uniform, but
representing the expected ultimate claims as in Fig. 6 we have to consider the area below 
the function ߥሺݐԢሻ, and instead of the light-green area in Fig. 6 g
reported we have the area below the function ߥሺݐԢሻ ܨሺݐ െ  .Ԣሻݐ
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Fig. 6 (repeated).  

 

g t e inomial case. In case a negative binomial distribution process is used as a model 
for the IBNR loss count (even if only to represent the parameter uncertainty for the 
Poisson case), we can simply draw the number of IBNR losses from a negative binomial 

not within, but 

: Rate of IBNR losses, ߣ, effective variance-to-mean ratio (the one which includes 
the parameter uncertainty), 1  ܴ, and the kernel severity distribution7, ܨሺݔሻ. 

i. For each scenario ݆ ൌ 1 to sܰim, simulate the number ݊. of IBNR claims from a 

                                                

0 t

100%

τ [years]

F(t-τ)

Expected reported

Expected 
IBNR

Probability of 
being reported

t'  

 

Ne a iv  b

distribution by using the familiar Poisson/Gamma mixture process, and then sample it in 
proportion to ߥሺݐᇱሻሺ1 െ ݐሺܨ െ  ᇱሻሻ. The problem with this method is that it does notݐ
reproduce the extra year-on-year volatility which is typical of realistic loss processes. This 
is a known problem: “sample realizations of such processes look [like] Poisson ones – 
the variation is between processes” (Kozubowski & Podgorski (2009)). If we 
want to reproduce this extra volatility, we need to use another realisation of the NB 
process, e.g. the Poisson/Logarithmic mixture process, which creates clusters 
(“colonies”) of losses happening at the same time (ibid.). If we use this framework, it is 
these “colonies” of losses that are distributed at random in the dark-green area of Fig. 6. 

Based on the considerations above, we outline the following protocol for simulating 
IBNR losses. 

 

Simulation protocol 

Input

 
7 We ignore here the issue of parameter uncertainty for the severity distribution, which will need to be 
taken into account when comparing the results of this method with the chain ladder. We’ll return to this 
issue in Section 7. 
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tio =  ܴ. 

 to  d
-is the as ݐ

1 

 distribution ܨሺݔሻ
ce date, e.g. (using Alternative Assumption 1 in Section 3.2.1) ݔ

ᇱሺሻ ൌ ሺ1 

iv. 

v. Calculate the total losses for each scenario ݆, as ܵ ൌ ∑ ୀଵݔ  

ܵ in ascending order: ܵሺଵሻ ൏ ܵሺଶሻ ൏ ڮ ൏ ܵሺேsimሻ  

 ሺݏሻ ൌ max൛݆|ܵ ሻ  /ൟݏ sܰim. 

 

. A MODEL FOR REPORTED BUT NOT SETTLED (RBNS) CLAIMS 

 Section 3.2.2 we have seen how IBNER must be taken into account in order to derive 
the severity distribution of IBNR claims. Traditionally, however, IBNER is the amount 

ent of 
claims that have already been reported but not settled (RBNS) claims. This amount needs 

negative binomial distribution with rate = ߣ and variance-to-mean ra  1

ii. For each loss ݅ ൌ 1 ݊, simulate the loss occurrence ate as described above, in 
proportion to ߥሺݐᇱሻሺ1 െ ݐሺܨ െ  ᇱ is the occurrence date andݐ ᇱሻሻ, whereݐ
at date 

iii. For each loss ݅ ൌ  to ݊ , if ݐ is the loss occurrence date, sample a loss ݔ
ሺሻ from 

the kernel loss , then modify it to take into account the loss 
occurren
 .ሺ݆ሻ݅ݔݐെ݆ݐሻݎ

Loop over ݅  
ሺሻೕ

vi. Sort all values of 

Output: The empirical aggregate loss distribution, ܨௌ ሺ

 

4

In

of reserves that need to be put aside to deal with the possible adverse developm

to be taken into account when estimating the total amount of reserves, and the 
uncertainty around that amount. 

The calculations to estimate IBNER – which try to identify a systematic bias in the 
reserves, one way or the other – are exactly the same as in Section 3.2.2 but the output is 
used in a different way.  

The IBNER analysis allows the estimation of an IBNER factor for each outstanding 
claim. As a result of this, the estimated ultimate value of the RBNS losses can be written 
like this: 

 

Ult_RBNS ൌ  ,ሺܴ݀ܧܰܤܫ ,ݔ ,ݎ ݐ … ሻ ൈ ܺ



ୀଵ

(27)

   

In Equation (27), ܺ is the ݇-th loss in the database. We have included here all losses, 
whether closed or not, with the convention that ܴܧܰܤܫሺ݀ , ݔ , ݎ , ݐ … ሻ ൌ 1 for 
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t sses, giving therefore no contribution to the estimated Ult_RBNS. 

Since each I R factor ܴܧܰܤܫሺ݀, ,ݔ ,ݎ ݐ … ሻ  (except those for settled claims) is
actually a random variate according to Equation (31), the estimated Ult_RBNS is also a 

 sample f m the overall 

pen claim, sample a value of the IBNER factor from the empirical 

(iii) Calculate the contribution of each open claim to the estimated ultimate value 
ܴܧ

 ൈ ܺ 

 
 ∑ 

(v) 

 

Output: E imate distribu n of outcomes for RBNS claims 

 

A fleshed-out example of this algorithm is illustrated in Section 7.4, in the discussion of 
our case study. 

 

eserves may also need to be put aside for losses that have not occurred yet but that are 

ium reserves” (UPR). E.g., the estimation of UPR is a requirement of 
olvency 2. 

Determining the distribution  of future losses is a standard pricing exercise, by which one 
tries to determine the future loss distribution by building a frequency model and a 
severity model based on past losses (under the usual assumption that the past is to some 

set led lo

BNE  

random variate. If IBNER factors can be assumed to come from a simple statistical 
distribution such as a Normal distribution or a Gamma distribution (this is normally the 
case if IBNER is calculated as a result of a GLM distribution, or – even more simply – if 
it’s produced with a simpler, heuristic exercise), it is also easy to ro
IBNER distribution: 

The following protocol allows the estimation of the distribution of RBNS reserves. 

 

Input: IBNER factors model 

(i) For each scenario ݆ ൌ 1 to sܰim 

(ii) For each o
distribution or from an IBNER model (e.g. GLM), ܴܧܰܤܫ

 ; 

of the RBNS, ܰܤܫ

(iv) Sum the IBNER contributions over all open claims, obtaining the simulated
ultimate RBNS: Ult_RBNS ൌ ܴܧܰܤܫ ൈ ܺୀଵ  

Repeat for all scenarios 

mpirical ult tio

5. AN AGGREGATE MODEL FOR FUTURE LOSSES 

R
covered by the policies in force (or that are going to be in force). These are often called 
“unearned prem
S
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extent a ut we only sketch 
the approach we need to take. 

odel and the severity model in the usual way, e.g. through 

, but that they can be simulated based on the same model. An example of 

 RBNS  Future losses  (28)

We have dealt with (pure) IBNR losses in S d 
with future losses in Secti

Since all the three components of the overall liabilities are random variates, the overall 
e. The ultimate goal of a reserving 

overall liabilities, so that we know how much 
oney will be needed at different levels of probability.  

If we assume that IBNR, RBNS and future losses are statistically independent (see 
ection 6.1 below for a discussion), the distribution of the overall reserves is the 

convolution of the three distributions for IBNR, RBNS and future losses. 

but with the help of numerical analysis is actually quite simple.  Using Monte Carlo 

 guide to the future). For this reason, we do not dwell on this, b

In case the severity distribution is the same (apart from claim inflation) as that of 
previous years, one can use the kernel severity as calculated in Section 3.2.3 and revalue it 
to the mid-term of the policies in force in order to obtain the severity distribution of the 
future losses.  

The frequency model can also be produced based on the results of Section 3: the Poisson 
rate for future losses will simply be given by the projected claim count over the period 
considered, divided by the total exposure and then multiplied by the future exposure. 

By combining the frequency m
Monte Carlo simulation, one obtains an estimate of the aggregate loss distribution of 
future losses. 

In practice, this means that in many cases there is no need for a separate exercise for 
IBNR and UPR
this is shown in the case study of Section 7. 

 

6. A MODEL FOR THE OVERALL LIABILITIES 

 

The overall liabilities are made of three components: 

 

Overall reserves ൌ ሺPureሻ IBNR

 

ection 3, with RBNS losses in Section 4, an
on 5.  

liabilities can also be considered as a random variat
exercise is to estimate the distribution of 
m

S

A three-variable convolution sounds a bit daunting from the mathematical point of view 

simulation, for example, the distribution of the overall reserves can be obtained by 
producing a large number of scenarios. For each scenario, a random value is drawn from 
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and 5), and the three values are 
the 

d 
 a 

ndency between the three 
components.  

For example, the number of IBNR claims that will actually be reported in practice is – 
t of the number of claims that will 

e reported for the unearned portion of the premium (UPR), i.e. the future losses, much 

es occurred in another year, although the underlying frequency may be the 

ction 3.2.1, the actual samples for IBNR and UPR will be independent. 

ed for another claim, whether it’s not occurred yet, incurred but not reported, or 

to 

t both UPR and IBNR in the same way. So the correlation 

the distribution of the IBNR losses, the IBNER losses and the future losses (in practice, 
we can use the outputs of the processes in Sections 3, 4 
summed together. We can then sort all simulations in ascending order and produce 
empirical distribution of the overall reserves in the usual way. 

 

6.1  Dependence among IBNR, RBNS and UPR 

 
How good is the assumption that the IBNR, RBNS and UPR distributions are 
independent?  

Conditional to the risk model which has been derived for each of these components (an
involving, where applicable, a reporting delay distribution, a frequency distribution and
severity distribution) being correct, there is no residual depe

again if our frequency model is correct – independen
b
in the same way that the number of losses occurred in one year is independent of the 
number of loss
same. 

The same is true for our severity distribution and our reporting delay distribution – if 
we’re sampling from the same severity distribution, subject to all the modifications 
discussed in Se

And that is also true for RBNS. You will have noticed that the modelling decisions one 
makes for RBNS have an impact on IBNR, RBNS and UPR, at least if open claims are 
used to produce the kernel severity distribution. However, if the model you have 
produced for RBNS is correct, the IBNER amount that you need to add to a particular 
claim to obtain the claim’s ultimate true value is independent of the IBNER amount that 
you ne
reported but yet outstanding. 

However, that does not mean that we can ignore dependency under all circumstances. 
There are at least two types of dependency that we may want, or even need, to take in
account. 

1. Modelling choices. These are the correlations that arise out of the modelling process 
itself. The severity model that we use for UPR and IBNR is based on the same 
kernel severity model, and therefore any parameter and model choice that we 
make will affect both estimates. E.g., if we choose a lognormal model for both 
UPR and IBNR but the true model turns out to be a Gamma distribution, this 
wrong choice will affec
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2. at some of 
e assumptions behind the model need to be changed. An example is if the 

s the reporting of claims will have an impact on 
oth UPR and IBNR claims (not on RBNS, since the number of outstanding 

he three situations (constante discount rate, 0.5% decrease, 1% 
ecrease) with the relevant probabilities, and we apply the same assumption 

This case study is based on real-world data which has been rescaled and anonymised. 

is not in the loss process but is an artifact of the calculation method.  

 

How do we deal with this? Correlations arising out of the modelling process can be 
easily taken into account by making sure that the modelling choices (e.g. the 
parameters) are the same across the different components (RBNS, IBNR, UPR) 
of a given simulated scenario. The output of the simulation will therefore 
reproduce these correlations. 

 

Systemic shocks. These are the correlation that are created by the fact th
th
discount rate applied by the courts to produce an estimated lump sum for liability 
claims – if it were changed to reflect, say, lower returns on gilts, all claims that are 
not settled (whether reported but outstanding, incurred but not reported, or not 
incurred yet) might be affected and that would mean that the IBNER, IBNR and 
UPR distributions would change. On the frequency side, a change in legislation 
that encourages or discourage
b
claims is fixed). 

 

How do we deal with this? Correlations arising out of systemic shocks can be 
modelled by using a so-called correlation shock. Assume, for example, that we 
have convinced ourselves that the discount rate will go down by 0.5% with a 
probability of 1/50, and by 1% with probability of 1/100 (the probability of 
remaining the same being therefore 97/100). We then assess the effect of this 
discount rate change on the sehverity distribution, and as a consequence on all 
UPR, IBNR and RBNS. Finally, for each simulation scenario we choose at 
random one of t
d
across all the three components of the simulation (UPR, IBNR, RBNS). 

 

 

7. A SIMPLE CASE STUDY 

In Sections 2 to 6 we have described a protocol for producing a model of the overall 
liabilities for a risk. Let’s now see a specific implementation of this protocol in a simple 
(but not too simple) case study.  



Triangle-free reserving 
 

 42 

o be more specific without being revealing, the data set is actually the combination of 
two data sets:  

(a) a  rom a large UK company, from which we have 
derived all the information except from IBNER. The losses span a period of 10.5 years,

lied a randomly chosen rescaling factor to all losses in (a) and (b), and a 
subset of (b) was excluded in order to make 

ective of this case study is to estimate the distribution of provisions needed 
for

: 

• IBNR (losses occurred between 1/1/2001 and 31/7/2011 that have not been 

As w

 

7.1 Pro c

 

7.1.1 E
 

We  observed empirical delays. 
The adjustment for the bias introduced by the limited observation window has been 
carried out as explained in Section 2. We have not assumed a specific model (e.g. 

 The bias-corrected empirical delay distribution is 
shown in Fig. 13. 

T

 set of employers’ liability claims f
 

from 1/1/2001 to 31/7/2011. The EL policy period is 1/1 to 31/12 (unaltered through 
the years); 

(b) a set of general liability claims from a large non-UK company, from which we 
have derived IBNER information.  

We have app
certain quantities (e.g. the probability that a 

100% outstanding claim ends up as a nil claim) consistent between the two data sets. 

 

The obj
 the period 1/1/2001-31/12/2011. Since we only have information up to 31/7/2011, 

that means that we have to consider

• RBNS losses (losses that have occurred between 1/1/2001 and 31/7/2011 
and have been reported, but have not been settled yet and could therefore 
develop further (IBNER)); 

reported yet); 

• UPR (losses that will occur between 1/8/2011 and 31/12/2011). 

 

e will see, IBNR and UPR can be modelled together. 

du ing the frequency model 

stimating the report delay distribution 

 have estimated the report delay distribution, based on the

exponential) for the delay distribution.
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Fig. 13. The empirical reporting delay distribution, after correction for the bias introduced because of a 
limited observation window. 

 

 

7.1.2 Counting the number of non-zero reported losses 
 

d up being zero (especially, and almost exclusively, if they’re 100% outstanding). There 
e several ways to do this. When we have the historical loss amount for each loss, as in 

this case, we can calculate the percentage of non-zero, 100% outstanding claims that 
and based on that we can estimate the 

umber of currently reported claims that will end up being zero. This is illustrated in Fig. 
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We have then counted the number of non-zero reported losses for each accident year.  

We had to take into account the fact that some of the losses reserved as non-zero may 
en
ar

drop to zero for each year of development, 
n
14. 
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Fig. 14. Based on the historical individual loss information (that information that we have also used to 

Armed with the statistics shown in Fig. 14, we can count the number of claims that are 

Fig. 15. Each of the fully outstanding losses (column 4) has a survival probability that depends on 
its year of development. Summing all these survival probabilities for each claim occurred in a given 

 

Year of 
development

Year-on-year 
probability 
of dropping 

to zero

Year-on-year 
survival 

probability

Cumulative 
survival 

probability
0 4.6% 95.4% 79.1%
1 9.4% 90.6% 83.0%
2 8.4% 91.6% 91.6%
3 0.0% 100.0% 100.0%
4 0.0% 100.0% 100.0%
5 0.0% 100.0% 100.0%
6 0.0% 100.0% 100.0%

analyse IBNER) we have calculated the probability that a claim drops to zero after being reported. E.g., 
there is a 4.6% that a claim which is non-zero in development year 0 will drop to zero in development 
year 1 – or, in other terms, there is a 95.4% probability that the claim will not drop to zero (what we 
call in the table the survival probability. Overall, the cumulative survival probability that a claim 
which is non-zero in development year 0 will eventually drop to zero is 100%-79.1%=20.9%. 

 

fully outstanding for each year and from that we can determine the number of non-zero 
losses expected to survive, as illustrated in Fig. 15. This will be the input to calculate the 
projected number of claims for each year. 

 

 

Policy Year
No of 

losses

No of 
non-
zero 

losses

No of 
losses 

with 
O/S=100%

No of losses 
with 

O/S=100% 
expected to 

survive

No of non-
zero losses 
expected to 

survive

2001         65            51  0 0.0                 51.0 

2002         72            51  0 0.0                 51.0 

2003         52            35  0 0.0                 35.0 

2004         63            44  0 0.0                 44.0 

2005         45            35  0 0.0                 35.0 

2006         53            42  0 0.0                 42.0 

2007         50            36  1 1.0                 36.0 

2008         59            43  15 13.2                 41.2 

2009         28            23  12 10.3                 21.3 

2010         20            19  13 10.6                 16.6 

2011         12            11  11 8.7                   8.7 

Total 519      390        52 43.8 381.8            
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.1.3 Estimating the IBNR/UPR claim count 
 

ibution (Fig. 13) and the claim count (Fig. 15, 
olumn 6) to project the claim count to ultimate for each year, or on aggregate and 

 count and the variance-to-mean ratio, which can be 

riance-to-mean ratio of 1.25 (which also takes into account 

Fig. 16. This chart shows the claim count (grey line) for each year after adjustment for exposure 
changes (light blue bars), the projected claim count for each year (blue line, with error bars of size equal to 
twi

year we can find the number of losses that are fully outstanding and that are expected to survive 
indefinitely (column 5). The number of non-zero losses expected to survive (column 6) is given by the 
number of non-zero reported losses (column 3) + the number of fully outstanding losses expected to 
survive (column 5) – the number of fully outstanding losses (column 4). 

 

7

We can now use the reporting delay distr
c
produce a frequency model. 

We have used a negative binomial to model the claim count. This is defined by two 
parameters: the mean claim
calculated by projecting each year independently and then calculating the year-on-year 
variance, as in Fig. 16. 

The estimated parameters of our frequency model are a mean of 0.0586 claims per unit 
of exposure and a va
parameter uncertainty). 
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Projected frequency for next year Adjusted claim count (no IBNR)

ce the standard error), and the estimated mean claim count (30.2) at an arbitrary level of exposure 
(dashed red line), calculated as a weighted average of years 2001-2010 (2011 is too immature). (Note: 
The arbitrary level of exposure was in this case chosen to be the estimated next year’s exposure (515 
arbitrary units): this makes sense in a pricing context but in this case all it matters is the frequency per 
unit of exposure.) 
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n estimate of the frequency model per unit of exposure, we can estimate 
the projected IBNR amount for each year at the relevant exposure. The variance-to-

g. 17 (chart form) and Fig. 18 (tabular form). 

 

Once we have a

mean ratio plays a role in the calculation of the standard error with which the projected 
IBNR amount is known. 

The IBNR calculations on an unadjusted basis (i.e., no corrections for changes in 
exposure) are shown in Fi

Note that the 2011 projected figures include both IBNR and UPR. 
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Fig. 17. Projection of claim count (grey line) to ultimate (blue line) for each year, without adjustments for 
exposure changes (light blue bars). 

Fig. 18. The first nine columns show the same information as the chart in Fig. 17 but in tabular format. 
The input data (latest reported, exposure) is indicated in blue; the intermediate calculations are in black;

 
PROJECTION TO ULTIMATE - YEAR BY YEAR

 

 

C1 C2 C3 C4 C5 C6 C7 C11 C12 C13 C15 C16 C17

Year
Earned 

days
Factor to 
ultimate

Latest 
reported

Ultimate 
losses

Standard 
error Exposure

IBNR 
only

IBNR 
percentage

"Prior" 
estimate of 

ultimate
Credibility 

factor

Credibility 
estimate of 

ultimate

Credibility 
estimate of 

IBNR
2001 365.0             1.00          51.0 51.0 0.0 800 0.0 0.0% 46.9 1.00 51.00 0.0
2002 365.0             1.00          51.0 51.0 0.0 773 0.0 0.0% 45.3 1.00 51.00 0.0

2003 365.0             1.00          35.0 35.0 0.0 742 0.0 0.0% 43.5 1.00 35.00 0.0
2004 366.0             1.00          44.0 44.0 0.0 721 0.0 0.0% 42.2 1.00 44.00 0.0

2005 365.0             1.00          35.0 35.0 0.0 688 0.0 0.0% 40.3 1.00 35.00 0.0
2006 365.0             1.00          42.0 42.0 0.0 661 0.0 0.0% 38.7 1.00 42.00 0.0
2007 360.6             1.01          36.0 36.4 0.6 645 0.4 1.2% 37.8 0.99 36.45 0.4

2008 351.9             1.04          43.0 44.7 1.2 548 1.7 3.8% 32.1 0.97 44.31 1.7
2009 326.4             1.12          21.0 23.5 1.9 478 2.5 10.6% 28.0 0.91 23.95 2.5

2010 272.4             1.34          15.7 21.1 3.0 495 5.3 25.4% 29.0 0.80 22.62 5.7
2011 82.7                4.42          8.7 38.3 5.2 495 29.6 77.4% 29.0 0.57 34.36 26.6

Total 3,584.9         382.4 422.1 7,047 39.6 412.8 419.69 37.0

the outputs we’re interested in are in purple. The last four columns illustrate the credibility calculations 
that lead to a revised figure for IBNR, which is very similar to the one based on client data only for all 
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ns illustrated in Fig. 17 and Fig. 18 are performed year by year. As a 
years get increasingly more uncertain, as 

ey’re based on an increasingly smaller number of claims. This is especially true for 

Fig. 19. The same calculations as in Fig. 18, but without artificially splitting the estimate by year. 

 

Another possible solution to the problem of having unstable results for the most recent 
year(s) is to adopt a credibility approach. This is not very different from what we do with 
Bornhuetter-Ferguson and Cape Cod for triangulation methods.  

y per unit of exposure 

years except for 2011. 

 

The IBNR calculatio
consequence, the projection of the last few 
th
2011, which is strongly underdeveloped. 

This problem is not specific to triangle-free reserving – exactly the same phenomenon 
happens with the chain ladder and with every attempt to project losses to ultimate based 
on last year’s data alone.  

A more accurate estimate of the overall number of IBNR claims can be obtained by 
lumping all years together, as shown in Fig. 19. 

 

PROJECTION TO ULTIMATE - ALL YEARS TOG

 

ETHER

Year

Earned 
days 

(exposure-
adjusted)

Factor to 
ultimate

Latest 
reported

Ultimate 
losses

Standard 
error Exposure

IBNR 
only

2001-11 3,681.8          1.09          382.4 417.3 25.6 7,047 34.8

 

In order to produce a credibility-weighted estimate for all years, we need a benchmark 
against which to compare the raw projections. A natural benchmark is provided by the 
estimated number of claims for each year based on the frequenc
derived above (ߣመ ൌ 0.0586) and the exposure for each year, εሺݕሻ: 

 

Projectedሺݕሻ ൌ ሻ (28a)ݕመεሺߣ

The volatility of such a figure will be given by the projected amount times the variance-
to-mean ratio, yielding: 



 

Var_Projected ሺݕሻ ൌ ሺ1  ሻ (28b)ݕመεሺߣሻݎ
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This credibility factor can then be calculated by balancing this prior volatility against the
or (squared) on the projected ultimate for each year (see, e.g., Parodi & 

onche (2010)). This standard error is calculated according to Equation (12) and leads to 

 

 
standard err
B
the numbers in Fig. 18 (C6). The credibility factor for year ݕ is then given by: 

 

ܼሺݕሻ ൌ
Var_Projectedሺݕሻ

ሺs.e.ሺݕሻሻଶVar_Projected ሺݕሻ
 (28c)

(Note that since the variance-to-mean ratio is included in all terms, in practice it plays no
le in Equation (28c).) 

s thus given by  

 

 
ro

 

The credibility estimate i

 

Cred_Estimሺݕሻ ൌ ܼሺݕሻUltሺݕሻ  ሺ1 െ ܼሺݕሻሻ ሻ (28c)ݕመεሺߣ

Which in terms of the columns of Fig. 18 can be written as
16ൌC15ൈC5ሺ1‐C15ሻൈC13. 

The credibility estimate for IBNR can then be calculated by applying the IBNR 
 

 the results of column C17. 

.2 Producing a severity m del 

 

7.2.1 Adjusting for IBNER 
 

on the average of past IBNER factors by 
s done as explained in Section 3.2.2. The results are shown in 

Fig. 20. 

 

 
C

 

percentage (column C12) to the credibility estimate for the ultimate of Eq. (28c), leading
to

 

 

o7

 

We do a simple IBNER calculation based 
development year. This wa
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Fig. 20. Average IBNER factors for our data set. IBNER factors are assumed to be 1 after year 4 
because the dwindling sample size makes it difficult to have confidence in the estimate. 

 all open claims 
pen = more than 5% outstanding) of the relevant year of development in order to 

 

that the severity distribution is the same for 
l years, except for claims inflation and possibly for the dependency of the average size 

tor as derived in 

cally more significant, we have grouped years in sets of three: 2001-03, 

s can be appreciated 

Average 

 

Year of 
development

year-on-
year 

IBNER 
ratio

Average 
cumulative 

IBNER 
ratio

0 1.091          1.133            
1 1.061          1.038            
2 0.974          0.979            
3 1.014          1.005            
4 0.991          0.991            
5 1.000          1.000            
6 1.000          1.000            

 

The cumulative IBNER factors of Fig. 20 (column 3) are then applied to
(o
estimate the final settled amount. 

 

7.2.2 Is there a common severity model to all years?
 

In its simplest form, our approach assumes 
al
on reporting delay. In this section we are going to test this assumption. 

First of all, we revalue all claims by 5% p.a. (a common assumption for liability claims) to 
2011, and we adjust all RBNS claims by the appropriate IBNER fac
Section 7.2.1.  

We then compare the empirical severity distribution of different years. To have samples 
that are statisti
2004-06, 2007-09, 2010-11 (this last set only has roughly 1.5 years). 

Fig. 21 shows that the assumption that there is a common severity distribution to all 
years (except for claims inflation) is a good one for this risk. Thi
visually but can also be confirmed statistically by looking at the two-sample KS distance 
among the different sets (Fig. 22). 
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ൌ 0.736, ߪ ൌ £18,263, ߤ ൌ
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Comparing the empirical severity distribution of different years
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Fig. 21.  A comparison of the empirical severity between different years. Note that the comparison 
has been performed after adjusting for IBNER. Since the IBNER factors are spurious in this case 
(IBNER factors of data set (b) have been applied to data set (a)) it is likely that the differences between 
the years have been exaggerated. 

 

 

 

Set 1 Set 2
Normalised 

KS distance
2001-03 2004-06 0.424
2001-03 2007-09 0.747
2001-03 2010-11 1.197
2004-06 2007-09 0.722
2004-06 2010-11 1.178
2007-09 2010-11 1.046

Fig. 22. A statistical comparison among the data sets. All sets can be considered as coming from the 
same distribution with a significance level of 10% (remember that the normalised KS distance at a 
confidence level of 10% is 1.22). 

 

7.2.3 The kernel severity model 
 

We then bring all the revalued losses together and build a kernel severity model from 
which the model for the different years can be derived. We have modelled the losses with 
an empirical distribution (i.e., resampling of existing losses) up to £10,000 and then a 
GPD with parameters ߦ £10,000 above that. 
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ൌ 2011 – ݔ 
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Loss severity forecast
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Revalued historical losses

Fig. 23.  Severity model (blue line) vs revalued and IBNER-adjusted losses (red dots). Note that the 
empirical distribution was used below £10,000 (hence the perfect fit below that threshold). 

 

 

7.2.4 The severity model for each year 
 

Based on the kernel severity model produced in Section 7.2.3, we can now derive the 
severity model for each year. 

In doing this, we assume that the loss severity does not depend on the reporting delay 
(this is often a good assumption, as shown in Fig. 9). 

We proceed as follows:  

i. we sample 20,000 points of the kernel severity model (which is revalued to 2011), 
which yields a discretised version of the kernel severity model that is then easier 
to manipulate further; 

ii. The severity model for year ݕ  can be obtained by dividing each 
point of the sample above by 1.05 . 

 

Notice that we only need to produce a severity model for those years for which there 
is some IBNR! In our case, these are 2007-2011. 
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7.3 The aggregate model for IBNR/UPR losses 

 

We can now combine the frequency model (Section 7.1) and the severity model (Section 
7.2) for IBNR/UPR losses with Monte Carlo simulation. We can use a separate model 
for each year (which is the option we’ve adopted here) or we can combine all years in a 
single one by mixing the severity distributions in proportion to the frequency of IBNR 
claims. 

(Note that we have used for the IBNR frequency the projection year by year based on 
column C11 of Fig. 18, not the credibility estimate – this is not because we believe this 
estimate is better but simply because we had to choose one of the cases for illustration 
purposes.) 

 

Fig. 24 shows the output of this exercise. 

 

2007 2008 2009 2010 2011 All years combined

Percentile
No of 

losses
Total 

amount
No of 

losses
Total 

amount
No of 

losses
Total 

amount
No of 

losses Total amount
No of 

losses
Total 

amount
No of 

losses
Total 

amount
50% ‐       ‐               1          28,506        2          54,494        5          165,329           29        1,301,057     39        1,767,666    
75% 1          9,813          3          79,444        4          121,313      7          298,190           34        1,843,534     44        2,421,773    
80% 1          15,157        3          98,607        4          149,049      7          348,429           35        2,020,449     45        2,615,037    
90% 1          41,196        4          174,129      5          259,439      9          548,710           37        2,675,384     49        3,438,802    
95% 2          82,308        4          273,492      6          410,515      10        842,833           40        3,733,321     51        4,646,643    

98.0% 3          170,068      6          540,751      7          723,883      11        1,376,454        43        5,920,532     55        7,495,076    
99.0% 3          285,339      6          879,810      7          1,109,637  12        2,200,778        45        8,269,363     57        10,083,991  
99.5% 4          449,376      7          1,405,362  8          1,851,530  13        3,123,161        47        12,821,095  59        14,758,372  
99.8% 4          915,845      8          2,499,818  9          4,132,847  14        5,866,062        49        19,249,445  61        20,596,802  
99.9% 4          1,655,806  8          5,642,704  10        5,428,090  15        10,434,619     51        31,648,211  63        31,941,402  
Mean 0.4       20,871        1.7       85,234        2.5       127,921      5.4       292,656           29.6     1,691,109     39.7     2,217,791    

Std Dev 0.7       165,632      1.5       309,850      1.8       435,990      2.6       807,740           6.1       1,825,731     7.0       2,080,169    

Fig. 24.  The output of the Monte Carlo simulation for each year of occurrence, and with all years 
combined. 

 

 

7.4 The aggregate loss model for RBNS losses 

 

In order to analyse the distribution of possible outcomes for RBNS losses, let us first 
look at the settlement pattern for open claims. Fig. 25 shows empirical statistics for our 
data set. These are obtained by looking at the percentage of claims of “age” 
(development year) d that have already been settled, and deriving from that the 
conditional probability that a claim which has already reached age d will be settled by the 
time it reaches age d’. 
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rio ݆  to ܰ  



i. sample a value of the settlement year ݏሺ݆, ݇ሻ, based on the past 

empirical distribution (i.e. the actual IBNER facto

iii.  


IBNERௗ,ௗାଵ ൈ IBNERௗା,ௗାଶ ൈ … ൈ IBNER௦ሺ,ሻିଵ,௦ሺ,ሻ; 

iv. lculate the IBNER-adjusted value of the claim, ܺԢ ൌ


b. Sum over all IBNER-adjusted claims, obtaining the simulated ultimate 

 

Year of 
development

Percentage 
settled

Percentage 
settled 

(incremental)

Conditional 
percentage 

settled (d>1)

Conditional 
percentage 

settled (d>2)

Conditional 
percentage 

settled (d>3)

Conditional 
percentage 

settled (d>4)

0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
1 22.2% 22.2% 0.0% 0.0% 0.0% 0.0%
2 46.2% 23.9% 30.8% 0.0% 0.0% 0.0%
3 87.2% 41.0% 52.7% 76.2% 0.0% 0.0%
4 90.9% 3.7% 4.8% 6.9% 29.1% 0.0%
5 100.0% 9.1% 11.7% 16.9% 70.9% 100.0%
6+ 100.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Fig. 25. This table gives the probability that a claim settles at year s conditional to the fact that is 
still outstanding at development year d. For the purpose of this exercise, “settled” means that less than 
5% of the overall estimated amount is still to be paid. (The reason why this is considered settled is that 
often after the indemnity part of a claim has been paid, the insurer might still incur relatively minor 
expenses.) 

 

Given the crucial information of Fig. 25, we can now produce a distribution of possible 
outcomes for RBNS claims according to one of the methods mentioned in Section 4. In 
this specific case, we have adopted the following algorithm, which is a specific version of 
the general algorithm described in Section 4. 

 

Input: All the open losses with their year of development, and all the IBNER factors 
model  

(i) For each scena ൌ 1 sim

a. For each open loss ܺ  

stats for settlement time (see Fig. 25); 

ii. sample IBNER factors 
IBNERௗ,ௗାଵ,IBNERௗା,ௗାଶ … IBNER௦ሺ,ሻିଵ,௦ሺ,ሻ from the 

rs) 

calculate the cumulative IBNER factor for this loss by multiplying
these factors together: 
ܴܧܰܤܫ ൌ

ca
ܴܧܰܤܫ ൈ ܺ 
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RBNS for simulation ݆: ܵ ൌ ܺԢ

ୀଵ  

(ii) Rep

(iii) Sort all the values ܵ , ݆ ൌ 1, … sܰim in ascending order 

 

O u n of possible  losses 

 

In h a settled value 
r each of the 68 open claims has been sampled. An illustration of this can be found in 

Fig. 26, which shows the results of the first simulated scenario (out of 10,000). 

RBNS – SIMULATED SCENARIO #1 

Fig. 26. Example of a simulation for RBNS losses. In our example, there are 68 open claims, each 
with their own development year and O/S percentage. The simulation works by sampling a random 
settlement year (column 4) and a random cumulative IBNER factor to go from year of development to 
the

∑

 

eat for all scenarios 

utput: Empirical distrib tio  outcomes for RBNS

our case, we have used sܰim ൌ 10,000 simulations, in each of whic
fo

 

 

 

Loss ID year (fixed) (fixed) ye
Development 

O/S 
percentage 

Sampled 
settlement 

ar

Sampled 
IBNER 

factor
IBNER-adjusted 

loss
Loss_1 2 81.9% 3 1.000           87,086                 
Loss_2 4 28.6% 5 1.070           32,207                 
Loss_3 4 20.0% 5 0.029           4,001                   
Loss_4 4 100.0% 5 1.314           5,904                   
Loss_5 1 49.1% 2 0.857           41,622                 
Loss_6 3 94.4% 5 1.000           52,843                 
Loss_7 3 42.3% 5 0.734           13,159                 
Loss_8 3 100.0% 5 0.032           1,452                   
Loss_9 1 95.6% 2 0.801           61,984                 

Loss_10 0 100.0% 3 2.732           50,376                 
Loss_11 2 83.8% 3 1.000           48,121                 
Loss_12 3 80.6% 5 0.807           48,455                 
Loss_13 2 100.0% 3 1.199           41,320                 
Loss_14 1 100.0% 2 0.983           13,422                 
Loss_15 3 100.0% 5 1.000           20,929                 

… … … … … …
Loss_68 0 100.0% 3 0.232           6,960                   

All losses 2,237,926          

 simulated settlement year. The sum of all IBNER-adjusted losses (£2,237,926 in the example) 
gives the result of this simulated scenario. This process has been repeated 10,000 times to yield the results 
of Fig. 27. 
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Fig. 27. The result of the RBNS simulation described in this section. Note that the number of losses 
remains constant as it is only the ultimate settlement value which can change here. 

7.5 The overall distribution of liabilities 

f IBNR/UPR and of RBNS claims to obtain 
the distribution of overall losses, as shown in Fig. 28. This can be done as usual by 

Fig. 28. The distribution of possible outcomes for the overall losses, obtained by combining “line-by-
line” the simulation results for RBNS and for IBNR/UPR. 

 

 

Percentile

Number of 
RBNS 

losses

RBNS 
total 

amount
50% 68               2,196,863 
75% 68               2,533,844 
80% 68               2,643,906 
90% 68               3,052,900 
95% 68               3,551,902 

98.0% 68               4,717,209 
99.0% 68               5,630,207 
99.5% 68               6,013,556 
99.8% 68               7,692,927 
99.9% 68               9,315,854 
Mean 68.0            2,377,816 

Std Dev 68.0            734,858     

 

 

Finally, we can combine the contributions o

summing the simulations of RBNS and IBNR/UPR one by one if independence can be 
assumed.  

 

 

Percentile

Number of 
IBNR/UPR 

losses
IBNR and 

UPR

Number of 
RBNS 

losses

RBNS 
total 

amount

Overall 
number of 

losses
Overall 
losses

50% 39               1,767,666         68               2,196,863  107            4,115,957    
75% 44               2,421,773         68               2,533,844  112            4,895,375    
80% 45               2,615,037         68               2,643,906  113            5,171,516    
90% 49               3,438,802         68               3,052,900  117            6,220,342    
95% 51               4,646,643         68               3,551,902  119            7,537,303    

98.0% 55               7,495,076         68               4,717,209  123            10,329,807  
99.0% 57               10,083,991       68               5,630,207  125            13,140,436  
99.5% 59               14,758,372       68               6,013,556  127            16,884,020  
99.8% 61               20,596,802       68               7,692,927  129            23,828,525  
99.9% 63               31,941,402       68               9,315,854  131            34,267,323  
Mean 39.7            2,217,791         68.0            2,377,816  107.7         4,595,607    

Std Dev 7.0              2,080,169         68.0            734,858      7.0              2,218,176    
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ote, finally, that the distribution above also includes the paid component. For 
reserving purposes, one will then need to subtract the paid amount of the RBNS 
co

7.6 Conclusions and limitations of this case study 

how triangle-free reserving can be 
used in practice. We have chosen an example in which most of the features of the 
app

ect (as calculated 
bas

8. VALIDATION AND COMPARISON WITH THE CHAIN LADDER 

It seems reasonable that a reserving method which uses all the information in the loss 
data set
ov

at 
hap

ll the statistical properties. The artificial data set provides us 
by

 

 

N

mponent from the overall losses. 

 

 

The case study presented in this section illustrates 

roach could be used, and we have used the simplest and most implementation 
possible for the various techniques used here (e.g. for IBNER analysis). 

One limitation of this case study is that, indeed, not all features of the approach have 
been used. Specifically, we have not included a tail factor, because its eff

ed on the current reporting delays) was negligible based on a loss period of 10 years 
and an exponentially decaying reporting delay. However, a more thorough analysis could 
have considered a fatter tail (e.g. Pareto) or could have included a separate allowance, 
e.g., for latent industrial disease claims.  

 

 rather than a compressed version of it should provide a better assessment of the 
erall reserves to put aside for a given risk, and especially of the uncertainty of these 

reserves. However, proving that the triangle-free method is actually more accurate than 
the triangle-based methods is much more difficult. 

Validating actuarial methods for reserving is famously difficult, especially because it 
ultimately involves waiting many years to compare the results of a model against wh

pens in reality, and do that for a large number of cases to make sure the result is 
statistically meaningful. Comparing different methods is equally difficult. The difficulty 
becomes perhaps insurmountable when we try not only to validate point estimates but 
full reserving distributions. 

A different approach towards validation is to use an artificial data set of which we 
know (and actually decide) a

 definition with the “true” answer, and therefore we can calculate the prediction error 
of any method we wish, and this method is fully objective.  



Triangle-free reserving 
 

 57 

(in this case, the actuarial 
co

mpares one’s favourite method with a 
str

endent party, and the methods should be provided by their advocates, a bit 
lik

d version of the 
ch

ch and compare it to that 
of 

 IBNR total amount for the triangle-free approach and compare it to 
tha

proach and the chain ladder against the true 

8.1  Experiment #1 – Predicting IBNR claim counts 

 
-free approach and compare it 

 the chain ladder (CL) method we need to generate artificial data for which the true 

The catch, of course, is that when the validation and comparison of methods is 
performed with an artificial data set, the stakeholders 

mmunity and whoever else is involved in reserving decisions) need to agree that the 
artificial data set used is an adequate replica of reality, and that it doesn’t deliberately or 
unwittingly favour one method against the other. 

As for the comparison between different methods, each method may come in 
different flavours and there is a risk that one co

aw man. 

For these reasons, the artificial data set should probably be produced and agreed on 
by an indep

e in Axelrod’s experiment on behavioural strategies (Axelrod (1984)). 

Having all these limitations in mind, we have performed in this paper a few controlled 
experiments to validate the triangle-free method against a very standar

ain ladder. These experiments have some limitations (which we’ll explain later) but are 
a first stepping stone towards a proper large-scale experiment. 

In Section 8.1 we illustrate an experiment (Experiment #1) to assess the accuracy of 
the prediction of IBNR claim count of the triangle-free approa

the chain ladder. 

In Section 8.2 we illustrate an experiment (Experiment #2) to assess the accuracy of 
the prediction of the

t of the chain ladder. Note that future losses and IBNER are ignored in this 
experiment, as the IBNR is the crucial element of the overall reserves (and that for which 
a development triangle is more useful). 

In Section 8.3 we illustrate an experiment (Experiment #3) to compare the whole IBNR 
distribution of both the triangle-free ap
distribution, which we know as we use an artificial data set. 

Section 8.4 draws an overall comparison of the triangle-free approach and the chain 
ladder. 

 

In order to assess the prediction accuracy of the triangle
to
value of the projected claim counts is known. We need to run the experiment for 
many different values of the parameters (e.g. the mean delay, the underlying Poisson 
rate (in the case of a Poisson process), the number of years, etc.) and with a very large 
number of simulations. For the purpose of this paper, we have limited ourselves to 
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e 
ave on record all losses reported by 31/12 of Year 10. 

hosen to be a Poisson process with rate 100 
 

 
ith mean delay ߬ ൌ 1,2,3,4,5,10,20 . 

ars of loss  (accident years) has been chosen to be 
10. 

 
(4) mber ௦ܰ  ൌ  100 of simulations has been run, for each of which a random 

number of losses has been generated for each year based on the assumptions 
 o

 
Fig. 29. We generate the number of losses for each simulation and for each accident year, based on a 

oisson process with uniform rate equal to 100. This table shows the first ten simulations. 

(5) A random delay has been assigned to each of the losses generated in Step (4), 
drawn from an exponential distribution with mean delay ߬. 
 

10

03

…

looking at a Poisson rate with rate = 100 over 10 years, with different values of the 
mean reporting delay (1, 2, 3, 4, 5, 10, 20), and with just 100 different simulations.  
 
Each accident year is assumed to start on 1/1 and, for simplicity, it is assumed that w
h
 
The experiment has been run as follows: 
 

(1) The underlying process has been c

(2) The true delay distribution has been chosen to be an exponential distribution
w

 
(3) The number of ye experience

A nu

above. The utput of each simulation is therefore the “true” number of claims 
for each accident year ݅ ൌ 1, … 10. Fig. 29 shows the first ten simulations. 

 
NUMB ES FOR EACH SIMULATION

 

ER OF LOSS

Accident year
1 2 3 4 5 6 7 8 9

Sim 1 92 114 90 94 100 86 82 111 87 93
Sim 2 84 100 115 104 97 129 94 96 89 93
Sim 3 113 96 89 96 91 104 97 107 105 93
Sim 4 112 97 105 99 97 102 111 100 102 100
Sim 5 95 100 98 94 94 83 111 103 98 1
Sim 6 94 91 83 89 97 95 94 89 94 98
Sim 7 110 108 104 84 94 106 107 102 103 117
Sim 8 102 79 119 84 98 95 93 75 105 100
Sim 9 95 103 102 94 110 119 97 102 104 87
Sim 10 87 93 101 94 106 80 89 96 100 110

… … … … … … … … … …

P
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(6) ased on the delays calculated in Step (5), the number of claims reported by 
imulated, as in Fig. 40. 

 

Fig. 40. We generate for each simulation and for each accident year the number of reported claims, based 
on the number of losses generated in Fig. 6 and on random delays drawn from an exponential 
distribution with mean delay ߬ ൌ 3. 

lay is calculated, and based on that 
and on Equation (25) the projected number of claims is calculated8. 

 Step (7). 
As we’ll see later, this can be based on a client’s own delay or on market 

(9) 
number of losses ߤ

 (which we know because we have an 
rtificial data set) and the prediction error is calculated as the square root of 

the mean squared error: 

                                                

Triangle-free method 
 
B
31/12 of Year 10 was s

 
NUMBER OF REPORTED LOSSES 

 

 
 

(7) For each simulation, the average mean de

 
(8) For each simulation, the tail factor based on the exponential delays assumption 

is calculated, as in Equation (28), correcting the estimate produced in

assumptions.  
 
For each simulation ݆, the projected number of losses,  ̂ߤ

TF, , is compared 
with the true 
a

 

10
0

0

1
1
2

…

FOR EACH SIMULATION

Accident year
1 2 3 4 5 6 7 8 9

Sim 1 9 6 8 14 5 4 6 4 3
Sim 2 3 5 9 8 6 5 5 4 4 2
Sim 3 8 5 9 4 5 3 2 3 1 1
Sim 4 7 8 11 3 5 5 4 5 4
Sim 5 6 4 5 6 6 7 1 6 2 1
Sim 6 15 8 7 8 5 4 2 3 1
Sim 7 11 4 11 8 6 10 6 6 4
Sim 8 1 10 7 8 4 6 4 1 2
Sim 9 11 11 9 9 9 4 7 6 2 0
Sim 10 3 5 8 12 10 8 6 5 4 2

… … … … … … … … … …

8 Ideally, we should have used the empirical distribution instead of the exponential model assumption. 
By using a model for the delay distribution method and a model-free approach for the chain ladder 
method we create a disparity. However, this experimental set-up is much simpler and this is the reason 
why it was adopted in this first version of the paper. Hopefully it will be improved in the future, either 
by considering the empirical distribution for the delay distribution method or by using a chain ladder 
method enhanced with some prior knowledge on how the development factors decay towards 1. 
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Prediction error ሺTFሻؔ√ܧܵܯ ൌ ඩ
1

௦ܰ
ሺ
ேೞ

ߤ̂
TF,  െ ߤ

ሻଶ

ୀଵ

 

           
(29) 

 

 
Chain ladder method 

 
(10) Based again on the random delays generated in Step (5), we create for 

ach simulation a reported triangle, i.e. a triangular matrix which gives for 
each pa ber of claims occurred in accident year AY and 

ported within DY years. 

(11)

(12) As for the tail factor, since there is no standard way of calculating the 

t considering the tail factor at all in 
e comparison of the two methods, and should be to the advantage of the 

(14) As for the delay distribution method, we can calculate the prediction 

 

e
ir (AY, DY) the num

re
 
 For each such triangle, we calculate the development factors from DY 
to DY+1, for each acceptable value of DY 
 
 
tail factor for the chain ladder method, we simply adopt the same tail factor  as 
in Step (8). This is basically the same as no
th
chain ladder method. (Alternatively, one could easily produce a set-up in 
which one pre-agreed particular method to calculate the tail factor for the 
chain ladder method is used.)  
 

(13) The projected number of claims is calculated for each simulation and 
for each accident year of each simulation, producing a new estimate ̂ߤ

CL, .  
 
 
error for the chain ladder method by comparing the projected values of claim 
counts using the mean squared error: 

Prediction error ሺCLሻؔ√ܧܵܯ ൌ ඩ
1

௦ܰ
ሺ
ேೞ

ߤ̂
CL,  െ ߤ

ሻଶ

ୀଵ

 

       
(30) 

 
 
Comparison 
 
(15) The prediction error for the chain ladder method and the triangle-free approach 

has been compared for different values of ߬ both in the case where the tail 
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factor has been estimated based on a single simulation or with a market 
n (in our case, using the average over all simulations), yielding the 

comparison tables below. 

Fig. 41. A comparison between the delay distribution (TF) method and the chain ladder (CL) method 
in terms of the error reduction achieved by the TF method, under different assumptions on the tail. 
 
The results shown in Fig. 41 suggest that using the triangle-free method significantly 

c. 

 
It is lik
differen
distribu

assumptio

 
 

USING CALCULATED TAIL FACTOR USING MARKET ASSUMPTION FOR THE TAIL

Average 
delay [y]

TF mean 
squared error

CL mean 
squared error

Error 
re

Average TF mean CL mean Error  
duction delay [y] squared error squared error reduction

1 0.38                    0.55                           31% 1 3.83                       5.48                      30%
2 6.93                    10.89                         36% 2 5.65                       9.58                      41%
3 10.14                  14.86                         32% 3 9.82                       13.56                    28%
4 15.83                  21.96                         28% 4 11.15                    17.33                    36%
5 22.51                  28.94                         22% 5 14.81                    19.24                    23%
10 156.11               177.44                       12% 10 22.14                    32.86                    33%
20 148.12               188.56                       21% 20 26.99                    58.34                    54%

increases the accuracy of the projection to ultimate claim count. Several elements 
drive this difference, two fundamental and the others accidental: 
 

a. The first fundamental element is that the triangle-free method doesn’t need to 
segment the experience into accident years and can therefore project the full 
period at the same time, thus reducing the instability of the projection of the 
more recent years; 

b. The second fundamental element is that the triangle-free method uses more 
granular information, whilst the CL method condenses all information into a 
triangle, with significant loss of information 
The accidental element is that in this specific experimental set-up we are 
comparing a model-driven method (the delay distribution with an exponential 
assumption) with a fully empirical method (the chain ladder) – note that this is 
indeed accidental as the exponential model has been used only for the sake of 
simplicity of implementation – the triangle-free method can be used in a fully 
distribution-free fashion. 

ely that elements (a) and (b) are the most important quantitatively, but until a 
t experimental set-up is used (based on the empirical version of the delay 
tion method) this cannot be asserted conclusively. 
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.2  Experiment #2 – Predicting IBNR total losses 

Experiment #1 has demonstrated that the triangle-free approach is more accurate than 
the chain ladder in predicting the ultimate IBNR claim count. What we really want to 

g the IBNR total losses, which 
re a crucial part of the overall reserves. 

 order not to be distracted by useless complications, we have made the assumption 

mportant point, which is that of the IBNR losses. Also, we 
ave assumed that there is no claims inflation. 

(1) The underlying frequency and delay model have been chosen as in Experiment 
#1:  

 with rate 100 
b. The delay distribution is exponential with mean delay ߬ ൌ 3 years. 

 
(2)  Experiment #1, the number of years of loss experience (accident years) 

has e n is still ܰ  ൌ  100. 
 in 

Experiment #1 (see Fig. 6).  

purely incidental). 
 

 same (see Fig. 7). 

 

(5) or each simulation, the projected number of losses of Experiment #1 is used, 
clusive of the tail factor. The “market” tail factor has been used. Let 

ated number of IBNR losses. 

8

 

know, however, is whether it is also better at predictin
a
 
In order to test this, we need to build up on the experimental set-up of Experiment #1 
and introduce severities. 
 
In
that IBNER is negligible, and that we are not interested in future losses – this allows 
us to focus on the most i
h
 
 
This second experiment has been run as follows: 
 

a. The claim count process is Poisson

As in
 be n chosen to be 10, and the number of simulatio ௦

The random number of losses for each simulation is exactly the same as

 
(3) For each of the losses generated as in Step 2, a loss amount has been sampled 

from a lognormal distribution with parameters ߤ ൌ 9.52, ߪ ൌ 1.70 (the 
choice of these parameters is 

(4) The random delay for each of the losses is the same as that in Experiment #1, 
and therefore the number of reported losses is also the
 

Triangle-free method 
 

F
in
ො݊ூேோ

TF,  be the estim
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a. The first, “triangle-free (empirical)”, is by sampling ො݊ூேோ

TF,  values 

  
b. The second, “triangle-free (model)” first calculates the parameters 

 
The
the other no
knowledge on the true model on our prediction ability. 

(7) 

e mean squared error: 
 

 
(6) For each simulation ݆, the projected total loss amount,  መܵ

TF, , is calculated 
with two different methods.  

from the set of losses generated for sample ݆ (that is, no further attempt 
at modelling is made).

,ߤ   of the lognormal distribution based on the reported losses, andߪ
then samples ො݊ூேோ

TF,  from that distribution. 

 reason why we used two different methods, one implying modelling and 
t, is because we wanted to estimate the impact of using the 

 
The projected total loss amount,  መܵ

TF, , is then compared with the true total 
loss amount ܵ

 (which we know because we have an artificial data set) and 
the prediction error is calculated as the square root of th

Prediction error ሺTFሻؔ√ܧܵܯ ൌ ඩ
1

௦ܰ
ሺ
ேೞ

ୀଵ

መܵ
TF,  െ ܵ

ሻଶ 

           
(31) 

 

 
Chain ladder method 

 
(8) Based again on the random delays of Experiment #1, we create for each 

mulation a reported triangle, much in the same way as we did in Experiment 
but this time for the total loss amount. Based on 

is, we can produce a new estimate መܵ CL,  of the total losses.  

(9) 

 

si
#1 for the number of claims, 

th 
 
As for the delay distribution method, we can calculate the prediction error for 
the chain ladder method by comparing the projected values of claim counts 
using the mean squared error: 
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Prediction error ሺCLሻؔ√ܧܵܯ ሺ
ேೞ

ୀଵ

ܵ
1

௦ܰ
መඩൌ 

CL,  െ ܵ
ሻଶ

         
(32)  

ൌ 100) 2, ߪ ൌ 1.70). The del

 

 
 
Comparison 
 
(10) The prediction error for the chain ladder method and the triangle-free approach has 

been compared, yielding the comparison table below. 
 
 

 

Chain ladder
Triangle-free 

(empirical)
Triangle-free 

(model)

Prediction accuracy (MSE) 7,392,262       4,423,237             3,842,561              
Prediction accuracy (MSE) as a percentage of average true value 44.7% 26.8% 23.3%

 Simul    IBNR  (true) 
 IBNR (Chain 

ladder) 
 IBNR (Triangle‐
free, empirical) 

 IBNR (Triangle‐
free, model) 

 Error (Chain 
ladder) 

 Error (Triangle‐
free, empirical) 

 Error (Triangle‐free, 
model) 

1 10,773,575      19,477,811             15,443,006                16,104,318               8,704,236           4,669,431                 5,330,743                  

2 17,839,076      11,163,722             13,864,553                14,578,474               6,675,354‐           3,974,522‐                 3,260,601‐                  

3 20,073,695      17,343,084             15,841,802                15,691,210               2,730,611‐           4,231,893‐                 4,382,485‐                  

4 16,519,312      17,671,032             22,341,455                22,659,106               1,151,719           5,822,143                 6,139,794                  

5 15,622,367      19,756,994             15,493,358                15,027,101               4,134,627           129,009‐                    595,265‐                     

6 16,807,437      9,557,564               14,331,857                12,685,124               7,249,873‐           2,475,580‐                 4,122,313‐                  

7 16,309,016      26,602,474             19,518,622                19,587,276               10,293,459         3,209,606                 3,278,260                  

8 21,486,134      15,839,159             20,258,625                22,039,740               5,646,975‐           1,227,509‐                 553,606                     

9 11,863,136      16,661,276             15,250,191                16,031,506               4,798,140           3,387,055                 4,168,371                  

10 14,938,406      11,782,679             13,048,958                13,355,460               3,155,727‐           1,889,448‐                 1,582,946‐                  

… … … … … … …

Fig. 42. Prediction error (in GBP)  calculated as the means squared error between the true value and the 
projected value for 100 different random data sets. The underlying model was in all cases a compound Poisson 
distribution (ߣ with a lognormal severity distribution (ߤ ൌ 9.5 ay distribution 
was assumed to be exponential with an average delay ߬ ൌ 3 years. For simplicity’s sake (although this is not a 
crucial assumption) the underlying loss model has been assumed to be inflation-free and the reserving process has 
been assumed to be IBNER-free. The first ten simulations are included for illustration purposes. 

 
As in Experiment #1, the results show that using the triangle-free method significantly 
increases the accuracy of the loss projection. The reasons that drive this difference are 
roughly the same as those listed in Experiment #1. However, in this case, notice that 
we have tried to quantify the impact of using our prior knowledge on what the correct 
severity distribution is by also producing an “empirical” estimate of the projected 
losses that doesn’t use any severity modelling. 
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8.3  Experiment #3 – Predicting the full IBNR distribution 

 
The third experiment that we have carried out aims at calculating the accuracy not only 
of the mean projected IBNR for different methods, but the full distribution of IBNR 
losses. This allows us to determine how fit each reserving method is to assess the various 
percentiles of the reserving distribution (i.e., the distribution of past liabilities). 
 
Ideally, we should compare the true distribution with the triangle-free approach 
distribution and the chain ladder distribution for a large number of simulations. 
However, since the process of obtaining a chain ladder estimate of the reserving 
distribution is currently not fully automated, a full experiment has not been performed 
yet. 
 
What we’ve done as an interim solution was to choose one of the simulations produced 
in Experiment #2 (which has all the information we need) such that the projected 
ultimate for the triangle-free approach and the chain ladder approach are reasonably 
close, so that the difference between the two distributions does not simply depend on 
the fact that the projected values are quite different. After all, Experiment #2 has already 
taken care of the difference in the point estimates between the two methods. 
 
In order for this experiment to make sense, we have to make sure that we define 
carefully what the “true distribution”, the “chain ladder distribution”, and the “triangle-
free distribution” are in this experiment. 
 
a. For the chain ladder distribution, we used the lognormal approximation and the 

normal approximation of the reserving distribution obtained by the application of 
Mack’s method, for which the distribution of the ultimate is the lognormal (or the 
normal) distribution such that the mean is equal to the mean projected liabilities, 
and the standard deviation is equal to the prediction error9, which takes into 
account both the process variance and the parameter uncertainty (see, e.g., Mack 
(1993) and England & Verrall (2002)).  
 

b. For the triangle-free distribution, the IBNR distribution was simulated by 
combining a negative binomial distribution with rate equal to the projected 
number of IBNR claims, and variance-to-mean ratio equal to 2 (in practice, a 
Poisson distribution with some extra volatility to take parameter uncertainty into 

 
9 In the lognormal case, we have calculated it on two bases: (i) take the distribution of the total ultimate 
losses to be a lognormal with mean equal to the mean projected liabilities, and standard deviation  
equal to the prediction error, then calculate IBNR as the total losses minus the total reported claims, 
which in this case are assumed to have no IBNER; (ii) take the distribution of the IBNR losses to be a 
lognormal with mean equal to the mean projected IBNR, and standard deviation equal to the prediction 
error. 
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ܰ~ߤ̂ ቆߤ,
ଶߪ

݊

account), and a lognormal distribution whose parameters are calculated based on 
the reported losses only.  

 
The parameter uncertainty on the parameters of the lognormal distribution was 
calculated based on the standard formulae for the maximum likelihood estimation, 
which state that (asymptotically at least) the estimated parameters are distributed 
normally around the true parameters as (note that the correlation matrix is 
diagonal so we don’t need to worry about the interaction between the two 
parameters): 

 

ቇ, ܰ~ොߪ ቆߪ,
ଶߪ

2݊
ቇ 

݊

̂ , ොߪ

̂ , ොߪ

ሺ#IBNR lossesሻtheor ൌ
߬
ܶ

           
(33) 

where  is the number of reported losses. In order to take the parameter 
uncertainty for the severity into account, for each simulated loss we first simulate 
a pair of values (ߤ ) using Equation (33) (after replacing the true parameters 
with the estimated ones) and then we sample a loss from a lognormal with 
parameters (ߤ ). This has the double effect of increasing the volatility of results 
(which we want, because it reflects the additional uncertainty) and also of adding 
a systematic bias on the mean of the distribution, which we don’t necessarily 
want. This effect becomes significant when the number of losses used to calculate 
the parameters is small, and one way to compensate for that is to rescale all losses 
so that the mean is preserved, and then sampling from the new set. 
 

c. As for the true distribution, this is subtler than it looks. Since we know the 
theoretical Poisson rate and the expected number of losses reported by the end of 
the tenth year, we know the theoretical number of IBNR losses: 
 

 

ሺ1 െ exp ሺെ ܶ ߬⁄ ሻሻሺtotal #of claimsሻtheor ൌ

ൌ
3

10
 ൈ ሺ1 െ exp ሺെ 10 3⁄ ሻሻ ൈ 1000 ൌ

ൌ 289.30

1.70.  However, to m

ted
0 ൌ 710.70. 

  

           
 

(34) 

 
Also, we know the theoretical value of the lognormal parameters: ߤ ൌ 9.52, ߪ ൌ

ake a fair comparison with the distributions calculated in one 
of the two methods above, we need to take parameter uncertainty into account as 
if we didn’t know the correct values of the parameter, exactly in the same way as 
we do for the triangle-free approach, assuming a negative binomial distribution 
with rate equal to 289.30 and variance-to-mean ratio equal to 2. The “fictional” 
parameter uncertainty on the parameters ߤ, can be calcula ߪ  via Equation (33) 
using ݊ ൌ 1,000 െ 289.3
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2.3

The results of the comparison are shown in Fig. 43. The comparison has been carried 
out: 
  

• by visually comparing the CDF of the aggregate loss distributions for the 
different methods, which shows that the triangle-free approach produces a far 
closer fit to the true distribution – in the figure it is actually rather hard to tell 
them apart; 
 

• more formally, by calculating the normalised Kolmogorov-Smirnov distance 
between each of the tested methods and the true distribution. This confirms 
that the triangle-free approach provides a much better fit to the true 
distribution. However, notice how the value of the normalised KS distance 
(݀ ൌ ) is still quite large (corresponding to a -value below 1%).  

 
 

 

Normalised KS 
distance from 

"true" 
distribution

Triangle‐free 2.3
Chain ladder 
(lognormal)

18.5

Chain ladder 
(normal)

18.2

Chain ladder 
(lognormal, 
based on 
ultimate)

17.6
0

0.2

0.4

0.6

0.8

1

1.2

‐10,000,000 0 10,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000

Reserving distribution - Comparison of methods
Poisson rate = 100

Triangle‐free method True distribution CL (logn) ‐ based on IBNR

CL (Normal) CL (logn) based on  ultimate

Fig. 43 A comparison of the reserving distribution as calculated by the triangle-free method and the chain 
ladder (CL) method, both of which include a provision for parameter uncertainty. The results are 
compared to the “true” distribution – that in which an oracle has told us what the underlying parameters 
used to generate the loss data are, but also (paradoxically, it may seem) includes a provision for the 
parameter uncertainty.  The triangle-free distribution shows a far closer fit to the true distribution (the 
two distributions are almost indistinguishable on the chart), and this is reflected in the lower value of the 
normalised Kolmogorov-Smirnov distance. 

 

 

8.4  A comparison of the triangle-free approach and the chain ladder 

 
In this section we compare the triangle-free approach and the chain ladder in general 
and not only in terms of prediction accuracy but more in general. 
 
Advantages of the triangle-free approach 
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1. Increased accuracy in the projected IBNR, as demonstrated by the tables in 
Fig. 41 and Fig. 42. 

 
2. More accurate estimation of reserving uncertainty, as shown in Fig. 43.  

 
This is probably the main reason why we should move away from loss 
triangulation methods. 

 
3. You don’t need a complete last diagonal in order to apply the method10. 

  
In the chain ladder method, if you have, e.g., only 7 months developed of the 
last accident year, you’ll have to discard the last diagonal, or find a way to 
gross it up, or change the discretisation window – e.g., use one month instead 
of one year (although this may cause other problems, such as numerical 
instability). 

 
4. If a given year has no losses, this is a problem in the pure chain ladder method, 

because the projected losses will be zero (this is not necessarily the case with 
other methods based on the development of loss triangles), whereas it will 
affect less the performance of the triangle-free method, which relies on the 
number of claims reported over the whole period. There is therefore less need 
to resort to credibility-like methods such as Bornhuetter-Fergusson or Cape 
Cod. 
 

5. The triangle-free approach allows the estimation of the tail factor in a more 
robust and scientific way, based again on a larger data set than in the case of 
chain ladder, where the only option is really to introduce a tail factor based on 
judgment or try to fit a function (e.g. exponential, power law, etc) through a 
very small number of development factors, as the best reserving packages do. 

 
 
Disadvantages of the triangle-free approach 
 

1. The main disadvantage is that the triangle-free approach is more complex than 
the chain ladder method… 
 

 
10 This is often a problem in pricing because the loss data set includes all losses reporting up to a given 
date and this date is normally a few months away from renewal, and therefore the last year is never 
complete. 
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2. …and has more stringent data requirements: input data must be both more 
granular (individual loss claims) and accurate (e.g., the exact date of 
occurrence and of reporting for each loss). 

 
3. Another disadvantage of the triangle-free approach is presentational: while all 

methods based on triangle development allow you to see at a glance in a 
simple matrix of size, say, 10 by 10, the pattern by which losses from each 
accident year develop, the triangle-free approach has no such snapshot view of 
total loss development. 
 

 
 

9. FURTHER RESEARCH 

This initial research shows that what we called the “triangle-free approach to reserving”, 
which uses the full information in the loss data set rather than a compressed version of it, 
leads to a more accurate estimate of the projected losses, and especially of the uncertainty 
around this projection. This has been proved in a series of controlled experiments with 
an artificial data set. 

 
As mentioned in the executive summary, some improvements to the experimental 

design are however needed to confirm these initial results. The main improvements are 
the following: 

• The scale of the experiment must be enlarged: currently, we have built our 
considerations on 100 different data sets, but this number should be increased to 
1,000 or even 10,000 

• The experiment should be run with many different Poisson rates. Currently we have 
used a Poisson rate of 100, but a wide range of rates (say between 0.1 to 1,000) 
should be tried. Also, experiments with overdispersed Poisson distributions, e.g. with 
the negative binomial, should be carried out, to see if this leads to different results. 

• The experiments should be run with many different mean delays. Currently we have 
run Experiment #1 with a good variety of mean delays, but Experiments #2 and #3 
have been limited to an exponential distribution with a mean delay of 3 years. Also, 
other distributions other than the exponential distribution should be used to model 
reporting delays. 

• The experiments should be run with different models for the severity distribution 
and with different parameters. The most crucial thing to try is probably to see the 
effect of having an increasingly heavy tail, by using a GPD with different values of 
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the parameter ߦ to generate losses above a certain threshold. 

• Regardless of the way in which losses are generated, it is important to analyse the 
prediction accuracy of the version of the method in which no attempt is made at 
modelling the delay distribution, but the empirical version is used (except for the tail, 
where we definitely need some model). This is the current implementation used for 
client data analysis, but it is slightly more difficult to automate it to the point of 
running a large-scale experiment, and so it hasn’t been used here. 

• The triangle-free approach should be compared not only to the chain ladder method 
but to a number of different, more sophisticated triangle-based approaches, such as 
BF, Cape Cod, fitting GLM to loss development triangles. This is needed to give 
more weight to the claim that the triangle-free approach actually gives better results 
(at least in estimating the reserving distribution if not the point estimate) than any 
method for which information has been compressed into a triangle. 

• IBNER should also be considered in the comparison by introducing a model for 
producing artificial data with reserve errors 
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