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1. Abstract 

A common problem in capital modelling involves dealing with volatility assumptions that are inconsistent with the 
exposure assumptions from which they were originally derived, eg when rolling parameters forward from year to 
year, due to timing constraints in the capital modelling process, or when performing sensitivity or scenario testing. 
In order to obtain meaningful results from modelled output, it is important to use parameters that reflect the 
business being modelled as accurately as possible. The purpose of this paper is to outline a simple formula that 
capital modellers can use to adjust volatility parameters based on changes in volume. 

We show that, based on historical data, the relationship between reserve volume and volatility of reserve 

movements is well described by a power law formula of the form 𝐶𝑜𝑉 = 𝑎𝑣−𝑏, where 𝐶𝑜𝑉 is the coefficient of 
variation and 𝑣 is reserve volume. 𝑏 is a constant to be found, and 𝑎 is a constant but is not needed to apply the 
adjustment formula. The data suggest that suitable values for 𝑏 fall in the range 0.12 - 0.31, and we suggest 0.22 
as a suitable value for a typical use case. 

This leads to the finding that insurance risk CoVs can be adjusted for the impact of changing volume using the 
following formula: 

𝐶𝑜𝑉𝑎𝑓𝑡𝑒𝑟 = 𝐶𝑜𝑉𝑏𝑒𝑓𝑜𝑟𝑒 ∗ (
𝑣𝑏𝑒𝑓𝑜𝑟𝑒
𝑣𝑎𝑓𝑡𝑒𝑟

)

0.22

 

In addition, we note that benchmark survey data collected indicates that capital modelling practitioners typically 
make less allowance for the sensitivity of volatility to volume than is indicated by historical data. Volumes larger 
than around USD $50m may therefore have CoVs that are overstated, and volumes smaller than this may have 
CoVs that are understated. 
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2. Introduction 

2.1. Purpose 

The purpose of this paper is to provide a solution to a series of related problems in capital modelling, in which 
volatility assumptions are inconsistent with the exposure assumptions from which they were originally derived. 

 Some examples of where this arises are as follows: 

• Reserve risk coefficients of variation (CoVs) may be calculated based on experience at the previous year end, 
but need to be adjusted for future projected reserve volumes. 

• Underwriting risk parameters may be calculated based on historical data, with volumes varying over the 
timeframe considered, but planned future premiums may be outside the range observed historically due to 
changes in business plans. 

• Sensitivity testing may consider changes in volumes and require a systematic way of estimating resulting 
impact on volatility parameters. 

• Volatility parameters may be rolled forward unadjusted from quarter to quarter, or from year to year, if a full 
re-parameterisation is deemed unnecessary (eg if the risk profile is unchanged) or cannot be performed due to 
time constraints, but may need adjustments for changes in volume. 

• Volatility parameters may be required for a multi-year capital projection, or for scenarios involving changes to 
planned business volumes. 

• Distributions for new (or small) classes of business may be parameterised with reference to an existing (or 
larger) class. 

It will often be impractical to align the parameterisation fully to the exposures modelled. In particular, for the last 
three examples above, there will typically be little information available on the nature of any new business. 
However, in order to obtain meaningful results from modelled output, it is important to use parameters that reflect 
the business being modelled as accurately as possible. 

The main objective of this paper is therefore to outline a simple algorithm that capital 

modellers can use to adjust volatility parameters based on changes in volume. 

The previous literature on this specific topic is relatively sparse. We are aware of various attempts to examine the relationship 

between volume and volatility previously – for example, the short paper Back to Basics, a simple model of insurance volatility, 

published by Paul Hewson on LinkedIn1 in March 2024 outlines a theoretical approach. We are not aware of any published 

works that attempt to provide a practical solution to the problem outlined above. 

2.2. Outline 

We have investigated the relationship between the volatility and volume of insurance losses. The model we have 
used to investigate the relationship between these two quantities is discussed in section 3. 

The bulk of our analysis was performed on the Schedule P dataset from the National Association of Insurance 
Commissioners (NAIC), which includes claims information for major personal and commercial lines for all property 
and casualty insurers that write business in the US. This dataset was used because it is large enough to provide 
credible results, and easy to analyse as the data are provided in a consistent format. A brief description of the data 
used, along with descriptions of the other datasets analysed, can be found in section 4. 

 
1 https://www.linkedin.com/posts/paul-hewson-790702b4_back-to-basics-a-simple-model-of-insurance-activity-
7170767867783680002-qbzL?utm_source=share&utm_medium=member_desktop 

https://www.linkedin.com/posts/paul-hewson-790702b4_back-to-basics-a-simple-model-of-insurance-activity-7170767867783680002-qbzL?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/paul-hewson-790702b4_back-to-basics-a-simple-model-of-insurance-activity-7170767867783680002-qbzL?utm_source=share&utm_medium=member_desktop
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We have performed two analyses on the Schedule P dataset: 

• Bucket analysis of the relationship between volatility of calendar year reserve movements and the 
corresponding reserve sizes for these movements. 

• Bootstrap method to assess volatility within historical claims triangles. 

The bucket analysis (discussed in section 5) is our central approach, as it considers actual historical reserve 
movements and the volatility associated with them. The bootstrap approach (discussed in section 6) instead 
considers the volatility inherent within historical paid claims triangles without relying on subjective estimates of 
ultimate claims. The two methods have different strengths and weaknesses, which are outlined alongside the 
discussion of the analysis performed. Specific uncertainties and limitations of the bucket analysis are discussed in 
section 9. 

We also analysed data from a reserving regulatory return from the Australian Prudential Regulation Authority 
(APRA). Only the bootstrap method was performed on this dataset, as the return includes insufficient datapoints to 
support the bucket analysis. The results of this analysis are discussed in section 6.6. 

In addition, we analysed reserve risk data from LCP’s annual capital benchmarking survey. The data from this are 
actual reserve risk CoVs selected by practitioners, and therefore reflect a different view than the historical volatility 
analyses performed on the other datasets. The results of this analysis are discussed in section 7. 

Results from all analyses performed and our conclusions are outlined in section 8. 

2.3. Scope 

Reserve risk: Our focus has been on analysing reserve movements. The reason for this is that, in a capital 
modelling context, reserve risk is generally simpler to model than underwriting risk, as it is usually modelled as a 
single loss type, rather than being split between attritional, large and catastrophe losses. In particular, the skewed 
nature of natural catastrophe losses (which, due to the short tailed nature of their payment patterns, have less of an 
impact on reserve risk) may skew the results of any analysis on underwriting risk losses. Our view is that the results 
presented in this paper are likely also applicable to underwriting risk, but further work is needed to fully understand 
the extent to which this is the case. 

Gross vs net: The analysis has been performed on a gross of reinsurance basis, to avoid confounding effects from 
different non-proportional reinsurance structures between firms. 

Geography: The majority of the analysis has been performed on US data, since this is the source of the most 
extensive publicly available dataset. Results have also been sense checked where possible on a like-for-like basis 
against Australian data, although this dataset is much sparser and results are therefore less credible. Given that 
the focus of this research is on the fundamental nature of diversification within insurance portfolios, we have no 
reason to believe that the results would be different across territories. 

Currency: Each of the three datasets used is based on a single currency: Schedule P is entirely in USD, APRA is 
entirely in AUD, and the LCP benchmarking surveys were converted to GBP based on the prevailing rates in force 
at the time the surveys were conducted. Since the benchmarking survey only includes data at a single point in time, 
we do not expect any impact on results from exchange rates changing over time. The objective of this exercise is to 
produce an estimate for a single dimensionless parameter, which should be invariant to currency effects. However, 
note that changes in capital model inputs due to movements in exchange rates would not normally be expected to 
result in changes to insurance risk volatility parameters, and the results of this exercise should only be applied to 
volumes that are already on a consistent exchange rate basis. 

Basis: The techniques used cover both one-year and ultimate risk. The bucket analysis considers one-year 
historical reserve movements, the bootstrap considered is an ultimate bootstrap, and the survey data collected is 
on an ultimate basis. Since the focus of this research is on the fundamental nature of diversification within 
insurance portfolios, we have no reason to believe that different results would be obtained between ultimate and 
one-year views. 

Our scope is limited to adjusting volatility for effects that are purely due to changes in volume, in line with the 
well-established principle that greater pooling of risk reduces volatility of outcomes, and vice versa (commonly 
known as the Law of Large Numbers). Accounting for changes in the nature of insurance business is more 
complex, and cannot necessarily be fully reflected by the approaches we outline here.  
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3. Approach 

3.1. Model 

We investigate modelling the relationship between volume (𝑣) and volatility (𝐶𝑜𝑉) of insurance losses (specifically, 
reserve movements) as a power curve described by the following equation: 

𝐶𝑜𝑉 = 𝑎𝑣−𝑏 

Equation 1 

This relationship is shown in Figure 1 below for different values of 𝑏. 

Figure 1 

 

As shown in Figure 1, for 𝑏 > 0, this model is consistent with the established principle that volatility decreases as 
volume increases, due to increased diversification. Higher values of 𝑏 result in volatility being more sensitive to 
changes in volume. This indicates that the business has more specific risk, ie increasing volume results in greater 
diversification. Conversely, lower values of 𝑏 imply that volatility is less sensitive to changes in volume. This is 
indicative of more systemic risk within the business that cannot be diversified away by increasing volume.  

From this mathematical relationship linking volatility to volume, we can derive a volume adjustment factor that can 
be applied to a CoV to get a corresponding volume adjusted CoV. Define 𝐶𝑜𝑉𝑏𝑒𝑓𝑜𝑟𝑒 and 𝐶𝑜𝑉𝑎𝑓𝑡𝑒𝑟  as the original and 

volume adjusted CoVs respectively. Then from the above equation, we have 
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𝐶𝑜𝑉𝑏𝑒𝑓𝑜𝑟𝑒 = 𝑎𝑣𝑏𝑒𝑓𝑜𝑟𝑒
−𝑏  

Equation 2 

𝐶𝑜𝑉𝑎𝑓𝑡𝑒𝑟 = 𝑎𝑣𝑎𝑓𝑡𝑒𝑟
−𝑏  

Equation 3 

where 𝑣𝑏𝑒𝑓𝑜𝑟𝑒 , 𝑣𝑎𝑓𝑡𝑒𝑟 are, respectively, the original and subsequent non-zero volumes from which the CoVs have 

been calculated or estimated for. For example, 𝐶𝑜𝑉𝑏𝑒𝑓𝑜𝑟𝑒 and 𝑣𝑏𝑒𝑓𝑜𝑟𝑒 could be the CoV and volume based on 

experience at the previous year end, and 𝐶𝑜𝑉𝑎𝑓𝑡𝑒𝑟  and 𝑣𝑎𝑓𝑡𝑒𝑟 the parameterised CoV and volume projected for a 

future year-end. 

Dividing Equation 3 by Equation 2 gives 

𝐶𝑜𝑉𝑎𝑓𝑡𝑒𝑟
𝐶𝑜𝑉𝑏𝑒𝑓𝑜𝑟𝑒

=
𝑎𝑣𝑎𝑓𝑡𝑒𝑟

−𝑏

𝑎𝑣𝑏𝑒𝑓𝑜𝑟𝑒
−𝑏  

⇒ 𝐶𝑜𝑉𝑎𝑓𝑡𝑒𝑟 = 𝐶𝑜𝑉𝑏𝑒𝑓𝑜𝑟𝑒 ∗ (
𝑣𝑎𝑓𝑡𝑒𝑟
𝑣𝑏𝑒𝑓𝑜𝑟𝑒

)

−𝑏

 

Or equivalently, 

𝐶𝑜𝑉𝑎𝑓𝑡𝑒𝑟 = 𝐶𝑜𝑉𝑏𝑒𝑓𝑜𝑟𝑒 ∗ (
𝑣𝑏𝑒𝑓𝑜𝑟𝑒
𝑣𝑎𝑓𝑡𝑒𝑟

)

𝑏

 

Equation 4 

The formula in Equation 4 implies that we can volume-adjust CoVs with a simple multiplicative factor (
𝑣𝑏𝑒𝑓𝑜𝑟𝑒

𝑣𝑎𝑓𝑡𝑒𝑟
)
𝑏

. The 

only information required to make the adjustment is the ratio of the volumes before and after, plus the parameter 𝑏.  

Note that based on the above formula, provided 𝑏 > 0, we have that: 

If 𝑣𝑎𝑓𝑡𝑒𝑟 > 𝑣𝑏𝑒𝑓𝑜𝑟𝑒  then 𝐶𝑜𝑉𝑎𝑓𝑡𝑒𝑟 < 𝐶𝑜𝑉𝑏𝑒𝑓𝑜𝑟𝑒  , and vice versa. 

Intuitively, this makes sense, as if the volume of business has increased, then we would expect more diversification 
and therefore a lower volatility parameter. 

Since the 𝑎 parameter in the power curve model does not affect these calculations, the aim of this work is to 
parameterise 𝑏 so that Equation 4 is a simple formula that can be used to volume-adjust CoVs, using only the ratio 
of volumes before and after. 

We considered alternative possible relationships between volume and volatility to the power law model described 
above. In particular, we considered a model derived from probabilistic theoretical first principles, but found that the 
power law model provided a better fit to the data. Details of the theoretical model can be found in Performance of 
theoretical model on real world data. 

3.2. Bounds 

We can derive upper and lower bounds on the possible values that 𝑏 can take. 

Lower bound: 𝒃 > 𝟎 

A natural lower bound for 𝑏 is 0, ie 𝑏 cannot take negative values. A negative 𝑏 would imply volatility increases as 
volume increases, which is not consistent with the pooling of risk principle.  
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The result 𝑏 = 0 implies that volatility is completely invariant to changes in volume. That is, increasing the volume 
would result in no additional diversification benefit. This can be seen in the straight line in , above.  

A relationship between volume and volatility of this nature (where 𝑏 = 0) can be interpreted in the real world as an 
insurance portfolio entirely made up of systemic risk and no diversifiable risk. In practice, this situation is unlikely 
and therefore we are comfortable with a strict lower bound 𝑏 > 0. 

Upper bound: 𝒃 < 𝟎. 𝟓 

For the upper bound, we show that, for a portfolio of 𝑁 independent and identically distributed claims, we obtain a 
value of 𝑏 = 0.5. Given that this scenario corresponds to a portfolio entirely made up of diversifiable risk and no 
systemic risk (as claim amounts are independent with each other and with 𝑁), this represents the maximum 
possible value of 𝑏, assuming that claim amounts cannot be negatively correlated with each other. Again, this 
situation is unlikely to occur in practice, resulting in a strict upper bound of 𝑏 < 0.5. 

Let 𝑋𝑖 be the size of the 𝑖-th of 𝑁 claims, where 𝑁 is a random variable with distribution 𝑁~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑛) 

Assume the 𝑋𝑖 are independent and identically distributed with mean 𝜇 and variance 𝜎2. 

Then define 𝑆 as the total claims: 

𝑆 =∑𝑋𝑖

𝑁

𝑖=1

 

Then we have: 

𝐸[𝑆] = 𝐸 [∑𝑋𝑖

𝑁

𝑖=1

] 

Using the tower law of expectations, we can write this as 

𝐸[𝐸[∑ 𝑋𝑖
𝑁
𝑖=1 |𝑁]] 

= 𝐸[𝑁 ∗ 𝐸[𝑋𝑖]] 

= 𝐸[𝑁] ∗ 𝐸[𝑋𝑖] 

= 𝑛𝜇 

Similarly, using conditional variance theory, we have 

𝑉𝑎𝑟(𝑆) = 𝐸[𝑉𝑎𝑟(𝑆|𝑁)] + 𝑉𝑎𝑟(𝐸[𝑆|𝑁]) 

= 𝐸 [𝑉𝑎𝑟(∑𝑋𝑖

𝑁

𝑖=1

|𝑁)] + 𝑉𝑎𝑟(𝐸[∑ 𝑋𝑖
𝑁
𝑖=1 |𝑁]) 

Because the 𝑋𝑖𝑠 are independent, this gives us 

𝐸[𝑁 ∗ 𝑉𝑎𝑟(𝑋𝑖)] + 𝑉𝑎𝑟(𝑁 ∗ 𝐸[𝑋𝑖]) 

= 𝑛𝜎2 +𝐸[𝑋𝑖]
2 ∗ 𝑉𝑎𝑟(𝑁) 

= 𝑛𝜎2 + 𝜇2𝑛 

Since we are looking at CoV as our volatility measure, we have: 
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𝐶𝑜𝑉(𝑆) =
√𝑉𝑎𝑟(𝑆)

𝐸(𝑆)
=
√𝑛√𝜎2 + 𝜇2

𝑛𝜇
=
√𝜎2 + 𝜇2

𝜇√𝑛 
 

Then defining volume 𝑣 to be the expected value of the total claims 𝑆𝑛: 

𝑣 = 𝐸[𝑆] = 𝑛𝜇 

This results in: 

𝐶𝑜𝑉(𝑆) =
√𝜎2 + 𝜇2

𝜇√𝑛
=
√𝜎2 + 𝜇2

√𝜇
∗
1

√𝑛𝜇
= 𝑎𝑣−0.5 

Equation 5 

where constant 𝑎 =
√𝜎2+𝜇2

√𝜇
. 

This result can also be shown empirically to hold for a range of commonly used distributions for 𝑁 and 𝑋𝑖, where 
the 𝑋𝑖 are independent and identically distributed (and also independent of 𝑁). 

We have shown that the parameter 𝑏 is expected to take values between 0 and 0.5. A value of 0 implies a portfolio 
with only systemic risk, while 0.5 implies a portfolio with only specific risk. In practice, most insurance portfolios will 
contain a mixture of both specific and systemic risk, and therefore we expect an estimate for 𝑏 that falls towards the 
middle of this range. 
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4. Data 

This section provides a brief overview of the three datasets (Schedule P, APRA and LCP capital benchmarking 
survey) relied upon for the analyses performed. Some further details, in particular a description of any data 
cleaning that we carried out, are provided alongside the descriptions of the relevant analyses. Descriptions of 
class, duration etc are provided as we have attempted to fit models that consider these as factors, and also to 
demonstrate that the data analysed include a broad range that is likely representative of the market as a whole. 

The APRA data has been provided to us under a Creative Commons Attribution 3.0 Australia Licence (CCBY 3.0), 
and we note that neither APRA nor the NAIC has endorsed the results presented in this paper. 

4.1. Schedule P  

The bulk of our analysis was performed on the Schedule P dataset from the National Association of Insurance 
Commissioners (NAIC). This data includes claims information for major personal and commercial lines for all 
property and casualty insurers that write business in the US. This dataset was used because it is large enough to 
provide credible results, and easy to analyse as the data are provided in a consistent format. The data used in this 
analysis include the 10 years over the period 2013-2022 and contains reserving metrics including Paid, Incurred 
and Ultimate claims for each entry of each reserving triangle. 

The dataset has total reserves of around $1tn as at December 2022, spread across 13 reserving classes and 9,403 
paid claims triangles. The chart below shows the reserves and number of triangles in each class. We have also 
grouped the classes into short, medium and long-tailed based on the claims development patterns. Short-tailed 
classes are those that reach substantially 100% developed in less than five years, medium-tailed classes are those 
which develop in between 5 and 8 years, and long-tailed classes take longer than 8 years to develop to ultimate. 

Figure 2 

 

We can see that the dataset is skewed towards medium and long-tailed classes, with a much smaller proportion of 
total reserves in the short-tailed classes. However, the chart shows that the total number of reserving triangles is 
generally similar across short, medium and long-tailed classes. 
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4.2. APRA 

Our secondary dataset to be analysed was a reserving regulatory return from the Australian Prudential Regulation 
Authority (APRA). This dataset is much smaller than the Schedule P dataset, and total reserves are less than AUD 
$50bn. There are 16 classes of business within this data. Figure 3 shows the breakdown of reserves by class, split 
into APRA’s defined groupings of Short tailed, Long tailed and Other business. 

Figure 3 

 

4.3. LCP capital benchmarking survey 

We analysed the results from the 2023 and 2024 LCP capital benchmarking surveys. As part of the 2024 survey, 
we collected capital modelling data from 37 different companies across the London Market. The data from this 
survey was collected during April 2024 and a survey report was published in July 2024. The 2023 survey included 
data from 30 different companies across the London Market, with data collected during the first seven months of 
2023 and was published in August 2023. 

One aspect of the surveys involved analysing data on reserve volumes and CoVs for each survey respondent’s 
classes of business. In order to compare classes of business, survey respondents were asked to assign each of 
their classes of business to one of the LCP survey classes, as set out below: 

Property Casualty Other 

Motor A&H Aviation 

Property – Binder Casualty – EL & PL Cyber 

Property – D&F Casualty – FI & PI Energy 

Property – General Casualty – General Marine  

Inwards reinsurance – Property Inwards reinsurance – Casualty Inwards reinsurance – Specialty 
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Each LCP survey class was categorised as one of Property, Casualty or Other as shown in the table. 

Figure 4 
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5. Bucket analysis 

The bucket method analyses the relationship between volatility of calendar year reserve movements and the 
corresponding reserve sizes for these movements. The approach of bucketing data is important in this analysis, as 
to calculate reserve volatility, we need to apply a volatility measure to a set of data points. Therefore, to analyse 
how volatility changes with different reserve sizes, we need to create subsets of sufficiently similar data points. 

5.1. Methodology 

The bucket analysis involved performing the following steps on the Schedule P data (which is described in 
Section 4.1): 

1. Calculate calendar year reserve movements 

For each company and class of business, we calculated the % movement in reserves over a given calendar year 
(𝑡, 𝑡 + 1). We do not want to include the run-off of reserves or new years of account in the calculation, as this would 
overestimate the reserve volatility measure. To prevent this, we adjust the time 𝑡 + 1 reserves by adding back the 
paid claims over the year and removing the reserves associated with the new year of account. 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠𝑡+1 = 𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑠𝑡+1 + (𝑃𝑎𝑖𝑑𝑡+1 − 𝑃𝑎𝑖𝑑𝑡) 

where 𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑠𝑡+1 denotes the reserves at the end of the calendar year 𝑡, excluding the most recent underwriting 
year. 

We can summarise the whole calculation using the following formulae: 

% 𝑅𝑒𝑠𝑒𝑟𝑣𝑒 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑡 ≔ 𝑟𝑡 =
𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠𝑡+1

𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑠𝑡
− 1 

=
𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑠𝑡+1 + (𝑃𝑎𝑖𝑑𝑡+1 − 𝑃𝑎𝑖𝑑𝑡)

𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑠𝑡
− 1 

=
𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒𝑡+1 − 𝑃𝑎𝑖𝑑𝑡+1 + (𝑃𝑎𝑖𝑑𝑡+1 − 𝑃𝑎𝑖𝑑𝑡)

𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒𝑡 − 𝑃𝑎𝑖𝑑𝑡
− 1 

=
𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒𝑡+1 − 𝑃𝑎𝑖𝑑𝑡
𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒𝑡 − 𝑃𝑎𝑖𝑑𝑡

−
𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒𝑡 − 𝑃𝑎𝑖𝑑𝑡
𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒𝑡 − 𝑃𝑎𝑖𝑑𝑡

 

=
𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒𝑡+1 −𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒𝑡
𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒𝑡 − 𝑃𝑎𝑖𝑑𝑡

 

where:  

• 𝑟𝑡  denotes the percentage reserve movement over calendar year 𝑡; 

• 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠𝑡+1 denotes the adjusted reserves at the end of calendar year 𝑡; 

• 𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑠𝑡 denotes the total reserves at the start of the calendar year 𝑡; 

• 𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒𝑡 denotes the total ultimate claims at the start of calendar year 𝑡; and 

• 𝑃𝑎𝑖𝑑𝑡 denotes the total paid claims at the start of calendar year 𝑡. 

Note that each calendar year reserve movement 𝑟𝑡  has an associated reserve volume 𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑠𝑡, which we will now 
denote as 𝑅𝑡 . 
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Plotting 𝑅𝑡 against 𝑟𝑡  gives the following chart: 

Figure 5 

 

The x axis and y axis limits have been reduced to aid readability of the chart. As a result, note that there are 
reserve movements that do not fit onto the axis limits of the chart. 

In Figure 5, each data point corresponds to one reserve movement 𝑟𝑡 . In total, there are around 60,000 data points 
across all combinations of companies, classes of business and calendar years. 

One notable feature of the chart is how the spread of reserve movements becomes smaller for larger reserve 
volumes.  his is evident from the clear ‘funnelling’ shape of the graph. 

2. Filter out extreme reserve movements 

As part of cleaning the data, we filtered out reserve movements outside the range 𝑟𝑡 ∈ (−100%,500%). 

Note that 𝑟𝑡 < −100% would imply that the reserves were positive at the start of the year and have become 
negative by the end of the year (or vice versa). Given that this type of reserve behaviour is unusual, we removed 
these movements from our analysis. Similarly, very large reserve movements 𝑟𝑡 > 500% are likely either due to 
data artefacts, or material changes in risk profile, and therefore do not fit the profile of adjustments we are 
attempting to model for. In order to avoid these data points skewing the quantitative metrics used to measure 
volatility of reserve movements, we removed them from the dataset. 
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Figure 6 

 

Figure 6 shows the impact of the data cleaning performed on the number of data points for each class of business 
within the Schedule P dataset. We can see that the proportional impact is broadly similar across all classes, ie no 
one class is disproportionately affected by data cleaning. Based on this and the analysis shown in Figure 9, we are 
satisfied that the data cleaning results in a dataset more comparable with the types of reserve movements we are 
attempting to model in practice. 

3. Data bucketing 

Now consider pairs of reserve movements (𝑅𝑡 , 𝑟𝑡), as shown in Figure 5. 

We sorted these pairs in order of increasing reserve size such that 𝑅1 < 𝑅2 < ⋯, etc, to create a sequence 

(𝑅1, 𝑟1),… , (𝑅𝑖 , 𝑟𝑖), …,  

Define the set of all re-indexed pairs of reserve movements as 

Γ = {(𝑅𝑖 , 𝑟𝑖)}𝑖 

We can then group the data into buckets 𝐵1 , 𝐵2 , 𝐵3, … , 𝐵𝑗 , … using a bucket size 𝑛𝐵 such that for all 𝑗: 

(𝑅𝑖 , 𝑟𝑖) ∈ 𝐵𝑗   ↔   (𝑗 − 1) ∗ 𝑛𝐵  < 𝑖 ≤ 𝑗 ∗ 𝑛𝐵 

That is, the first 𝑛𝐵 reserve movements (𝑅1, 𝑟1), (𝑅2, 𝑟2),… , (𝑅𝑛𝐵 , 𝑟𝑛𝐵) go into 𝐵1, the next 𝑛𝐵 reserve movements go 

into 𝐵2, etc. 

For this analysis we selected 𝑛𝐵 = 200. Further details of this selection are shown in section 9.6. 

Within each bucket 𝐵𝑗, we calculated the mean reserve size �̅�𝑗 and the volatility 𝜎𝑗 of the reserve movements within 

the bucket using the following formulae:  

�̅�𝑗 =
1

𝑛𝐵
 ∑ 𝑅𝑖
𝑖 ∈ 𝐵𝑗

 

Equation 6 
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𝜎𝑗
2 =

1

𝑛𝐵 − 1
∑ (𝑟𝑖 − �̅�𝑗)

2

𝑖 ∈ 𝐵𝑗

 

Equation 7 

At this stage, we have now calculated the mean reserve size �̅�𝑗 and volatility 𝜎𝑗 of each bucket. This results in a 

bucketed dataset: 

Σ = {(�̅�𝑗 ,  𝜎𝑗)}𝑗
  

Equation 8 

We now want to understand the relationship between  �̅�𝑗 and 𝜎𝑗 across the buckets. Referring back to Equation 1: 

𝐶𝑜𝑉 = 𝑎𝑣−𝑏 

We can map our variables in the following way to reconcile to this equation: 

𝐶𝑜𝑉 = 𝜎𝑗  and  𝑣 = �̅�𝑗 

We can then plot these bucketed data points to get the following exhibit: 

 Figure 7 

 

To analyse the relationship between volume and volatility further, we take the logarithms of Equation 1, as follows: 

𝐶𝑜𝑉 = 𝑎𝑣−𝑏 

⇒ log 𝐶𝑜𝑉 = log 𝑎 − 𝑏 ∗ log 𝑣 
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Plotting log 𝐶𝑜𝑉 against log 𝑣 gives the following graph: 

Figure 8 

 

From Figure 8, we can see a linear relationship between log 𝑣 and log 𝐶𝑜𝑉. We used linear regression to fit a model 
to the data points shown above. 

The fitted line of the model is shown in chart, and re-working to our original formula: 

log 𝐶𝑜𝑉 = 2 − 0.22 ∗ log 𝑣 

⇒ 𝐶𝑜𝑉 = 𝑎𝑣−0.22 

and therefore we obtain 

�̂� = 0.22 

To assess the goodness of fit for each model that we have fitted, we have used the 𝑅2 metric, defined in Appendix 
1: R-squared. The 𝑅2 obtained for the model is 91%, implying that the proportion of unexplained variance in the 
model is very low. 
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Figure 9 below, shows how Figure 8 would look without the data cleaning step in the bucket analysis. Note that the 
two sets of points are separate, because the data have been re-bucketed before and after the exclusions were 
applied, which also impacts the estimates of volatility. 

 Figure 9 

 

Given that the logarithm of a negative value is undefined, bucketed data points with a negative reserve volume 
(there are only two such points) have been excluded from the above chart. From the chart, we can see that for 
larger reserve volumes, there is only a small difference in vertical position of the bucketed data points before and 
after the data cleaning. However, for smaller reserve volumes, there is a much bigger difference. This shows that 
the data cleaning has a larger impact on buckets corresponding to smaller reserve volumes. For these buckets, 
very large reserve movements, which are likely data artefacts rather than genuine reserve deteriorations, skew the 
volatility upwards, leading to abnormally high CoVs. We therefore believe that it is appropriate to remove these 
large reserve movements given their significant influence on the vertical positioning of the bucketed data points. 

5.2. Systemic volatility model 

The above model 𝐶𝑜𝑉 = 𝑎𝑣−𝑏 implies that 

lim
𝑣→∞

𝐶𝑜𝑉 = lim
𝑣→∞

𝑎𝑣−𝑏  = 0 

This means that as volume 𝑣 grows large, the volatility of reserves tends towards 0. 

Intuitively, we expect that as volume 𝑣 grows large, the volatility of reserves tends towards some minimum value 
𝛾 > 0, ie some proportion of the reserve volatility is undiversifiable. To allow for this feature, we considered another 
model: 

𝐶𝑜𝑉 = 𝑎𝑣−𝑏 + 𝛾 

Equation 9 
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With this new equation, we have 

lim
𝑣→∞

𝐶𝑜𝑉 = lim
𝑣→∞

𝑎𝑣−𝑏 + 𝛾 = 𝛾 

And we also have 

𝐶𝑜𝑉 > 𝛾 

for 𝑣 > 0. 

Equation 10 

Finding the minimum volatility 𝜸 

We cannot fit a linear model to Equation 9 because the method of taking the logarithm of both sides results in: 

log 𝐶𝑜𝑉 = log(𝑎𝑣−𝑏 + 𝛾) 

which no longer simplifies into a linear relationship between log 𝐶𝑜𝑉 and log 𝑣. We therefore looked for an 
alternative approach to fitting this model. We can recover the linear relationship by subtracting the undiversifiable 
volatility which we call 𝛾0 and continue with our previous approach. 

Given a value 𝛾 = 𝛾0, we define a new variable: 

𝐶𝑜�̂� = 𝐶𝑜𝑉 − 𝛾0 

Then we have: 

𝐶𝑜�̂� = 𝑎𝑣−𝑏 

which has a similar structure to our original Equation 1, to which we can therefore fit a linear model, and 
subsequently calculate a model fit 𝑅2. 

Therefore, given a value 𝛾 = 𝛾0, we can fit a linear model 𝑀𝑜𝑑𝑒𝑙0 and corresponding model fit 𝑅0
2. This allows us to 

map a value 𝛾0 to model fit 𝑅0
2. 

We can formalise this by defining a function 𝑓: 

𝑓(𝛾0) = 𝑅0
2 

We then set up an optimisation problem to maximise the function 𝑓 over different values of 𝛾.  

Doing so resulted in a maximum when 𝛾 = 0, implying that the base model, which allows for no undiversifiable 
volatility 𝛾, produces the best model fit. 

As an alternative approach, we can set up an optimisation problem where we define: 

𝑔: 𝑥 → 𝑎𝑥−𝑏 + 𝛾 

And we try to minimise the objective function: 

𝑀𝑆𝐸 =∑(𝑔(�̅�𝑗) − 𝜎𝑗)
2

𝑗

 

where �̅�𝑗 is the mean reserve size and 𝜎𝑗 is the volatility within bucket 𝐵𝑗.  

We used a gradient descent algorithm to solve this optimisation problem, resulting in parameters 

�̂� = 7.63  �̂� = 0.22  𝛾 = 0.00003 
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Note that the  �̂� and  �̂� parameters are the same as we obtained for the original model, and the fitted 𝛾 is very close 
to zero. 

Commentary 

Note that if Equation 9 held and there was undiversifiable volatility 𝛾, then we would have log  𝛾 as a strict lower 
bound to the graph. In other words, we would expect the graph to start levelling off horizontally for large enough 
values of 𝑣. Looking at the chart below, we can support the results from the above analysis implying  𝛾 = 0 . We 
see that there is no evidence of the bucketed data points levelling off horizontally for large values of 𝑣, and 
therefore we have graphical evidence that there is no undiversifiable volatility in Schedule P. In addition, the chart 
shows the shape of the models we would expect to see if there was undiversifiable volatility for parameters 
𝛾 = 0.05, 0.1 and 0.15 respectively. Note that for each undiversifiable volatility model shown below, we have 

refitted �̂� and �̂� to obtain the best model fit for that particular value of 𝛾. 

Figure 10 

 

Note that the bucket with the largest reserve volumes (furthermost right data point on the graph) has a mean 
reserve size of $8.7bn, so one limitation of this analysis is that we are only analysing reserves up to this magnitude. 
It could be that this levelling off happens at larger reserve sizes, and we are just not able to see the levelling off by 
looking at this particular data set. However, in practice, there will be few insurance portfolios with homogenous 
class of business level reserves in excess of this level, so this limitation is not material. 

5.3. Other factors: Class and duration 

We also investigated the influence of class of business and tail length of the class on the relationship between 
volume and volatility. We expected different classes to have different balances of systemic (undiversifiable) and 
specific (diversifiable) risk and so different relationships with, or sensitivity of volume to, volatility. 

We fitted models to the Schedule P data allowing for specific parameters for class of business and tail length. This 
was to answer the following questions: 

• How class dependent is the relationship between volume and volatility? 

• Is the volume volatility relationship driven by the length of tail of a given class of business? 
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• Does allowing for class or tail specific parameters materially improve the fit of the model? 

Methodology 

The following additional models were fitted: 

Models 

Class model (regular) 𝐶𝑜𝑉 = 𝑎𝑘𝑣
−𝑏 

Class model (advanced) 𝐶𝑜𝑉 = 𝑎𝑘𝑣
−𝑏𝑘 

Duration model (regular) 𝐶𝑜𝑉 = 𝑎𝑙𝑣
−𝑏 

Duration model (advanced) 𝐶𝑜𝑉 = 𝑎𝑙𝑣
−𝑏𝑙 

 
for 𝑘 ∈ class of business, and 𝑙 ∈ duration group. 

The Class model (regular) fits different 𝑎 parameters for each class of business and fits a universal 𝑏 parameter 
that is class independent. The Class model (advanced) fits different 𝑎 and 𝑏 parameters for each class of business. 
The classes are as specified in the Schedule P dataset.  

Similarly, the Duration model (regular) fits different 𝑎 parameters for each duration type and fits a universal 𝑏 
parameter that is independent of duration. The Duration model (advanced) fits different 𝑎 and 𝑏 parameters for 
each duration type. The classes are as specified in the Schedule P dataset. The duration types – Short, Medium 
and Long – were assigned to each class as described in section 4.1 and as shown in Figure 2. 

Bucketing 

This process is described for the class models. A similar process was applied using 𝑙 instead of 𝑘, which allows us 
to obtain duration-specific parameters for each duration type 𝑙. 

We partitioned the data into the respective classes of business. We then performed bucketing on each class of 
business separately in the same way as set out in step 3 in section 5.1. We used the same bucket size 
𝑛𝐵 = 200 as the original bucketing method. Following the re-bucketing, each bucket had the same number of 
datapoints (𝑅𝑡 , 𝑟𝑡) as previously, but now contained only one class of business. 

However, there is a trade-off between homogeneity in class vs reserve size with our two methods. 

Bucketing at a total level means that buckets are class heterogeneous, that is, each bucket can contain reserve 
movements in relation to multiple different classes. As mentioned above, each class of business contains a 
different balance of systemic and diversifiable risk, which then impacts the size of reserve movements for a given 
reserve size. 

Bucketing at a class level means that buckets are now class homogeneous, but there is less homogeneity in the 
reserve sizes within each bucket. By performing bucketing on only one class of business but using the same 
bucket size 𝑛𝐵, there will be a wider range of reserve sizes within each bucket.  

Figure 11, below, is a plot showing the bucket widths for each bucket for both the total model and the class model. 
We can see that, as evidenced above, the buckets are much wider for the class model. Note that the bucket widths 
for the class model appear to be more volatile. This happens because we are performing the bucketing separately 
for each class and then combining the buckets into an overall dataset, so the bucket widths displayed correspond 
to different classes. 
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Figure 11 

 

For each class 𝑘 and bucket 𝐵𝑘𝑗, we calculated the mean reserve size  �̅�𝑘𝑗 and volatility 𝜎𝑘𝑗 of the reserve 

movements as before with Equation 6 and Equation 7. This results in a dataset of bucketed points for each class: 

Σk = {(�̅�𝑘𝑗 , 𝜎𝑘𝑗)}𝑗
 

We can then combine the class specific bucketed datasets to obtain an overall dataset of pairs of mean reserve 
size and volatility: 

Σ′ =⋃Σ𝑘
𝑘

 

This new dataset has the same number of bucketed datapoints as the original bucketed dataset but with the 
addition of class labels, ie 

|Σ′| = |Σ| 

Or: 

𝑛Σ′ = 𝑛Σ 

where Σ is defined in Equation 8. 

Mapping 𝜎 to 𝐶𝑜𝑉 and 𝑅 to 𝑣 as before, we look at variations of our original Equation 1: 

𝐶𝑜𝑉 = 𝑎𝑘𝑣
−𝑏  and  𝐶𝑜𝑉 = 𝑎𝑘𝑣

−𝑏𝑘 

We again calculated the logarithms of 𝐶𝑜𝑉 and 𝑣 and fit linear models of the form: 

log 𝐶𝑜𝑉 = log 𝑎𝑘 − 𝑏 ∗ log 𝑣  and  log 𝐶𝑜𝑉 = log 𝑎𝑘 − 𝑏𝑘 ∗ log 𝑣 

This format allows us to obtain class-specific parameters for each class 𝑘. 
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Results 

The table below are the results of the fitted parameters for the class and tail models, with the base model results 
repeated for reference: 

Model �̂� 𝑹𝟐 # parameters 

Base model 𝐶𝑜𝑉 = 𝑎𝑣−𝑏 0.22 91% 2 

Class model (regular) 𝐶𝑜𝑉 = 𝑎𝑘𝑣
−𝑏 0.22 90% 12 

Class model (advanced) 𝐶𝑜𝑉 = 𝑎𝑘𝑣
−𝑏𝑘 0.12 - 0.28 60% 26 

Duration model (regular) 𝐶𝑜𝑉 = 𝑎𝑙𝑣
−𝑏 0.22 91% 4 

Duration model (advanced) 𝐶𝑜𝑉 = 𝑎𝑙𝑣
−𝑏𝑙 0.18 - 0.23 90% 6 

 
Observations 

Class model (regular): 𝑪𝒐𝑽 = 𝒂𝒌𝒗
−𝒃 

This model fits different 𝑎 parameters for each class of business and fits a universal 𝑏 parameter that is class 
independent. We obtained the same value 𝑏 = 0.22 as our base analysis, with a similar 𝑅2 value of 90%. 

One interesting point of note is that the 𝑅2 value for this model is slightly lower than the base model, despite 
introducing 10 new parameters. The bucketed datasets, Σ and Σ′, underlying the two models are different, as the 
bucketing is on a total level and class of business level for the two models respectively. The lower 𝑅2 value here is 
an example of the trade-off between homogeneity of class and reserve size as discussed earlier in this section. 

Class model (advanced): 𝑪𝒐𝑽 = 𝒂𝒌𝒗
−𝒃𝒌 

This model fits different 𝑎 and 𝑏 parameters for each class of business. Note that we now have a range 
of 𝑏 parameters across different classes of business, with 0.12 and 0.28 representing the two end points of the 
range. The 𝑅2 value for this model is lower at 60%. This is mainly due to the higher level of parameter uncertainty 
around the estimation of the class specific 𝑏 parameters. 

Using class as a predictor of both 𝑎 and 𝑏  parameters is the equivalent of independently fitting a line of best fit 
through the bucketed data for each class of business separately, ie fitting a model to each dataset Σ𝑘. Bucketing 
the data points divides the total number of datapoints to fit a model through by bucket size 𝑛𝐵 = 200, and therefore 
some classes do not have enough data points to produce credible estimates for the intercept and slope of the line 
of best fit through the bucketed points. 

Duration models (regular and advanced): 𝑪𝒐𝑽 = 𝒂𝒍𝒗
−𝒃 and 𝑪𝒐𝑽 = 𝒂𝒍𝒗

−𝒃𝒍 

These models work in a similar way to the class models, but for duration type rather than class. The regular model 
again produces the same value 𝑏 = 0.22 as our base analysis, with a similar 𝑅2 value of 91%. The advanced model 
produces a range of 𝑏 parameters across different classes of business, with 0.18 and 0.23 representing the two 
end points of the range. As indicated by Figure 12, below, short tailed classes tend to produce lower values of 𝑏, 
but long tailed classes do not necessarily produce the highest values of 𝑏. Our conclusion is that class is more of a 
driver of 𝑏 than duration, although there is a natural relationship between class and duration that results in an 
indirect relationship between duration and 𝑏. 
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Figure 12 shows the values of 𝑏 produced by the Class model (advanced) for each class of business, with a 

vertical line showing the base model result of �̂� = 0.22.  

Figure 12 

 

What causes the variation between 𝒃  values across classes of business? 

As discussed previously, the value of 𝑏 in the relationship 𝐶𝑜𝑉 = 𝑎𝑣−𝑏 can be thought of as a measure of the 
degree of sensitivity of volatility to changes in volume. In order words, it measures how much the business 
diversifies when volume increases. We can therefore think of class specific 𝑏 values in terms of the level of 
systemic and diversifiable risk. Note that a larger value of 𝑏 implies more sensitivity of volatility to changes in 
volume, and therefore a higher level of diversifiable risk. 

The classes with notably lower values of 𝑏 are the classes at the top of the chart in Figure 12. This implies that 
these classes are less diversifiable. For example, Auto physical damage relates to motor vehicle damage business, 
for which the claims profile is typically a large number of very small claims. The main causes of reserve movements 
for this class are likely to be systemic drivers such as inflation and less likely to be individual claims movements. 
Therefore, increasing the reserve volume of this class, (ie adding more small individual claims) is unlikely to greatly 
increase the level of diversification, ie volatility is less sensitive to changes in volume, which is consistent with the 
interpretation of a low 𝑏 value. 

Conversely,  orkers’ comp and Private auto liability have the largest values for 𝑏. This implies that these classes 
are more diversifiable. This may be because reserve movements for these classes are relatively more likely to be 
due to individual claims movements and relatively less likely to be systemic drivers. However, more work is needed 
to fully understand the impact of class (and duration) on the results we have obtained. 
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6. Bootstrapping analysis 

The second part of our analysis employed a bootstrap method to assess volatility within claims triangles. This is a 
widely used method for calculating volatility in claims triangles.  

It is a very different technique to measure volatility than the bucket analysis method, as it does not rely on 
subjective estimates of ultimate claims. As we can use the same dataset, we can compare the results of the 
bootstrap and bucket analyses and determine whether both methods yield consistent results despite the different 
techniques. This will help validate our findings and ensure conclusions are not biased by the method used. 

6.1. Data 

We filtered the Schedule P data on entities with greater than $1m reserves. This resulted in 5,666 triangles to 
bootstrap. This was done because some of the triangles in Schedule P are sparse, so filtering on larger companies 
provides better stability in the results. 

6.2. Methodology 

Bootstrapping is a resampling technique which we use to estimate the distribution of reserves from which a CoV 
can be derived. We used an Over-dispersed Poisson, or ODP bootstrap framework. See Appendix 2: 
Over-dispersed Poisson distribution framework for more detail on this distribution. This process can be summarised 
in 5 steps: 

1. Fit a generalised linear model (GLM) with a log-link function and ODP error distribution to the incremental 
claims data. This is identical to fitting a chain ladder to the triangle. 

2. Calculate the residuals from the fitted model. 

3. Resample (with replacement) the residuals to create a pseudo triangle. 

4. Refit the GLM using the pseudo-dataset to produce a new estimate of the reserves. 

5. Repeat steps 3 and 4 𝑛 times to derive a forecast output for each pseudo-dataset. This gives a distribution 
of reserve estimates. 

We selected 𝑛 = 10,000. See Appendix 3: Bootstrapping methodology for more information on this process. 

We therefore had, for every cohort in every reserving triangle, 10,000 reserve estimates. We calculated a CoV and 
corresponding mean reserve size for each. 

We took logs of the CoVs and reserve estimates from the bootstrap output and fit a linear model. We call this the 
bootstrap base model. This model is of the structure of our original formula given in Equation 1: 

𝐶𝑜𝑉 = 𝑎𝑣−𝑏 

We also fit other models using features in the data as predictors. These include the Class model, Cohort model, 
and Class and cohort model. These are shown in the table below. 

Models 

Bootstrap base model 𝐶𝑜𝑉 = 𝑎𝑣−𝑏 

Class model 𝐶𝑜𝑉 = 𝑎𝑘𝑣
−𝑏 

Cohort model 𝐶𝑜𝑉 = 𝑎𝑙𝑣
−𝑏 

Class and cohort model 𝐶𝑜𝑉 = 𝑎𝑘𝑙𝑣
−𝑏 

 
for 𝑘 ∈ class of business and 𝑙 ∈ cohort 
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Each of these models have a universal 𝑏 parameter, while the 𝑎 parameters vary by class and/or cohort. The Class 
model is as before, with a different 𝑎𝑘 for each class. The cohort model arises because we have a CoV and reserve 
estimate for each cohort in the triangle. We can therefore fit a model allowing for cohort to be a predictor, and so 
have a different 𝑎𝑙 for each cohort in the triangle. 

6.3. Benefits, uncertainty and limitations 

The main benefit to this part of the work is that we are able to use a very different technique to measure the 
volatility, but using the same data as used for the bucket analysis. It is a purely data driven method that does not 
rely on ultimate claims estimates, which are by nature subjective and prone to biases. 

However, as for all bootstrapping, there are a number of well-known limitations, including the fact that it is 
computationally intensive. We used LCP Insur ight’s2 reserve risk tool to handle the large quantities of data and 
calculations required. 

Bootstrapping is not guaranteed to converge to the ‘true’ value, and we therefore filtered on entities with larger 
reserve sizes to provide greater stability in the results. Many of the other standard limitations of bootstrapping are 
partially mitigated by the fact that we are not using the estimated CoVs directly, but mapping them against volume 
to establish a relationship.  

There are some additional limitations for this exercise. Because this is an automated approach, we did not apply 
any of the traditional actuarial judgements that would be applied as part of a standard bootstrapping exercise. This 
means that – for example – we did not smooth the data, exclude outlier link ratios, or apply any tail factors. Some 
of the triangles include unusual development patterns. This may affect the analysis, since one known limitation of 
the bootstrap is that a single unusual year of development (whether genuine or due to data artefacts) can result in 
a very high CoV. 

 
2 https://insursight.lcp.com/ 

https://insursight.lcp.com/
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6.4. Results 

Figure 13 

 

Figure 13 shows the bootstrap base model, ie the linear model fit between log CoVs and log reserve volumes. 
While there is a concentration of the data around the trendline, the sparser outliers can be more easily seen.  

The bootstrap base model estimated a �̂� parameter of 0.29 with an R-squared value of 33%. The relatively low 
R-squared is caused by the variance in the data not being explained by the model. This is due to the outliers seen 
in the chart. These outliers are likely caused by the inclusion of triangles with unusual development patterns, as 
discussed previously. Therefore, the relatively poor fit is not a material concern, in particular considering the low 
standard error of the parameter estimate. 

The results of the other models, including the estimated values for �̂�, the associated R-squared value, and the 
calculated standard error associated with the estimate, are shown in the table below. 

Model �̂� 𝑺𝑬(�̂�) 𝑹𝟐 # parameters 

Bootstrap base model 𝐶𝑜𝑉 = 𝑎𝑣−𝑏 0.29 0.002 33% 2 

Class model 𝐶𝑜𝑉 = 𝑎𝑖𝑣
−𝑏 0.28 0.002 40% 12 

Cohort model 𝐶𝑜𝑉 = 𝑎𝑗𝑣
−𝑏 0.26 0.003 35% 3 

Class and cohort model 𝐶𝑜𝑉 = 𝑎𝑖𝑗𝑣
−𝑏 0.25 0.002 42% 13 

 

It is interesting to note that the fit generally improves by the introduction of parameters in the model (ie the 𝑅2 value 

increases, albeit slightly), and the �̂� estimate also gets slightly closer to the 𝑏 = 0.22 obtained in the bucket 
analysis. 

𝐶𝑜𝑉 = 𝑎𝑣−𝑏 
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6.5. Bucketing the bootstrap 

In order to mitigate the relatively poor fit observed in the bootstrap base model, we then combined the bucketing 
technique with the bootstrap approach. We grouped the bootstrapping output into buckets by reserve size. We 
again used buckets of size 𝑛𝐵 = 200, consistent with the earlier analysis. We then took the median log reserve and 
median log 𝐶𝑜𝑉 for each bucket. We chose to use the median because the mean was skewed by the extreme 
outliers we have seen, as discussed in section 5.1. 

Fitting this model obtained �̂� = 0.21, which is very close to the base model estimate of 0.22. Bucketing also 
improved the fit over the pure bootstrap model, achieving an R-squared value of 95%. This is due to bucketing 
reducing the noise in the dataset. 

Figure 14 below shows the fitted line of the bucketed bootstrap data: 

Figure 14 

 

The datapoints are much tighter around the trend line, visually evidencing the improved fit. Note that in the chart, 
we can see some indication of a ‘levelling-off’ at higher reserve sizes. This could be evidence of the systemic risk 
that we discussed earlier in section 5.2. 

6.6. APRA 

We also looked at APRA data, which is described in Section 4.2. The data is sparser than Schedule P; however, 
bootstrapping the triangles and fitting a model obtains R-squared of 66%, which is a better fit than for Schedule P. 

The �̂� parameter fitted is 0.31, higher than Schedule P models, suggesting there is a slightly greater sensitivity to 
volume on volatility for this data.  

-200%

-180%

-160%

-140%

-120%

-100%

-80%

-60%

-40%

-20%

0%

12 14 16 18 20 22 24

L
o

g
 C

o
V

Log reserve size $



 

Page 29 of 54 
 
 

The bootstrap base model for Schedule P resulted in a �̂� parameter of 0.29, which is broadly comparable to the 
result obtained for APRA. As these two datasets represent different regions, this provides comfort that the results 
are replicable and that the reliance on US data for the main analysis is not a material limitation. However, we note 
that the APRA dataset is fairly sparse, and therefore the results do not have high credibility. 

The bucket analysis was not performed for the APRA dataset, as the data is too sparse to produce buckets of 
meaningful size, and the resulting estimates of volatility would therefore not be credible. 

Figure 15 
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7. LCP capital benchmarking survey 

Results from LCP capital benchmarking surveys (described in Section 4.3) provides an additional way of analysing 
the relationship between volume and volatility. The following data items were collected from participants for the 
survey analysis: 

• Gross reserve volume by class of business 

• Gross ultimate reserve risk CoV for the class as a whole 

We can map these data items to volume and volatility respectively and perform a similar analysis as before. No 
bucketing or bootstrapping is required, as the required fields of volume and volatility are directly available without 
performing any additional calculations. 

The following example slide is taken from the 2024 LCP capital benchmarking survey report: 

Figure 16 

 

Figure 16 is a plot of the gross CoV for the class as a whole against the total gross reserves for each survey 
respondent’s classes of business within the ‘Property’ category. Note that there is a no obvious power law 
relationship that we observed with the bucketing and bootstrapping analyses for Schedule P and APRA data. 

We fit a linear model of the form 𝐶𝑜𝑉 = 𝑎𝑣−𝑏 to the LCP capital benchmarking survey data for both 2023 and 2024 
survey results. 

Fitting a model to the 2024 benchmarking data resulted in a �̂� parameter of 0.11. This is lower than the 

�̂� parameters estimated in the bootstrap and bucket analysis. The lower �̂� parameter suggests a lower sensitivity of 
parameterised CoVs to changes in reserve volume. It is perhaps evidence of capital modelling practitioners not 
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taking sufficient account of volume when selecting CoVs. A similar result was obtained when fitting a model to the 

2023 benchmarking data, with a �̂� parameter of 0.13. 

 Figure 17 

 

This is further evidenced by Figure 17. The benchmark CoVs for smaller books sit below the bootstrap base model 
line, implying the CoVs for smaller books are low compared with those suggested by analysis of historical data. 
Conversely, the CoVs for very large books are slightly high compared with those suggested by analysis of historical 
data, and are mostly sitting above the bootstrap base model line. The ‘break-even point’ where the two lines 
intercept suggest the average capital actuary’s mental reference point for volume is about $50m. This corresponds 
to a CoV of about 25%. 
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8. Results  

8.1. Summary of results 

The below table sets out the results from each of the analyses performed. 

Method Dataset Model name �̂� 𝑹𝟐 # parameters Section 

Bucket 
analysis 

Schedule P Base model 0.22 91% 2 5.1 

Schedule P Category model (regular) 0.22 91% 4 

5.3 
Schedule P Category model (advanced) 0.18 - 0.23 90% 6 

Schedule P Class model (regular) 0.22 90% 12 

Schedule P Class model (advanced) 0.12 - 0.28 60% 22 

Bootstrap 

Schedule P Bootstrap base model 0.29 33% 2 

6.4 
Schedule P Bootstrap class model 0.28 40% 12 

Schedule P Bootstrap cohort model 0.26 35% 3 

Schedule P Bootstrap class/cohort model 0.25 42% 13 

Schedule P Bootstrap bucket model 0.21 95% 2 6.5 

APRA Bootstrap base model 0.31 66% 2 6.6 

Survey data 

2023 LCP 
Benchmarking 
survey 

Base model 0.13 12% 2 

7 
2024 LCP 
Benchmarking 
survey 

Base model 0.11 12% 2 

8.2. Conclusions 

Our key conclusion is that the power law model described in section 3.1 is a good fit for the relationship between 
volume and volatility of insurance risks, based on the analysis performed. 

We recommend use of Equation 4: 𝐶𝑜𝑉𝑎𝑓𝑡𝑒𝑟 = 𝐶𝑜𝑉𝑏𝑒𝑓𝑜𝑟𝑒 ∗ (
𝑣𝑏𝑒𝑓𝑜𝑟𝑒

𝑣𝑎𝑓𝑡𝑒𝑟
)
𝑏

  

 for adjusting volatility for changes in volume, with a 𝑏 parameter of 0.22. 

The reason for the selection of 0.22 is that, based on the analyses we have performed, we believe that the 
Schedule P dataset is sufficiently large and varied to provide credible results for general use in capital modelling, 
and that the bucket analysis is generally more robust than the bootstrap approach, mainly due to fact that it relies 
on actual reserve movements observed historically, rather than automated methods that do not take into account 
the specifics of each insurance portfolio considered. However, we believe consideration of the bootstrap approach 
is still useful in terms of understanding the relationship between volume and volatility, and in particular we are 
encouraged by the similarity between the Schedule P Base model and the Schedule P bootstrap bucket model. 

In terms of the more complex models with more parameters, our view is that class is the main driver of differences, 
and that this is explained by the balance of specific and systemic risk within each portfolio. Practitioners should 
consider varying the value of 𝑏 when carrying out modelling work, in particular if they are considering business that 
is materially different from the main classes within Schedule P, eg large volumes of specialty or reinsurance 
business. More work is needed to fully understand the impact of class on the results we have obtained. 
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The APRA dataset provides a useful sense check on the Schedule P results, specifically that the bootstrap base 
model provides similar results for Schedule P and APRA. However, the dataset is too sparse to draw meaningful 
conclusions on its own. 

The benchmarking results indicate that capital modelling practitioners may not be taking sufficient account of 
volume when selecting CoVs, and may be overly anchored to volumes around the tens of millions in USD terms 
(equivalent to a CoV of around 25%). Volumes larger than this may therefore have CoVs that are overstated, and 
volumes smaller than this may have CoVs that are understated. Practitioners should be aware of this potential 
source of bias when parameterising, and take steps to counter it. 

8.3. Applications 

The below table shows some worked examples that indicate the percentage impacts of applying the above formula 
with the suggested 𝑏 parameter of 0.22. The table shows figures for a reference starting volume of 100, and 
reference CoV of 30%, but the percentage impacts in the final column will be the same regardless of what volume 
and CoV are used. 

Reference volume 

(vbefore) 
Target volume 

(vafter) 
Reference CoV 

(CoVbefore) 
Target CoV 

(CoVafter) 
% movement  

in CoV 

100 10 30% 30% ∗ (10 100⁄ )
−0.22

= 49.8% + 65.9% 

100 25 30% 30% ∗ (25 100⁄ )
−0.22

= 40.7% + 35.7% 

100 50 30% 30% ∗ (50 100⁄ )
−0.22

= 34.9% + 16.5% 

100 75 30% 30% ∗ (75 100⁄ )
−0.22

= 32.0% + 6.5% 

100 125 30% 30% ∗ (125 100⁄ )
−0.22

= 28.6% - 4.8% 

100 250 30% 30% ∗ (250 100⁄ )
−0.22

= 24.5% -18.3% 

100 500 30% 30% ∗ (500 100⁄ )
−0.22

= 21.1% - 29.8% 

100 1,000 30% 30% ∗ (1,000 100⁄ )
−0.22

= 18.1% - 39.7% 

 
Of particular note is that, even for changes of an order of magnitude, the percentage movements in CoV are not 
particularly large – approximately a two-thirds increase for reducing by an order of magnitude (from 100 to 10, in 
this case) and approximately a 40% decrease for increasing by an order of magnitude (from 100 to 1,000, in this 
case). This adjustment is therefore not expected to be highly material to capital model outputs. However, we do 
note that, since the adjustment may need to be applied to multiple classes of business, it could form a systemic 
assumption within a capital modelling framework. In this case, the assumption should be tested appropriately as 
part of routine model validation. 

Informally, we suggest that the sorts of movements shown in the table above should form the limits of the 
application of this approach. If volumes for a particular class of business have moved by more than an order of 
magnitude, it is likely that the change constitutes a change in risk profile, and therefore this method would not be 
appropriate. 

In line with the examples noted in section 2.1, we expect that typical uses for this approach would focus on the 
following areas: 

• Adjusting reserve risk coefficients of variation (CoVs) that were parameterised based on experience at the 
previous year end for future projected reserve volumes. 

• Adjusting underwriting risk parameters that were calculated based on historical data, with volumes varying over 
the timeframe considered, but where planned future premiums are outside the range observed historically due 
to changes in business plans. 
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• Estimating appropriate volatility parameters in a systematic way for sensitivity testing that considers changes in 
volumes. 

• Adjusting volatility parameters that have been rolled forward unadjusted for volume changes, if a full 
re-parameterisation is deemed unnecessary (eg if the risk profile is unchanged) or cannot be performed due to 
time constraints. 

• Estimating volatility parameters for later years of a multi-year capital projection, or for scenarios involving 
changes to planned business volumes. 

• Parameterising volatility distributions for new (or small) classes of business with reference to an existing (or 
larger) class. 

This list is not intended to be exhaustive. The authors would welcome correspondence with readers who have 
found other uses, or who wish to discuss the methodology or implementation into a capital modelling framework. 
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9. Bucket analysis – uncertainties and limitations 

In this section, we will focus on our reasoning for employing a bucketing technique, and the uncertainty arising from 
the bucketing and model fitting. There are two main sources of uncertainty arising from the bucket analysis: 

• Parameter uncertainty 

• Bucket uncertainty 

9.1. Why do we bucket? 

It is important to note that reserve volume is not the only predictor of reserve volatility. In practice, there will be 
many other factors at play, eg: 

• Class of business 

• Age of reserves 

• Reserving methodology used 

The process of bucketing data can be interpreted as smoothing out noise from the other driving factors of reserve 
volatility. 

9.2. Parameter uncertainty 

Parameter uncertainty is the uncertainty that arises in estimating �̂� using the linear model. It arises because the 
value 𝑏 = 0.22 obtained is a statistical estimate based on the bucketed data. We can directly measure this source 
of uncertainty as follows: 

The following formula is used to calculate the residual sum of squares: 

𝑆𝑆𝑟𝑒𝑠 = ∑(𝜎𝑗 − 𝜎�̂�)
2

𝑗

 

where 𝜎𝑗 is the 𝐶𝑜𝑉, the response variable and  𝜎�̂� is the predicted 𝐶𝑜𝑉 for each bucket 𝐵𝑗.  

We can then estimate the variance of the residuals �̂�2 using the following formula: 

�̂�2 =
𝑆𝑆𝑟𝑒𝑠
𝑛Σ − 2

 

where 𝑛Σ is the number of data points, in this case, the number of buckets 𝐵𝑗. 

Then we have: 

𝑆𝐸(�̂�) = √
�̂�2

∑ (𝑥𝑗 − �̅�)
2

𝑗

=
1

√𝑛Σ − 2
√
∑ (𝑦𝑗 − �̅�)

2

𝑗

∑ (𝑥𝑗 − �̅�)
2

𝑗

 

Equation 11 

where 𝑥𝑗 is the predictor variable, which in this case is log 𝑣𝑗, ie the logarithm of the mean reserve volume for each 

bucket 𝐵𝑗. 

Calculating this for the base model, we obtain 𝑆𝐸(�̂�) = 0.004. 

Given that 𝑆𝐸(�̂�) = 0.004 ≪ 0.22 = �̂�, we are comfortable that this source of error has a low materiality on the 

results of the analysis. 

9.3. Bucket uncertainty 
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While parameter uncertainty is widely known and well understood, the bucket analysis has a second, more 
nuanced source of uncertainty. In the process of fitting a linear model to the bucketed data points, we are implicitly 
assuming that the positions of the bucketed data points are correct.  

Recall within each bucket 𝐵𝑗, we calculated the mean reserve size �̅�𝑗 and the volatility 𝜎𝑗  of the reserve movements 

within the bucket using the following formulae: 

�̅�𝑗 =
1

𝑛𝐵
∑𝑅𝑖
𝐵𝑗

 

�̅�𝑗 =
1

𝑛𝐵
∑𝑟𝑖
𝐵𝑗

 

𝜎𝑗
2 =

1

𝑛𝐵 − 1
∑(𝑟𝑖 − �̅�𝑗)

2

𝐵𝑗

 

Where 𝑟𝑖 is the reserve movement for datapoint (𝑅𝑖 , 𝑟𝑖) within bucket 𝐵𝑗. 

We plot the volatility 𝜎𝑗 of the reserve movements against the mean reserve size �̅�𝑗, and fit a line equivalent to: 

𝜎 = 𝑎�̅�−𝑏 

Which is equivalent to Equation 1: 

𝐶𝑜𝑉 = 𝑎𝑣−𝑏 

where 𝜎 is the CoV and �̅� is the volume 𝑣. 

We can therefore consider mean reserve size �̅�𝑗 to be a ‘horizontal’ coordinate and volatility 𝜎𝑗 a ‘vertical’ 

coordinate. 

Parameter uncertainty measures the statistical uncertainty associated with the estimated value �̂�. However, this 
does not allow for the fact that we have made statistical estimates in the calculation of the horizontal and vertical 

coordinates of each bucketed data point (�̅�𝑗 , 𝜎𝑗). 

We have therefore defined bucket uncertainty as the uncertainty that arises in quantifying the reserve size �̅�𝑗 and 

volatility 𝜎𝑗  for each bucket 𝐵𝑗. We can informally think of this as the uncertainty in the coordinates of each bucketed 

data point. 

9.4. Vertical bucket uncertainty 

To measure the uncertainty in the vertical coordinate of each bucketed data point, we can measure the standard 
error of the volatility estimate. 

Note that we can calculate the standard error of the variance estimate 𝜎𝑗 for each bucket 𝐵𝑗 as: 

𝑆𝐸(𝜎𝑗) =
𝜎𝑗  

√2𝑛𝐵
∗ √1 −

1

𝑛𝐵
 

It therefore follows that, if we measure the error term 𝑆𝐸(𝜎𝑗) as a proportion of the volatility 𝜎𝑗, we get: 

𝑆𝐸(𝜎𝑗)

𝜎𝑗
=

1

√2𝑛𝐵
∗ √1 −

1

𝑛𝐵
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Which, for a constant bucket size of 𝑛𝐵 = 200, leads to: 

𝑆𝐸(𝜎𝑗)

𝜎𝑗
=

1

√2𝑛𝐵
∗ √1 −

1

𝑛𝐵
= 5% 

which is independent of the volatility 𝜎𝑗. 

Referring back to Figure 8, we can define vertical error bars for each bucketed data point representing the standard 
error 𝑆𝐸(𝜎𝑗) above and below the bucket volatility 𝜎𝑗, such that on a logarithmic scale, the error bar for bucket 𝐵𝑗 

has length: 

log (𝜎𝑗 + 𝑆𝐸(𝜎𝑗))− log (𝜎𝑗 − 𝑆𝐸(𝜎𝑗)) 

We can visualise the vertical bucket uncertainty by including these vertical error bars on Figure 8 as shown below: 

Figure 18 

 

Note that the vertical error bars are the same size for each bucketed data point. 

We can understand this phenomenon mathematically. The total size of the vertical error bar for a given bucket 𝐵𝑗 is 

given as: 

log (𝜎𝑗 + 𝑆𝐸(𝜎𝑗))− log (𝜎𝑗 − 𝑆𝐸(𝜎𝑗)) 

= log(1.05 ∗ 𝜎𝑗) − log(0.95 ∗ 𝜎𝑗) 
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= log (
1.05 ∗ 𝜎𝑗
0.95 ∗ 𝜎𝑗

) = log (
1.05

0.95
) = 0.100 

which is independent of 𝐵𝑗, and therefore the size of the vertical error bar is constant across all bucketed data 

points. 

The gradient of the slope is affected by this vertical coordinate, and where the vertical coordinate volatility 𝜎𝑗 sits 

within the estimate. It is possible that, if the volatility 𝜎𝑗 was estimated at a different point along the range of the 

standard error, the slope would shift and therefore the estimated 𝑏 parameter from the fitted model would change. 
Therefore, additional validation is required. 

We performed a stochastic analysis to understand how stable the value of 𝑏 is to perturbations in the vertical 
coordinate of the bucketed data points. In this way, we can quantify vertical bucket uncertainty for a given bucket 
size, using the analysis performed above to quantify the uncertainty in the vertical coordinate of each bucketed 
data point. 

For each bucketed data point (�̅�𝑗 , 𝜎𝑗), we transformed the vertical coordinate into a stochastic random variable 

(�̅�𝑗 , Θ𝑗) using the following approach: 

Θ𝑗 ∼ 𝑁(𝜎𝑗 , 𝑆𝐸(𝜎𝑗)
2
) 

The following analysis is a justification of the choice of a normal distribution for the stochastic analysis: 

Treating reserve movements 𝑟𝑖 as random data points, we have that 

𝜎𝑗
2 =

1

𝑛𝐵 − 1
∑ (𝑟𝑖 − �̅�𝑗)

2

𝑖 ∈ 𝐵𝑗

~𝑘𝜒𝑛𝐵−1
2  

Ie our volatility metric for each bucket has a chi-squared distribution with 𝑛𝐵 − 1 degrees of freedom, multiplied by 
some constant 𝑘. Then note that we can use the following result: 

If 𝑋~𝜒𝑛
2 then √2𝑋 is approximately normally distributed with mean √2𝑛 − 1 and variance 1.3 

Therefore we can approximate Θ𝑗 with a normal distribution, with mean 𝜎𝑗 and standard deviation given by 𝑆𝐸(𝜎𝑗). 

We then used the same approach of fitting a linear model to the log-transformed data {(�̅�𝑗 , Θ𝑗)}𝑗 and measured the 

slope coefficient to find �̂�. 

We repeated this for 1,000 simulations using a Monte Carlo simulation approach. For each simulation, we obtained 

a value for �̂�. 

 
3 R.A Fisher, 1922 
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Figure 19 shows the empirical CDF of the �̂� values obtained: 

Figure 19 

 
 

We can see that there is a tight spread of �̂� estimates around 0.22. The sample standard deviation of the 

�̂� estimates is 0.0026, which as a percentage of our original �̂� estimate is 

0.0026

0.22
≈ 1% 

Given that this is low, we are comfortable that this source of error has a low materiality on the results of the 
analysis. 

9.5. Horizontal bucket uncertainty 

To measure the uncertainty in the horizontal coordinate of the bucketed data points, we can measure the standard 
error of the volume estimate. 

We can calculate the standard error of the sample mean estimate for each bucket 𝐵𝑗 as 

𝑆𝐸(�̅�𝑗) =
1

√𝑛𝐵
√

1

𝑛𝐵 − 1
∑(𝑅𝑖 − 𝑅�̅�)

2

𝐵𝑗

 

where 𝑅𝑖 represents the actual reserve volume for data point 𝑖 within bucket 𝐵𝑗. 

In a similar way to vertical bucket uncertainty, we can define horizontal error bars for each bucketed data point 
representing the standard error 𝑆𝐸(�̅�𝑗) above and below the bucket reserve volume �̅�𝑗, such that on a logarithmic 

scale, the error bar for bucket 𝐵𝑗 has length 

log (�̅�𝑗 + 𝑆𝐸(�̅�𝐽  )) − log (�̅�𝑗  − 𝑆𝐸(�̅�𝑗)) 

Note that, unlike the normalised standard error terms for vertical bucket uncertainty, the value of these normalised 
standard error terms for the horizontal bucket uncertainty varies across the buckets. We can plot the length of 

these error bars against the corresponding log mean reserve size log �̅�𝑗 to obtain the following chart: 
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Figure 20 

 

 here is a clear ‘U’ shape in the above chart. We can see that the uncertainty in the horizontal coordinate of 
bucketed data points is the highest for the buckets corresponding to the smallest and largest reserve volumes. 
There is higher uncertainty for the largest reserve volumes because, as previously mentioned, there is a large 
spread of reserve volumes within these buckets due to the sparsity of data for these high reserve volumes. There is 

also higher uncertainty for the smallest reserve volumes, as the standard error of �̅�𝑗 for these buckets is high as a 

proportion of the low reserve volume. The graph shows that 0.006 is an upper bound for the horizontal error bar 
widths. This means that the horizontal error bars are significantly narrower than the vertical error bars 
(0.006 ≪ 0.1). 

We can also consider a second form of horizontal uncertainty. As part of the bucketing process, recall that we 
calculated the reserve volume in each bucket using the following formula: 

�̅�𝑗 =
1

𝑛𝐵
∑𝑅𝑖
𝐵𝑗

 

The choice of taking the arithmetic mean as the representative reserve volume for each bucket was in some ways 
arbitrary. Alternatively, we could have chosen a number of other metrics, including: 

• Minimum 

• Maximum 

• Median 

• Geometric mean 
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Using one of the above alternative metrics would result in the horizontal coordinate of each bucketed data point 
lying at a different point in the bucket. Therefore, we can quantify the secondary source of horizontal bucket 
uncertainty as the maximum width of each bucket: 

𝐵𝑢𝑐𝑘𝑒𝑡 𝑤𝑖𝑑𝑡ℎ(𝐵𝑗) = max
𝐵𝑗
𝑅𝑖 −min

𝐵𝑗
𝑅𝑖 

Equation 12 

Note that the magnitude of this uncertainty will increase with bucket size. The original dataset Γ is such that most of 
the data-points (𝑅𝑖 , 𝑟𝑖) are of smaller reserve volumes 𝑅𝑖, as shown in the histogram below: 

Figure 21 

 

Recall that we have fixed the size of each bucket to contain exactly 200 data points, ie 𝑛𝐵 = 200. Therefore, the 
sparsity of data for higher reserve volumes results in wider buckets at these volumes. 

We can redefine the horizontal error bars mentioned above such that for each bucket, the width of the error bar is 
given by the bucket width in Equation 12. 

Then in a similar way to the vertical bucket uncertainty, we can plot the horizontal error bars associated with the 
secondary horizontal bucket uncertainty: 
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Figure 22 

 

Visually, we can see that the uncertainty bars are almost negligible for the vast majority of the bucketed data 
points. It is only for the bucketed data points with the largest reserve volumes where we can see the uncertainty 
bars.  

We can perform additional validation by analysing the stability of the calculated 𝑏 parameter when using the 
alternative metrics noted above. 

For each alternative reserve volume metric stated above, we created a new dataset from which to fit a model: 

• Σ𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

• Σ𝑚𝑎𝑥𝑖𝑚𝑢𝑚 

• Σ𝑚𝑒𝑑𝑖𝑎𝑛 

• Σ𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛 

This was done by calculating a representative volume 𝑅�̅� for each bucket 𝐵𝑗  via the specified metric.  

Using the minimum metric as an example, to create Σ𝑚𝑖𝑛𝑖𝑚𝑢𝑚, for each reserve volume 𝑅𝑖 in bucket 𝐵𝑗, the 

representative reserve volume for the bucket is:  

�̅�𝑗𝑚𝑖𝑛 = 𝑀𝑖𝑛𝑖∈𝐵𝑗{𝑅𝑖} 

Calculating the volatility 𝜎𝑗 as before, we can obtain the dataset: 
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Σminimum = {(�̅�𝑗𝑚𝑖𝑛 , 𝜎𝑗)}𝑗
 

from which we can fit a model to parameterise 𝑏 as described previously. 

The different 𝑏 parameters obtained from using the different reserve volume metrics are shown in Figure 23. 

Figure 23 

 

We can see that the estimate of �̂� is very stable to calculate the reserve volume for each bucket under different 

metrics, as the largest deviation has a �̂� value difference of 0.00023 (around 0.1% of the estimate for 𝑏). 

9.6. Selection of bucket size 𝒏𝑩 

In choosing the size of the buckets, it is important to consider how the choice of bucket size impacts the magnitude 
of the different sources of uncertainty highlighted in the above sections. We can note the following dynamics when 
choosing bucket size: 

Recall in section 9.4, we quantified the uncertainty in the volatility estimate 𝜎𝑗 for each bucket as a proportion of 𝜎𝑗 

as follows: 

𝑆𝐸(𝜎𝑗)

𝜎𝑗
=

1 

√2𝑛𝐵
∗ √1 −

1

𝑛𝐵
 

Note that this is a decreasing function in 𝑛𝐵 for 𝑛𝐵 ≥ 2, and therefore as bucket size increases, the uncertainty in 
the response variable of the linear model 𝜎𝑗 decreases. 

We can take this one step further by analysing the relationship between overall bucket uncertainty and the chosen 
bucket size. 

We can define overall bucket uncertainty using a similar approach as taken in section 9.4, however this time also 
including primary horizontal bucket uncertainty: 
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For each bucketed data point (�̅�𝑗 , 𝜎𝑗), we can transform the vertical coordinate into a stochastic random variable 

(Δ𝑗 , Θ𝑗) using the following approach: 

Δ𝑗  ~ 𝑁 (�̅�𝑗 , 𝑆𝐸(�̅�𝑗))  and  Θ𝑗 ∼ 𝑁(𝜎𝑗 , 𝑆𝐸(𝜎𝑗)) 

Again, we can justify the choice of a normal distribution for Θ𝑗 in the same way as set out in section 9.4. 

Note that by the central limit theorem, treating 𝑅𝑖 ∈ Γ as random data points, we can approximate �̅�𝑗 with a normal 

distribution. 

We then used the same approach of fitting a linear model to the log-transformed data {(Δ𝑗 , Θ𝑗)}𝑗 and measured the 

slope coefficient to find �̂�. 

We repeated this for 1000 simulations using a Monte Carlo simulation approach. For each simulation, we obtained 

a value for �̂�, and therefore for a given bucket size, we create an empirical distribution of �̂� parameters. We define 
overall bucket uncertainty as the standard deviation of this empirical distribution. 

We can repeat this process across different bucket sizes and obtain values for overall bucket uncertainty for each 
bucket size. The chart below shows the relationship between overall bucket uncertainty and bucket size: 

Figure 24 

 

We can see that there is a large improvement in bucket uncertainty as bucket size increases from 1 to 50. After this 
point, there is no clear evidence that increasing bucket size materially improves the level of bucket uncertainty in 
the analysis. 

We fit models to these bucketed datasets to examine this further: 

• We performed the bucketing analysis as described in section 5.1 on a range of bucket sizes from 5 to 450 in 
steps of 5. 

• In this way, we obtained bucketed data sets Σ5, Σ10,… , Σ450, where Σ𝑛 denotes the bucketed data set 
corresponding to a bucket size of 𝑛. 
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• For each bucketed data set, we fit a model using linear regression in the same way as described in section 5.1. 

• We extracted the parameter estimate of �̂� and the parameter uncertainty 𝑆𝐸(�̂�) in each case. 

 Figure 25 shows the effect of bucket size on parameter uncertainty of 𝑏 ̂: 

 Figure 25 

  

Bucket size 𝑛𝐵 = 200 used in our analysis is highlighted on the chart. 

From this graph, we can see that parameter uncertainty increases as bucket size increases. 
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Using the fitted models, we looked at the relationship between bucket size and the fitted �̂� parameter:  

Figure 26 

 

Figure 26 shows how the derived 𝑏 parameter changes across different choices of bucket size. We can observe 
that as bucket size increases, the derived 𝑏 parameter tends to decrease. While it is not immediately obvious or 
intuitive why this trend exists, we note that the effect is small: all bucket sizes considered greater than around 75 
result in 𝑏 parameters of 0.22 when rounding to two decimal places, and the trend appears to stop (or at least slow) 
for bucket sizes greater than around 200.  

Finally, we investigated the trade-off between overall bucket uncertainty and parameter uncertainty: 

 Figure 27 
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 Figure 27 highlights the trade-off between bucket uncertainty and parameter uncertainty. Each point on the graph 
corresponds to a bucket size. The bucket sizes plotted range from 15 to 450. From the graph, we can see that 
there is a clear trade-off between the two uncertainties for large bucket uncertainty and small parameter 
uncertainty; however, the trend does not continue for higher parameter uncertainties. This demonstrates that 
increasing bucket size beyond a certain point will increase parameter uncertainty without providing the benefit of 
reduced bucket uncertainty. In this way, we can see that there is a natural upper bound for the optimal bucket size. 
The point on the graph corresponding to a bucket size of 200 is highlighted to show where our chosen bucket size 
sits on the trade-off curve. We can see that this bucket size provides a very low bucket uncertainty, and a 
reasonably low parameter uncertainty. While it is possible to further reduce parameter uncertainty without being 
penalised too heavily on bucket uncertainty, the reduction in parameter uncertainty has very little impact on the 
results of the analysis.  

9.7. Conclusion 

Combining the results from above, we have the trade-off that as parameter uncertainty increases, bucket 
uncertainty decreases. Intuitively this makes sense, as we would expect that, as you increase bucket size, the 
number of data points within each bucket increases and therefore the statistical estimates of volume and volatility 
of each bucket become less uncertain. On the other hand, increasing the bucket size results in a lower number of 
buckets to fit a linear model to, and therefore the model parameter estimates are more uncertain. 
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Appendices 

Appendix 1: R-squared 

The R-squared value for a fitted linear model can be defined using the following equations: 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

 

𝑆𝑆𝑟𝑒𝑠 =∑(𝑦𝑖 − �̂�𝑖)
2

𝑖

 

𝑆𝑆𝑡𝑜𝑡 =∑(𝑦𝑖 − �̅�)
2

𝑖

 

Where 𝑦𝑖 is the response variable,  �̂�𝑖 is the predicted value and  �̅� =
1

𝑛
∗ ∑𝑦𝑖 

In our case, we have 

𝑦𝑖 = log 𝐶𝑜𝑉𝑖 

�̂�𝑖 = �̂� − �̂� ∗ log 𝑣𝑖 

�̅� =
1

𝑛Σ
∗∑log 𝐶𝑜𝑉𝑖

𝑖

 

The 𝑅2 value is defined as the proportion of the variation in the dependent variable that is predictable from the 
independent variables. Therefore, a higher value of 𝑅2 indicates a better model fit and we have the following 
numerical bounds for 𝑅2: 

0 < 𝑅2 < 1 
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Appendix 2: Over-dispersed Poisson distribution framework 

Unlike the Poisson distribution, where the variance equals the mean, the over-dispersed Poisson distribution has a 
variance proportional to the mean. In claims reserving, this model assumes that the incremental claims 𝐶𝑖𝑗 are 

independent over-dispersed Poisson random variables with mean and variance: 

𝐸[𝐶𝑖𝑗] = 𝜇𝑖𝑗 = 𝑥𝑖𝑦𝑗 and 𝑉𝑎𝑟[𝐶𝑖𝑗] = 𝜙 𝑥𝑖𝑦𝑗 

Where 𝑥𝑖 is the expected ultimate claims and 𝑦𝑗 is the proportion of ultimate claims emerging in each development 

period. The 𝜙 parameter introduces the over-dispersion which is estimated from the data. Further details of this can 
be found in Renshaw & Verrall (1998)4 and in England & Verrall (2002)5. 

The main limitation of the bootstrap is that the sum of the incremental claims for each development period must be 
positive. This is due to the 𝑦𝑗 in the variance parameter. Some negative increments can occur as long as the sum 

of any column is not negative. 

The log link function in the GLM is introduced to re-parameterise the mean structure so that it has a linear form 
such that: 

𝑙𝑜𝑔(𝜇𝑖𝑗) = 𝑐 + 𝛼𝑖 + β𝑗 

Since there is a parameter for each row 𝑖 and column 𝑗, the structure is still a chain ladder type. 

 
4 Renshaw, A. E. & Verrall, R. J. (1998). A stochastic model underlying the chain-ladder technique. B.A.J. 4, 903-923 
5 England, P.D. & Verrall, R.J. (2002). Stochastic claims reserving in general insurance. Institute of Actuaries 
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Appendix 3: Bootstrapping methodology 

Fitting the GLM 

Given an incremental claims triangle, we can calculate an expected triangle, from which Pearson residuals can 
also be calculated. We define 𝜂𝑖𝑗 to be the loglink of 𝜇𝑖𝑗, where the loglink function is defined as: 

• ln(𝜇𝑖𝑗) for 𝐶𝑖𝑗 > 0 

• 0 for 𝜇𝑖𝑗 = 0 

• − ln(−𝜇𝑖𝑗) for 𝐶𝑖𝑗 < 0 

We then further define 𝜂𝑖𝑗 = 𝛼𝑖 + β𝑗, where 𝑖 = 1, 2, … , 𝑛 and 𝑗 = 1, 2,… , 𝑛, and define a system of equations as 

𝑌 = 𝑋𝐴 to calculate 𝜂𝑖𝑗, with: 

𝑌 =

(

 
 

ln(𝐶11)

ln(𝐶21)

ln(𝐶31)
:

ln(𝐶𝑛1))

 
 

 

𝑋 = 

(

 
 

1 0 0 ⋯ 0
0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ 0 ⋱ ⋮
0 0 0 ⋯ 1)

 
 

 

𝐴 = 

(

 
 

𝛼1
𝛼2
𝛼3
:
𝛼𝑛)

 
 

 

We can solve this using a least squares approach for the chosen distribution, and the calculate the fitted 

matrix, �̂� = 𝑋𝐴, which will be of the form: 

�̂� =  

(

 
 

𝛼1
𝛼2
𝛼3
:

𝛼1 + 𝛽2 +⋯+𝛽𝑛)

 
 
= 

(

 
 

𝜂11
𝜂21
𝜂31
:
𝜂𝑛1)

 
 

 

This can then be exponentiated using the inverse of the loglink function to find 𝑢𝑖𝑗, the expected values for each 

entry of the triangle according to the GLM as: 

• exp(𝜂𝑖𝑗) for 𝐶𝑖𝑗 > 0 

• 0 for 𝐶𝑖𝑗 = 0 

• −exp (𝜂𝑖𝑗) for 𝐶𝑖𝑗 < 0 

For a more comprehensive explanation on this approach, refer to Shapland, 20166. 

Residuals 

 
6 Shapland, M., 2016. Using the ODP Bootstrap Model: A Practitioner's Guide. Casualty Actuarial Society 
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After calculating all values of 𝜇𝑖𝑗, we can now calculate residuals for all entries in the incremental triangle, from 

which sampling can begin. Firstly, the unscaled Pearson residuals can be calculated as: 

𝑟𝑖𝑗 = 
𝐶𝑖𝑗 − 𝜇𝑖𝑗

√|𝜇𝑖𝑗
𝑧 |

∗ 𝑓𝐷𝑜𝐹  

𝑓𝐷𝑜𝐹 is an adjustment made to effectively allow for over-dispersion of the residuals in the sampling process and to 

add process variance to approximate a distribution of possible outcomes. It is defined as 𝑓𝐷𝑜𝐹 =
𝑁

𝑁−𝑃
, 

where 𝑁 and 𝑝 are defined below. 

The scale parameter is calculated as either of the following two formulae, depending on whether it is set to be 
constant by the user, or changing for each development period 𝑗: 

𝜙 = √
∑ 𝑟𝑖𝑗

2
𝑖𝑗

𝑁 − 𝑝
 

or 

𝜙𝑗 = √
∑ 𝑟𝑖𝑗

2
𝑖

𝑜𝑗
, 

where 𝑁 is the number of observations or incremental data cells in the triangle, 𝑝 is the number of parameters 

and 𝑜𝑗 is the number of entries in the incremental triangle for that development period. Typically, 𝑁 = 
𝑛(𝑛+1)

2
, 𝑝 =

2(𝑛 − 1) and 𝑜𝑗 = 𝑛 + 1 − 𝑗 for an 𝑛 ×  𝑛 triangle. 

Sampling residuals 

The residuals are then randomly sampled from with replacement and used to create a pseudo triangle, using the 
following formula: 

𝐶𝑖𝑗
∗ = 𝑟𝑖𝑗

∗ ∗ 𝜙𝑗 ∗ √|𝜇𝑖𝑗
𝑧 | + 𝜇𝑖𝑗 

where 𝐶𝑖𝑗
∗  is our resampled residual, and 𝑟𝑖𝑗

∗   is the new incremental value for the pseudo triangle and origin 

period 𝑖 and development period 𝑗. 

The user can decide if negative incremental values are allowed in the bootstrapped triangle. If they are not allowed, 
all negative incremental values will be set to 0. The user could also decide to prevent negative cumulative values in 
the bootstrapped triangle, even if negative incremental values are allowed. 

Refitting the GLM 

The pseudo triangle is then projected across all future development periods using the basic chain ladder approach 
in order to calculate a completed triangle. The link ratios are calculated across all origin years in the 
pseudo triangle and this is used to derive an estimate for the ultimate claims in the pseudo triangle and a reserve 
for each origin year can be calculated by subtracting the latest paid in the pseudo triangle from the calculated 
ultimate claims. 

Ultimate 

From the set of reserves calculated using the bootstrap method the standard deviation, mean, and CoV can be 
calculated. 
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Appendix 4: Performance of theoretical model on real world data 

Using the same first principles analysis as discussed in section 3.2, with additional assumptions in relation to the 
correlation between claims, we derived an implied relationship between the CoV of a theoretical portfolio of claims 
and the corresponding mean volume of the portfolio. In this section, we discuss the derivation of this theoretical 
relationship based on probabilistic first principles and how the relationship compares to the ‘real world’  chedule P 
data. 

Approach 

Recall from Section 3.2, we defined 𝑋𝑖 to be the amount of the 𝑖-th claim. 

Again, assume 𝑋𝑖 are identically distributed with mean 𝜇 and variance 𝜎2. 

Then define 𝑆 as the total reserves in the following way: 

𝑆 =∑𝑋𝑖

𝑁

𝑖=1

 

Given that each claim is identically distributed, we then defined the volume as total reserves to be:  𝑣 = 𝐸[𝑆] = 𝑛𝜇. 

For the derivation of the theoretical model, we now assume a constant level of correlation between claims: 

𝐶𝑜𝑟𝑟(𝑋𝑖 , 𝑋𝑗) = 𝜌 

We still have: 

𝐸[𝑆] = 𝐸[𝐸[𝑆|𝑁]] 

= 𝐸[𝑁] ∗ 𝐸[𝑋𝑖] 

= 𝑛𝜇 

But now we also have 

𝑉𝑎𝑟(𝑆) = 𝐸[𝑉𝑎𝑟(𝑆|𝑁)] + 𝑉𝑎𝑟(𝐸[𝑆|𝑁]) 

= 𝐸 [𝑉𝑎𝑟(∑𝑋𝑖

𝑁

𝑖=1

|𝑁)] + 𝑉𝑎𝑟(𝐸[∑ 𝑋𝑖
𝑁
𝑖=1 |𝑁]) 

= 𝐸 [∑𝑉𝑎𝑟(𝑋𝑖)

𝑁

𝑖=1

+ 2∑√𝑉𝑎𝑟(𝑋𝑖) ∗ 𝑉𝑎𝑟(𝑋𝑗) ∗ 𝐶𝑜𝑟𝑟(𝑋𝑖 , 𝑋𝑗)

𝑁

𝑖≠𝑗

] + 𝑉𝑎𝑟(𝑁 ∗ 𝐸[𝑋𝑖]) 

Note that there are (𝑁
2
) =

𝑁(𝑁−1)

2
 such pairs (𝑖, 𝑗 ∶ 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑁, 𝑖 ≠ 𝑗), therefore: 

𝑉𝑎𝑟(𝑆) = 𝐸[𝑁 ∗ 𝑉𝑎𝑟(𝑋𝑖)] + 𝐸[𝑁(𝑁 − 1)𝜎
2𝜌] + 𝐸[𝑋𝑖]

2 ∗ 𝑉𝑎𝑟(𝑁) 

= 𝑛𝜎2 + 2𝜎2𝜌 ∗ (𝐸[𝑁2] − 𝐸[𝑁]) + 𝑛𝜇2 

= 𝑛𝜎2 + 𝜎2𝜌 ∗ 𝑛2 + 𝑛𝜇2 

= 𝑛(𝜎2 + 𝜇2) + 𝑛2𝜌𝜎2 

Allowing the calculation of 𝐶𝑜𝑉 of the reserves as: 
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𝐶𝑜𝑉(𝑆𝑛) =
√𝑉𝑎𝑟(𝑆)

𝐸[𝑆]
=
√𝑛(𝜎2 + 𝜇2) + 𝑛2𝜌𝜎2

𝑛𝜇
 

=
1

𝜇
√𝜌𝜎2 +

𝜎2 + 𝜇2

𝑛
 

=
1

𝜇
√𝜌𝜎2 +

𝜎2𝜇 + 𝜇3

𝑛𝜇
 

Simplifying this further, since 𝜇, 𝜎 and 𝜌 are the fixed parameters associated with the distribution of claims 𝑋𝑖, we 
obtain 

𝐶𝑜𝑉 = √𝑐 +
𝑑

𝑣
 

For constants 𝑐 =
𝜎2

𝜇2
𝜌 and  𝑑 =

𝜎2

 𝜇
+ 𝜇 

Fitting this model 

We can find parameters 𝑐, 𝑑 to fit this model to the bucketed data points in Σ, and as such, treat this as an 
alternative model to our original model: 

𝐶𝑜𝑉 = 𝑎𝑣−𝑏 

Given that log-transforming the data for the alternative model no longer results in a linear relationship, the original 
method of fitting a linear model no longer works. 

Instead, we set up an optimisation problem to coefficients 𝑎, 𝑏 to minimize 

𝑀𝑆𝐸 =∑(𝑔(�̅�𝑗) − �̃�𝑗)
2

𝑗

 

Where the function 𝑔 is defined as 

𝑔: 𝑥 → √𝑐 +
𝑑

𝑥
 

Using the gradient descent algorithm to solve this optimisation problem results in parameters 

𝑐 = 0.037 

𝑑 = 39400 

We can repeat the same optimisation problem on our original model given in Equation 1, defined by function h: 

ℎ: 𝑥 → 𝑎𝑥−𝑏 

Again using the gradient descent algorithm, the minimum found by the algorithm results in parameters 

𝑎 = 7.63 

𝑏 = 0.22 
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Given that these 𝑎 and 𝑏 estimates are the same as those found by fitting a linear model, the result gives comfort 
that this approach results in reasonable parameter estimates. 

Note that the 𝑀𝑆𝐸 for the alternative model is 0.727, which is higher than the corresponding 𝑀𝑆𝐸 of 0.14 for the 
base model. 

We can plot this alternative model in logarithmic space to show how closely it fits the bucketed data points. 

 

Visually, we can see that the model fit is clearly worse than the original model, particularly as reserve volume gets 
very large. It is therefore interesting to note that the model derived from theoretical first principles does not capture 
the structure of the real-world data. The discrepancy between the theory and real-world data is characterised by 
the horizontal levelling off of the alternative model trend line for larger reserve volumes. We can infer that the 
theory implies that there should be a degree of undiversifiable volatility whereas the real-world data provides no 
evidence that undiversifiable volatility exists. 

We can calculate the level of undiversifiable volatility implied by the alternative model: 

Recall we have 

𝐶𝑜𝑉 = √𝑐 +
𝑑

𝑉
 

So then 

lim
𝑉→∞

𝐶𝑜𝑉 = lim
𝑉→∞

√𝑐 +
𝑑

𝑉
 

= √𝑐 = √0.037 = 19.2% 


