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Abstract.  The lasso is applied in an attempt to automate the loss reserving problem.  The 

regression form contained within the lasso is a GLM, and so that the model has all the versatility 

of that type of model, but the model selection is automated and the parameter coefficients for 

selected terms will not be the same. 

There are two applications presented, one to synthetic data in conventional triangular form, and 

another to real data. 

The secret of success in such an endeavour is the selection of the set of candidate basis 

functions for representation of the data set.  Cross-validation is used for model selection. 

The lasso performs well in modelling, identifying known features in the synthetic data, and 

tracking them accurately.  This is despite complexity in those features that would challenge, 

and possibly defeat, most loss reserving alternatives.  In the case of real data, the lasso also 

succeeds in tracking features of the data that analysis of the data set over many years has 

rendered virtually known. 

A later section of the paper discusses the prediction error associated with a lasso-based loss 

reserve.  It is seen that the procedure can be readily adapted to the estimation of parameter and 

process error, but can also estimate one component of model error.  To the authors knowledge, 

no other loss reserving model in the literature does so. 

 

Keywords:  bootstrap, cross-validation, GLM, feature selection, lasso, loss reserving, machine 

learning, regularized regression. 

 

 

1. Introduction 
Many claim data sets are modelled, and estimates of loss reserve produced, by means of simple 

statistical structures.  The chain ladder model, and its simple derivatives, such as Bornhuetter-

Ferguson, Cape Cod, etc. (Taylor, 2000; Wüthrich & Merz, 2008) may be singled out for 

special mention in this respect. 

Other data sets are modelled by means of more complex statistical structures.  For example, 

Taylor & McGuire (2016) describe in detail the application of Generalized Linear Models 

(GLMs) to claims data.  This approach is especially suitable for data sets that contain features 

such that the chain ladder model is inapplicable. 

More recently, interest has been growing in Machine Learning (Harej, Gächter & Jamal, 2017; 

Jamal et al., 2018).  This category of model includes the Artificial Neural Net (ANN), which 

has been studied in earlier literature (Mulquiney, 2006), and shown to be well adapted to data 

sets with complex features, such as those modelled with GLMs. 

The drawback of a GLM is that its fitting to a complex data set requires a skilled resource, and 

is time-consuming.  Many diagnostics will require programming, much time will be absorbed 

by their review, and many iterations of the model will be required.   
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For a data set such as that described in Section 4.3.1, a total of 15-25 hours may be required, 

even assuming that all diagnostics have already been programmed, and excluding 

documentation.  The cost of this will vary from place to place, but a reasonable estimate of the 

consultancy fee in a developed country might be US$5,000-10,000. 

The time and cost might be cut if an ANN could be applied.  However, the ANN model will 

not be transparent.  It will provide only limited revelation of the claim processes and mechanics 

(i.e. superimposed inflation (SI)) generating the data set.  Although the ANN might produce a 

good fit to past data, the absence of this information on claim processes might render their 

extrapolation to the future difficult.  This can induce considerable uncertainty in any estimate 

of loss reserve. 

A GLM, on the other hand, is a structured and transparent model that rectifies these 

shortcomings, but, as mentioned above, at a cost. 

Regularized regression, specifically the lasso, provides a compromise between the GLM and 

the ANN, with the potential to achieve the best of both worlds.  The purpose here is to establish 

a framework in which the lasso may be automated for application to claim modelling in such a 

way as to cut the modelling cost a small fraction of that required by a GLM, but with an output 

equivalent to that of a GLM, and with all of the latter’s transparency. 

In order to achieve these objectives, the model is to be self-assembling in the sense that, on 

submission of a data set to the lasso-based software, the model will assemble itself in a form 

that may be read, validated, understood and extrapolated exactly as would a GLM. 

The lasso has found its way into recent actuarial literature, though not always in application to 

loss reserving.  Gao & Meng (2018) apply a Bayesian lasso to loss reserving triangles, using 

B-splines as basis functions for development (column-wise) pattern.  This enables them to 

model development patterns that vary over accident year.   

Venter (2018) also uses a Bayesian lasso for loss reserving, and Li, O’Hare & Vahid (2017) 

and Venter & Şahin (2018) apply it to age-period-cohort models.  This is the terminology used 

in mortality studies, but, as those authors point out, precisely the same concept arises in 

insurance claim modelling, where the translation is accident year-development year-payment 

year. 

Section 3 describes the construction of a lasso model aimed at these objectives, after Section 2 

deals with notational and other preliminaries.  Section 4 illustrates numerically the application 

of the model to both synthetic and real data, and Section 5 discusses the prediction error 

associated with this type of forecasting.  Section 6 examines a couple of possible areas of 

further investigation, and Section 7 closes with some concluding remarks. 

 

 

2. Framework and notation 
Many simple claim models use the conventional data triangle, in which some random variable 

of interest 𝑌 is labelled by accident period 𝑖 = 1,2, … , 𝐼 and development period 𝑗 =

1,2, … , 𝐼 − 𝑖 + 1.  In this set-up, the combination (𝑖, 𝑗) is referred to as a cell of the triangle, 
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and the quantity 𝑌 observed in this cell denoted 𝑌𝑖𝑗.  The durations of the accident and 

development periods will be assumed equal, but need not be years.  As a matter of notation, 

𝐸[𝑌𝑖𝑗] = 𝜇𝑖𝑗 , 𝑉𝑎𝑟[𝑌𝑖𝑗] = 𝜎𝑖𝑗
2 .  A realization of 𝑌𝑖𝑗 will be denoted 𝑦𝑖𝑗. 

The real data set used in this paper consists of individual claim histories.  These are capable of 

representation in the above triangular form but, for most purposes, this is unnecessary.  

However, some aggregation of claims occurs, as explained in Section 4.3.1, simply in order to 

reduce computation.  The quantity of interest throughout will be individual claim size at claim 

finalization, converted to constant dollars on the basis of wage inflation.  A claim often involves 

multiple payments on various dates. The indexation takes account of the different dates.  

Claim size for individual claim 𝑘 will be denoted 𝑌[𝑘].  A vector 𝑣[𝑘] of labelling quantities will 

also be associated with claim 𝑘.  These quantities may include 𝑖, 𝑗, 𝑡 = 𝑖 + 𝑗 − 1 = calendar 

period in cell (𝑖, 𝑗), and others. 

One non-routine quantity of interest later is operational time (OT) at the finalization of a 

claim.  OT was introduced to the loss reserving literature by Reid (1978), and is discussed by 

Taylor (2000) and Taylor & McGuire (2016). 

Let the OT for claim 𝑘 be denoted 𝜏[𝑘], defined as follows.  Assume that claim 𝑘 belongs to 

accident period 𝑖[𝑘], and that �̂�𝑖[𝑘]
 is an estimator of the number of claims incurred in this 

accident period.  Let 𝐹𝑖[𝑘]:[𝑘] denote the number of claims from the accident period finalized up 

to and including claim 𝑘.  Then 𝜏[𝑘] = 𝐹𝑖[𝑘]:[𝑘] �̂�𝑖[𝑘]
⁄ .  In other words, 𝜏[𝑘] is the proportion of 

claims from the same accident period as claim 𝑘 that are finalized up to and including claim 𝑘. 

There will be frequent reference to open-ended ramp functions.  These are single-knot linear 

splines with zero gradient in the left-hand segment and unit gradient in the right-hand segment.  

Let 𝑅𝐾(𝑥) denote the open-ended ramp function with knot at 𝐾.  then 

𝑅𝐾(𝑥) = 𝑚𝑎𝑥(0, 𝑥 − 𝐾) (2.1) 

For a given condition 𝑐,  define the indicator function 𝐼(𝑐) = 1 when 𝑐 is true, and 𝐼(𝑐) = 0 

when 𝑐 is false. 

 

 

3. Regularized regression 
3.1. In general 

Consider an ordinary least squares regression model 

𝑦 = 𝑋𝛽 + 𝜀 (3.1) 

where 𝑦 = (𝑦1, … , 𝑦𝑛)𝑇 is the response vector, 𝛽 = (𝛽1, … , 𝛽𝑝)
𝑇
 the parameter vector, 𝜀 =

(𝜀1, … , 𝜀𝑛)𝑇 an error vector subject to 𝜀 ~ 𝑁(0, 𝐼), and 𝑋 the 𝑛 × 𝑝 design matrix.  The 

parameter vector 𝛽 is estimated by that �̂� which minimizes the loss function 𝐿(𝑦; �̂�) =
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(𝑦 − 𝑋�̂�)
2
.  It will be convenient to express this as 𝐿(𝑦; �̂�) = (‖𝑦 − 𝑋�̂�‖

2
)

2

, where, for 

vector 𝑥 with components 𝑥𝑚, ‖𝑥‖𝑞 denotes the 𝐿𝑞-norm (𝑝 ≥ 1) 

‖𝑥‖𝑞 = (∑|𝑥𝑚|𝑞

𝑚

)

1 𝑞⁄

 

Regularized regression includes in the loss function a penalty for large regression coefficients 

(components of �̂�.  The regularized loss function is 

 𝐿(𝑦; �̂�) = (‖𝑦 − 𝑋�̂�‖
2

)
2

+ 𝜆 (‖�̂�‖
𝑞

)
𝑞

 
(3.2) 

for some selected 𝑞, where 𝜆 > 0 is a tuning constant. 

The generalization of (3.1) to a GLM assumes the form 

𝑦 = ℎ−1(𝑋𝛽) + 𝜀 (3.3) 

where ℎ is the (possibly non-linear) link function, ℎ−1 operates component-wise on the vector 

𝑋𝛽, and 𝜀 may now be non-normal, but still with 𝐸[𝜀] = 0 and independence between 

observations still assumed.  The parameter vector 𝛽 is estimated by the maximum likelihood 

estimator �̂� which minimizes the loss function (negative log-likelihood) 

𝐿(𝑦; �̂�) = − ∑ 𝑙(𝑦𝑚; �̂�)
𝑛

𝑚=1
 

(3.4) 

where the summand is the log-likelihood of observation 𝑦𝑖 when 𝛽 = �̂�. 

The regularized form of (3.4) is similar to (3.2): 

𝐿(𝑦; �̂�) = − ∑ 𝑙(𝑦𝑚; �̂�)
𝑛

𝑚=1
+ 𝜆 (‖�̂�‖

𝑞
)

𝑞

 
(3.5) 

 

The effect of variation of 𝜆 is as follows.  As 𝜆 → 0, (3.5) tends to revert to the unregularized 

form of GLM.  As 𝜆 → ∞, the penalty for any non-zero coefficient increases without limit, 

forcing the model towards one with a single coefficient, in which case the model consists of 

just an intercept term and all predictions are equal to �̅�, the mean response. 

 

3.2. The lasso 

3.2.1. Loss function 

There are two recognizable special cases of (3.2): 

(a) 𝒒 = 𝟎.  Here the second member of (3.2) reduces to just 𝜆 multiplied by the number of 

nonzero terms in the model. This is a computationally intractable problem, although it 

is noteworthy that setting 𝜆 = 1 produces a metric equivalent to the Akaike Information 

Criterion. 

(b) 𝒒 = 𝟐.  In this case, (3.2) is recognized as the Ridge regression (Bibby & Toutenburg, 

1977) loss function. All included covariates will be nonzero in this approach. 
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A further case of interest arises when 𝑞 = 1.  This is the Least Absolute Shrinkage and 

Selection Operator (lasso) (Tibshirani, 1996), which is the modelling device used throughout 

this paper.  Its loss function (3.5) may be written explicitly as 

𝐿(𝑦; �̂�) = − ∑ 𝑙(𝑦𝑚; �̂�)
𝑛

𝑚=1
+ 𝜆‖�̂�‖

1
= − ∑ 𝑙(𝑦𝑚; �̂�)

𝑛

𝑚=1
+ 𝜆 ∑ |�̂�𝑟|

𝑝

𝑟=1
 

(3.6) 

 

The appearance of absolute values of coefficients in the loss function will generate many corner 

solutions when that function is minimized.  Hence, the covariates included in the model will 

be a subset of those included in the regression design, and the lasso acts (as its full name 

suggests) as both a selector of covariates and as a shrinker of coefficient size. Efficient 

algorithms such as Least Angle Regression (Efron et al, 2004), which generates a path of 

solutions across all 𝜆, make the lasso computationally feasible. 

The strength of the shrinkage of covariate set can be controlled with the tuning parameter 𝜆, as 

discussed at the end of Section 3.1, with the number of covariates decreasing as 𝜆 increases. 

An obvious generalization of loss function (3.6) is 

𝐿(𝑦; �̂�) = − ∑ 𝑙(𝑦𝑚; �̂�)
𝑛

𝑚=1
+ ∑ 𝜆𝑟|�̂�𝑟|

𝑝

𝑟=1
 

(3.7) 

 

where the 𝜆𝑟(> 0) may differ with 𝑟.  This generalization will be discussed further in Sections 

3.2.2 and 4.3.3. 

 

3.2.2. Lasso interpretations 

The lasso has been presented in Section 3.2.1 rather in heuristic terms.  However, it is useful 

for some purposes (see e.g. Section 4.3.3) to consider specific models for which the lasso is the 

optimal estimator in some sense.  There are two main interpretations. 

Bounded coefficients.  Consider the optimization problem: 

�̂� = arg min
∑ |�̂�𝑟|

𝑝
𝑟=1 ≤𝐵

∑ 𝑙(𝑦𝑚; �̂�)
𝑛

𝑚=1
 

i.e. maximum likelihood subject to the bound ∑ |�̂�𝑟|𝑝
𝑟=1 ≤ 𝐵. 

This problem is soluble by the method of Lagrange multipliers, then (3.6) is the Lagrangian, 

and 𝜆 the Lagrange multiplier.  So the solution is as for the lasso. 

It is straightforward to show by a parallel argument that, if the problem is modified to the 

following: 

�̂� = arg min
|�̂�𝑟|≤𝐵𝑟,𝑟=1,…,𝑝

∑ 𝑙(𝑦𝑚; �̂�)
𝑛

𝑚=1
 

then the solution is as for the lasso with loss function (3.7). 
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Bayesian interpretation.  Suppose that each parameter 𝛽𝑟 , 𝑟 = 1, … , 𝑝 is subject to a Bayesian 

prior that follows a centred Laplace distribution with density 

𝜋(𝛽𝑟) = (2𝑠)−1 exp(−|𝛽𝑟| 𝑠⁄ ) (3.8) 

where 𝑠 is a scale parameter.  In fact, 𝐸[𝛽𝑟] = 0, 𝑉𝑎𝑟[𝛽𝑟] = 2𝑠2.  All priors are supposed 

stochastically independent. 

The posterior negative log-density of 𝛽 is  

− ∑ 𝑙(𝑦𝑚; 𝛽) + 𝑠−1 ∑ |𝛽𝑟|
𝑝

𝑟=1

𝑛

𝑚=1
 

(3.9) 

up to a normalizing coefficient, and this is the same as (3.6) with 𝜆 = 1 𝑠⁄ = (½𝑉𝑎𝑟[𝛽𝑟])−½.  

The lasso, in minimizing this function, maximizes the posterior density of 𝛽, so that �̂� is the 

maximum a posteriori (MAP) estimator of 𝛽. 

It is straightforward to show by a parallel argument that, if the prior (3.8) is replaced by 

𝜋(𝛽𝑟) = (2𝑠𝑟)−1 exp(−|𝛽𝑟| 𝑠𝑟⁄ ) (3.10) 

then the posterior negative log-density of 𝛽 becomes  

− ∑ 𝑙(𝑦𝑚; 𝛽) + ∑ 𝑠𝑟
−1|𝛽𝑟|

𝑝

𝑟=1

𝑛

𝑚=1
 

(3.11) 

and MAP estimation lasso is equivalent to the lasso with loss function (3.7) and 𝜆𝑟 = 1 𝑠𝑟⁄ . 

 

3.2.3. Covariate standardization 

Standardization of covariates, and hence associated coefficients, is often moot in regression 

analysis.  In the case of regularized regression, however, it is usually desirable.  Without it, the 

true values of some coefficients will be large and some small, but the penalty applied in (3.6) 

will be the same for all cases.   

This would favour the exclusion of covariates whose coefficients large by their nature.  And it 

would lead to the undesirable situation in which the regularized model would change as a 

consequence of mere re-scaling of covariates. 

It is assumed that all covariates in a regression take numerical values with physical meaning, 

or are categorical.  A categorical variate is converted into a collection of Boolean variates for 

the purpose of the regression. 

Covariates are also classified as of three types: 

• fundamental; 

• derived; 

• interaction. 

Fundamental covariates do not depend on others (e.g. accident period), while derived variates 

are functions of fundamental variates (e.g. 𝑚𝑎𝑥(0, 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 𝑦𝑒𝑎𝑟 −  2003)).  It will be 

assumed that any derived covariate depends on just one fundamental covariate, and the latter 

will be called its parent. 
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Three types of standardization were tested for the present investigation.  All took the form 

�̿�𝑚𝑠 =  𝑥𝑚𝑠 𝑓𝑠⁄  

where 

• �̿�𝑚𝑠 is the standardized form of 𝑥𝑚𝑠, the (𝑚, 𝑠) element of the unstandardized design 

matrix 𝑋, i.e. value of the 𝑠-th covariate associated with the 𝑚-th observation; and 

• 𝑓𝑠 is a scaling constant for given 𝑠. 

Further, let �̅�𝑚𝑠 is the centred version of 𝑥𝑚𝑠, i.e. 

�̅�𝑚𝑠 = 𝑥𝑚𝑠 − 𝜂𝑠, 𝜂𝑠 = ∑ 𝑥ℓ𝑠

𝑛

ℓ=1
𝑛⁄  

and let �̅� denote the design matrix after centring of covariates and excluding any column 

relating to an intercept coefficient. 

Note that standardization here consists of scaling but not centring.  The three versions of scaling 

constant assumed the following forms (nomenclature in the first two cases from Sardy, 2008): 

𝝆 − scaling: 𝑓𝑠 = [∑ �̅�ℓ𝑠
2𝑛

ℓ=1 𝑛⁄ ]
½

. 

𝚺 − scaling: 𝑓𝑠 = 𝑑𝑠
−½, where 𝑑𝑠 is the s-th diagonal element of Σ = (�̅�𝑇�̅�)−1. 

𝜼 − scaling: 𝑓𝑠 = 𝜂𝑠. 

For all Boolean covariates, the scaling factors 𝑓𝑠 are as set out here.  Similarly, for non-Boolean 

fundamental covariates.  A non-Boolean derived covariate takes on the same scaling factors as 

its parent. 

Of the three forms of standardization, that generated by 𝜌 − scaling appeared most effective in 

terms of goodness-of-fit, and is the only one pursued further here. 

 

3.2.4. Cross-validation

The parameter 𝜆 in (3.6) is free, and its value must be selected with suitable compromise 

between goodness-of-fit (small 𝜆) and parsimony of parameters (large 𝜆).  A common approach 

to this selection is 𝒌-fold cross-validation (Hastie, Tibshirani & Friedman, 2009).  This 

procedure is as follows: 

(1) Select a maximum value of 𝜆 to be considered 

(2) Run the lasso on all the data to generate a sequence of 𝜆 values to be considered 

(3) Randomly partition the data set into 𝑘 (roughly) equal subsets. 

(4) Select one of these subsets as the validation set, and aggregate the remaining 𝑘 − 1 

subsets to form the training set. 

(5) Fit the model to the training set. 

(6) Compute a goodness-of-fit statistic for this model.  In the present exercise, this is  the 

Poisson deviance ∑ (𝑦𝑚 𝑙𝑛 �̂�𝑚 − �̂�𝑚)𝑚 , where 𝑚 runs over all observations 𝑦𝑚 in the 

validation set, and �̂�𝑚 is the value fitted by the model to the 𝑚-th observation.  Note 

that this is an out-of-sample comparison. 
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(7) Repeat steps (5) and (6) 𝑘 − 1 times, in each case using a different one of the 𝑘 subsets 

as the validation set. 

(8) Average the 𝑘 goodness-of -fit statistics thus obtained and produce an average error 

and standard deviation over the folds. This is referred to as the CV error. 

(9) Select a new (lower) value of 𝜆, and repeat steps (3) to (8).  Continue until the selected 

𝜆 attains its chosen minimum value. 

Note that the results of this cross-validation process are random due to the partitioning of the 

data into k subsets. This randomness may be reduced by running the cross-validation many 

times and averaging the error curves; however, this has not been carried out here. 

At this point, one has obtained a collection of ordered pairs (𝜆, CV error), and can plot CV 

error against 𝜆.  The curve will usually take a vaguely U-shaped form, with high values 𝜆 

resulting in poor fit, and low values of 𝜆 resulting in over-fit.  The optimal value of 𝜆 may be 

taken as 𝜆 = 𝜆𝑚𝑖𝑛, that which minimizes CV error.  The model based on this value of 𝜆 will 

be referred to as the min CV model.  For the purpose of the present investigation, 𝑘 = 8. 

An alternative choice of optimal 𝜆, intended to recognize the sampling error in the CV error, 

proceeds as follows.  In step (8) of the above procedure, the standard error of the goodness-of-

fit statistic replications is also calculated.  Let the value obtained from the model defined by 

𝜆 = 𝜆𝑚𝑖𝑛 be denoted 𝑠𝑒𝑚𝑖𝑛.  The optimal value of 𝜆 is then taken as 𝜆 = 𝜆𝑠𝑒(> 𝜆𝑚𝑖𝑛), the least 

𝜆 for which CV error < 𝜆𝑚𝑖𝑛 + 𝑠𝑒𝑚𝑖𝑛.  Evidently, the requirement 𝜆𝑠𝑒 > 𝜆𝑚𝑖𝑛 implies that the 

model with 𝜆 = 𝜆𝑠𝑒 will be more parsimonious than the min CV model. 

This alternative was tested for the data sets discussed here, but the resulting models appeared 

overly parsimonious, tending to model inefficiently features that were known to exist in the 

data.  As a compromise, other intermediate models were tested, in which the optimal 𝜆 was 

selected as the least for which CV error < 𝜆𝑚𝑖𝑛 + 𝛾 × 𝑠𝑒𝑚𝑖𝑛 for various 0 < 𝛾 < 1, e.g. 𝛾 =

½, ⅓, ¼.  Again, however, such models appeared to confer no advantage over the min CV 

model.  Henceforth, only min CV models will be considered.  

 

3.2.5. Other error diagnostics

There are a couple of other metrics of fitting error of interest.  These are based on a model 

trained on the entire data set.  These are: 

• The training error, defined as the mean squared error, ∑ (𝑦𝑚 − �̂�𝑚)2 �̂�𝑚⁄𝑚  where the 

�̂�𝑚 are taken from the model trained on the entire data set, and the summation runs over 

all 𝑚 in that data set; and 

• The Akaike information criterion (AIC). 

The first of these is a goodness-of-fit test only, with no regard to the predictive power of the 

model.  The second includes an over-parameterization penalty, and so endeavours to provide 

an indication of predictive power. 

In the application of the lasso, although the CV error is taken as the most efficient criterion for 

selection of the tuning parameter 𝜆, training error and AIC are routinely computed and 

displayed in results obtained from synthetic data (Section 4.2.2). 
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4. Application of the lasso to claim modelling 
4.1. Preamble on covariate selection 

Section 4.2 studies the application of the lasso to a number of synthetic data sets, while Section 

4.3 studies its application to a well understood real data set.  But, before that, some general 

comment on covariate selection is pertinent. 

A typical claim data set will cover two independent time dimensions, accident and development 

periods (“row and column effects”), and a third dimension, payment period (“diagonal 

effects”), which is constructed from the other two.  A necessary decision in any modelling of 

the data set will be the number of dimensions to be included within covariates. 

It will usually be essential to include at least two.  Moreover, some data sets exhibit all three 

effects: accident, development and payment.  Nonetheless, inclusion of a third dimension 

should always be approached with caution.  It clearly introduces collinearity between 

covariates, and therefore the potential for an ill-behaved model and poor prediction.   

Further, the number of potential terms in a lasso linear predictor can become very large in 

models that include all possible covariates plus interactions, with obvious implications for 

computational load. 

Even when the model fits well to data, the inclusion of all three effects may lead to mis-

allocation between them.  For example, data containing SI as a payment period effect, but no 

accident period effect, may return a model in which SI is allocated partly to each.  The 

ramifications of this for forecasts require careful consideration.  More on that shortly. 

In the meantime, one may note that collateral information, external to the model itself, might 

exist with a bearing on the covariates to be included in the model.  If, for example, there existed 

such information, indicating a high likelihood of payment quarter effects but low likelihood of 

accident quarter effects, then payment quarter might be included as a model covariate and 

accident quarter excluded. 

This preliminary selection of covariates is referred to as feature selection.  It may not be 

essential in some cases, but is a means of exploiting collateral information to reduce 

computational load. 

Section 4.2 approaches the synthetic data set as if blind to any features.  It therefore employs a 

saturated lasso, in which accident quarter (AQ), development quarter (DQ) and payment 

quarter (PQ) effects are all included in the models, together with all possible interactions of a 

defined type. 

On the other hand, the real-world example of Section 4.3 comes accompanied by a legislative 

background, involving major changes to the conditions affecting claim sizes, with these 

changes taking effect from a particular accident date.  Any potential AQ effects are muted by 

the fact that this is a model of average claim sizes, and so AQ effects due to changing exposure 

are absent. 
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There are no other known major AQ effects, so feature selection has been employed, with AQ 

excluded from main effects and included in only a few very specific interactions related to the 

legislative change.  PQ effects are included in full. 

As already mentioned, decisions on feature selection carry ramifications for forecasts.  Intuition 

may be derived here from the operation of the separation method (Taylor, 1977).  Consider a 

claim triangle constructed to contain only the column and diagonal effects contained in the 

separation method and model the resulting triangle with a GLM containing only these effects.  

Call this “Model 𝐺𝐿𝑀1”.  Suppose the diagonal effect is an increase of 5% from each diagonal 

to the next.  The model will produce an estimate of this. 

Now model the same triangle with the same GLM, augmented to contain a row effect.  Call 

this “Model 𝐺𝐿𝑀2”.  This model may mis-allocate the diagonal effect, partitioning it between 

rows and diagonals, say 3% per diagonal and 1.94% per row (1.03 × 1.94 = 1.05). 

Models 𝐺𝐿𝑀1 and 𝐺𝐿𝑀2 are distinctly different.  However, their forecasts will be identical if 

the 𝐺𝐿𝑀1 forecast assumes 5% inflation per future diagonal, and the 𝐺𝐿𝑀2 forecast assumes 

1.94%. 

The point of this discussion is that it hints at the following proposition. 

Proposition.  Consider a data set containing DQ and PQ effects but no AQ effect.  Let 𝑀1 

denote a model that contains explicit DQ and PQ effects but no AQ effect, and let 𝑀2 denote 

a model that is identical except that it also contains explicit AQ effects.  Then, in broad terms, 

𝑀1 and 𝑀2 will generate similar forecasts of future claim experience if each extrapolates future 

PQ effects at a rate representative of that estimated for the past by the relevant model. ∎ 

The saturated lasso of Section 4.2 corresponds to model 𝑀2, and so forecasts from that model 

incorporate future PQ effects at rates consistent with those estimated for the past, despite that 

fact that mis-allocation might have caused their under-statement. 

The lasso of Section 4.3 largely excludes AQ effects, and so corresponds to model 𝑀1.  There 

is little scope for mis-allocation of PQ effects, and the model estimates of these are genuine.  

In accordance with the proposition, they may be extrapolated to the future at face value.  

Alternatively, the allowance for future inflation may be reduced to zero, giving estimates in the 

currency values of the valuation date (closing date of last observed diagonal).  This latter course 

is the one followed in the forecasts of Section 4.3. 

 

4.2. Synthetic data 

4.2.1. Data sets 

The lasso was first applied to several synthetic data sets.  The advantage of this is that the 

features of the data sets are known, and one is able to check the extent to which the lasso 

identifies and reproduces them.  The data sets can be manufactured to include specific features 

identifiability of which is marked by differing degrees of difficulty. 

Four synthetic data sets were constructed and analysed.  Each consisted of a 40 × 40 quarterly 

triangle of incremental paid claims 𝑌𝑖𝑗.  In each case, it is assumed that 𝑌𝑖𝑗 is subject to a log 

normal distribution with mean 𝜇𝑖𝑗 and variance 𝜎𝑖𝑗
2 : 
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𝑌𝑖𝑗 ~ 𝑙𝑜𝑔𝑁(𝑙𝑛 𝜇𝑖𝑗 − ½𝜏𝑖𝑗
2 , 𝜏𝑖𝑗

2 ) (4.1) 

where 𝜎𝑖𝑗
2 𝜇𝑖𝑗

2⁄ = 𝑒𝑥𝑝 𝜏𝑖𝑗
2 − 1 

It is assumed, other than where specifically noted, that  

𝑙𝑛 𝜇𝑖𝑗 = 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑡 (4.2) 

for parameters 𝛼𝑖 , 𝛽𝑗, 𝛾𝑡, so that (4.1) amounts to a GLM with AQ (row), DQ (column) and PQ 

(diagonal) effects. 

The cell variances are set as 

𝜎𝑖𝑗
2 = 𝐶𝜇𝑖𝑗 (4.3) 

for constant 𝐶 > 0, selected so that 𝜎𝑖𝑗
2 = (0.1𝜇𝑖𝑗)

2
 for (𝑖, 𝑗) = (1,16), i.e. 𝐶 = 0.01𝜇1,16.  

This is considered a not unrealistic variance structure, and (4.3) accords with the variance 

assumption of the Mack chain ladder model (Mack, 1993). 

Data set 1: Cross-classified model chain ladder model 

In this model, 𝛾𝑡 = 0, and so (4.2) reduces to 

𝑙𝑛 𝜇𝑖𝑗 = 𝛼𝑖 + 𝛽𝑗 (4.4) 

and the model includes accident and development quarter, but not calendar quarter, effects.  

The mean and variance structure are the same as for the cross-classified chain ladder models 

(Taylor, 2011). 

The numerical values of 𝛼𝑖, 𝛽𝑗 are: 

 

𝛼𝑖 = 𝑙𝑛 100,000 + 0.1𝑅1(𝑖) + 0.1𝑅15(𝑖) − 0.2𝑅20(𝑖) − 0.05𝑅30(𝑖) (4.5) 

𝛽𝑗 = (𝑎 − 1)𝑙𝑛 𝑗 − 𝑏𝑗 with 𝑎 𝑏 = 16, 𝑎 𝑏2 = 48⁄⁄  (4.6) 

Here the AQ effects exhibit an upward trend initially, with an increase in gradient at AQ 15, 

and then a downward trend from AQ 20.  The DQ effects follow a Hoerl curve with delay to 

payment subject to a mean of 16 quarters, and a standard deviation of √48 quarters. 

Data set 2: Addition of payment quarter effect 

The model is as for data set 1 except that term 𝛾𝑡 of (4.2) is now manifest, specifically 

𝛾𝑡 = 0.0075(𝑅1(𝑡) − 𝑅12(𝑡)) + 𝑓(𝑡) 

with 

∆𝑓(𝑡) = 0.001(𝑅12(𝑡) − 𝑅24(𝑡)) + 0.002𝑅32(𝑡) 

where ∆ is the backward difference operator ∆𝛾𝑡 = 𝛾𝑡 − 𝛾𝑡−1. 

This represents a PQ effect that increases at the rate of 0.0075 per quarter from zero at PQ 1 to 

0.0825 at PQ 12.  The rate of increase then increases linearly from 0.0010 at PQ 13 to 0.0120 
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per quarter at PQ 24; the PQ effect is then flat up to PQ 32, after which its rate of change 

increases linearly to 0.0160 per quarter up to PQ 40.  This represents SI at a continuous rate of 

0.75% per quarter for the first 12 payment quarters, at a steadily increasing rate for the next 12 

quarters, at a constant rate over the next 8 quarters, and finally at a steadily increasing rate over 

the last 8 quarters. 

Since 𝑡 is linearly related to 𝑖 and 𝑗, there is potential for multi-collinearity when predictors 

related to all three are included in the linear response, as in (4.2) (see e.g. Kuang, Nielsen & 

Nielsen (2008), Venter & Şahin 2018, Zehnwirth, 1994).  Selection of predictors that avoid 

this is often difficult in such models.  The lasso offers an automated procedure for predictor 

selection, although it obviously does not always guarantee a correct parametric description of 

multicollinearity. 

Data set 3: Addition of a simple interaction 

The model is as for data set 2 except that an additional term is added to the linear predictor 

(4.2), thus: 

𝑙𝑛 𝜇𝑖𝑗 = 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑡 + 0.3𝐻17(𝑖)𝐻21(𝑗)𝛽𝑗 

where 𝐻𝑘(𝑥) is the Heaviside function 

𝐻𝑘(𝑥) = 0, 𝑥 < 𝑘 

= 1, 𝑥 ≥ 𝑘 

This data set is the same as data set 2, except that all DQ effects 𝛽𝑗 are increased to 1.3𝛽𝑗 

wherever AQ exceeds 16 and DQ exceeds 20.  It may be verified that the interaction, while a 

large step change for affected cells, affects only 10 cells (those in the sub-triangle with vertices 

at (17,21), (17,24) and (20,21)) out of the 820 constituting the 40 × 40 triangle, so this is a 

subtle effect within the data set, and its identification by a model can be expected to be difficult. 

Data set 4: Addition of more complex interactions 

The model is as for data set 2 except that the diagonal effect there is now modified: 

𝑙𝑛 𝜇𝑖𝑗 = 𝛼𝑖 + 𝛽𝑗 +
[40 − 𝑗]

39
𝛾𝑡 

(4.7) 

where 𝛾𝑡 is as in data set 2.  This means that the strength of the diagonal effect is greatest at 

𝑗 = 1, where it is the same as for data set 2.  The strength of the effect declines linearly with 𝑗, 

until it vanishes at 𝑗 = 40.  This may be interpreted as SI that is large in respect of early claim 

settlements, and small in respect of late settlements (as well as varying over PQ).  

 

4.2.2. Results

A data set amounts to a surface of observed values, as functions of a number of explanatory 

variables.  In the present case, it is a surface of quarterly paid claim amounts as a function 𝑖, 𝑗, 𝑡.  

A priori, the function may assume any shape.   

It will be assumed that the observations can be adequately approximated by a vector space with 

a finite basis of functions 𝑋𝑟(𝑖, 𝑗, 𝑡), 𝑟 = 1, … , 𝑝 (the basis functions of the space).  Let 
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observations 𝑦𝑖𝑗 be arranged in a vector (the ordering is unimportant), and hence denoted 𝑦𝑚.  

Then observation 𝑦𝑚 will be approximated by some linear combination of these basis 

functions: 

𝑦𝑚 ≅ ∑ 𝛽𝑟

𝑝

𝑟=1

𝑋𝑟(𝑖𝑚, 𝑗𝑚, 𝑡𝑚), 𝑚 = 1, … , 𝑛 

(4.8) 

where (𝑖, 𝑗, 𝑡)=(𝑖𝑚, 𝑗𝑚, 𝑡𝑚) for observation 𝑦𝑚. 

An alternative representation of this is 

𝑦 = 𝑋𝛽 + 𝜀 (4.9) 

where 𝑦, �̂� are vectors with components 𝑦𝑚, 𝛽𝑟 respectively, 𝑋 is the matrix with elements 

𝑋𝑟(𝑖𝑚, 𝑗𝑚, 𝑡𝑚), and the approximation errors in (4.8) are represented by components of the 

vector 𝜀, assumed to be stochastic subject to a defined distribution. 

This is the same as (3.1), and so the whole discussion of Section 3 may be applied to the 

estimation of the surface in question here.  The lasso may applied, yielding a parameter estimate 

vector �̂� and a vector of fitted values 

�̂� = 𝑋�̂� 

Any application of this structure requires a selection of the set of basis functions.  Basis 

functions for the present investigation were chosen as: 

• 𝑅𝐾(𝑖), 𝑅𝐾(𝑗), 𝑅𝐾(𝑡), 𝐾 = 1,2, … ,39 for main effects; and 

• 𝐻𝑘(𝑖)𝐻ℓ(𝑗), 𝐻𝑘(𝑖)𝐻𝑔(𝑡), 𝐻𝑔(𝑡)𝐻ℓ(𝑗), 𝑘, 𝑔, ℓ = 2,3, … ,40 for interactions. 

This produces a total of 117 main effects basis functions and 4,563 interaction basis functions. 

The values of K, 𝑘, 𝑔, ℓ  were selected to remove redundant terms (for example, 𝐻𝑘(𝑖) = 1 

everywhere for 𝑘 = 1),  though these would be automatically eliminated by a lasso model in 

any case.   

The main effects basis functions generate the vector space of all linear splines in 𝑖, 𝑗, 𝑡 

respectively, with knots at integer values in their domains.  The interaction basis functions 

relate to 2-way interactions in each of which two of the three row, column and diagonal effects 

undergo a step change.  

The lasso is applied thus to the four data sets described in Section 4.2.1, using a Poisson 

distribution assumption.  This choice of distribution was essentially dictated by the lasso 

software used.  See Section 6.1 for further discussion. 

In the case of synthetic data, there is another goodness-of-fit metric of interest.  This is referred 

to subsequently as the test error, and is calculated by the same formula as in step (6) of the 

CV error (see Section 3.2.4) except that the “observations” 𝑦𝑚 are taken from the lower triangle 

consisting of future diagonals (𝑡 > 40).  These observations are generated as described in 

Section 4.2.1 with 𝛾𝑡 = 𝛾40, 𝛾𝑡 = 𝛾40 for 𝑡 > 40, i.e. nil SI in the future, neither actual nor 

forecast in the underlying data generative model. 

The test error cannot be computed in the case of real data, since the true underlying model is 

unknown and the actual experience unobserved.  It is worthy of note that, even if the actual 
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experience were available, the underlying process generating it might have undergone 

structural change so that the computed test error would be contaminated with model error. 

The results of lasso regression for each of the four data sets follow. 

Data set 1: Cross-classified model chain ladder model 

Figure 4-1 displays the CV error, training error, test error and AIC for a sequence of models 

with various values of 𝜆, decreasing from left to right.  Also shown is the number of parameters 

in the model, steadily increasing as 𝜆 decreases. 

The CV error initially decreases with decreasing 𝜆, but then increases.  It attains a minimum in 

a model involving 39 parameters.  The test error would choose a similar model, and the AIC a 

less parameterized model.  The training error, as pointed out in Section 3.2.5 is a mere 

goodness-of-fit statistic, and so declines monotonically as the parameterization of the model 

increases. 

Figure 4-1  Model selection for data set 1 

 

Note: 𝑝 = # indicates the number of model parameters 𝑝 at the corresponding model number (10, 50, 100, 150, 

190), while the selected model corresponds to number 134. 

Figure 4-2 and Figure 4-3 illustrate the accuracy with which the model tracks the known AQ 

and DQ effects included in the data, both in training data (the past, indicated by the grey area 

in the plots) and the test data (the future, white background).  The AQ effect, for example, 

measures the variation of the response variate, and the lasso fit to it, across the range of AQs.  



16 

 

In general, this fit will depend on DQ (though not in the case of data set 1), and hence the 

labelling in Figure 4-2 as “AQ effect where DQ=20”. 

Figure 4-2  Model AQ effect tracking for data set 1 where DQ=20 

 

Figure 4-3  Model DQ effect tracking for data set 1 where AQ=20 
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The values of 𝑦𝑖,20, 𝑖 = 1, … ,40 in the particular instance of synthetic data are labelled as 

“Simulated” and represented by the solid grey line. The plotted values of  “Underlying” and 

“Lasso” are 𝜇𝑖,20, �̂�𝑖,20, 𝑖 = 1, … ,40.  It is seen that the fitted values track actuals closely.  

Similar remarks apply to Figure 4-3. 

 

Data set 2: Addition of payment quarter effect 

In this case, the model involves 59 parameters.  Due to space limitations, the plots of AQ and 

DQ effects are not reproduced here.  The model’s tracking of these effects is, however, 

accurate. 

Figure 4-4 and Figure 4-5 track PQ effects at DQ=4, 14 respectively.  The PQ effects differ in 

the two cases because PQ 𝑡 at DQ 𝑗 corresponds to AQ 𝑡 − 𝑗 + 1 and, for given 𝑡, the AQ 

effects differ at 𝑡 − 4 and 𝑡 − 14.  Note that, by (4.2), the true values for PQ 𝑡 at DQ 𝑗 (𝑗 fixed) 

are given by 

𝑙𝑛 𝜇𝑡−𝑗+1,𝑗 = (𝛼𝑡−𝑗+1 + 𝛾𝑡) + 𝛽𝑗 , 𝑡 = 1, … ,40 

The value 𝛽𝑗 is constant as 𝑡 varies, but the bracketed member illustrates how the plotted “PQ 

effect” is actually a mixture of AQ and PQ effects, and that the plot will vary with the value 

selected for 𝑗. 

Figure 4-4  Model PQ effect tracking at DQ=4 for data set 2 

 

The lasso fit of PQ effects is accurate; the “Underlying” and “Lasso” trajectories in the plots 

are almost indistinguishable except at low payment quarters. 
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Figure 4-5  Model PQ effect tracking at DQ=14 for data set 2 

 

 

Data set 3: Addition of a simple interaction 

The model involves 77 parameters.  It was remarked in Section 4.2.1 that the interaction added 

to the model generating this data set affects only 10 cells out of 820, and so modelling of the 

interaction was expected to be difficult.  However, Figure 4-6 shows the lasso to be remarkably 

effective in tracking the sudden increase in paid amounts at DQ 21.  On the other hand, the 

lasso model somewhat overstates the tail of the DQ effect. 

Similarly, Figure 4-7 illustrates the sudden increase in paid amounts at AQ 17 in the AQ effect 

at DQ 24.  AQs 17 to 20 are the only ones for which observations on the increase exist.  The 

lasso recognizes the increase accurately for AQs 17 to 19,  but extrapolates a lesser increase to 

subsequent AQs. 

This seems excusable.  The data triangle contains no experience of the increase for those later 

AQs, and in fact provides no particular basis for assuming that those AQs would be subject to 

the same increase. 
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Figure 4-6  Model DQ effect tracking at AQ=20 for data set 3 

 

 

Figure 4-7  Model AQ effect tracking at DQ=24 for data set 3 

 

The chain ladder is based on an assumption that the payment delay pattern is the same for all 

accident periods.  It can therefore lead to poor modelling, and erroneous forecasting, in the case 
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of data sets contain abrupt changes in delay pattern.  This is illustrated by Figure 4-8, which 

plots loss reserves by accident quarter, as given by: 

• The lasso, where future payments are forecast as the �̂�𝑖𝑗, 𝑗 > 41 − 𝑖; 

• The chain ladder, with age-to-age factors estimated from the experience of the last 8 

PQs; 

• Actual future payments (simulated) 𝑦𝑖𝑗 , 𝑗 > 41 − 𝑖. 

The chain ladder’s age-to-age factors are influenced by the elevated experience at DQs 21 to 

24, but only slightly.  As a result, the loss reserve for each AQ after 16 is seriously under-

estimated.  As explained in connection with Figure 4-7, the lasso does recognize the increase 

for AQs 17 to 19, and most AQs from 17 onward are not under-estimated.   

The fact that this occurs despite the lasso’s under-estimation of accident quarter effect apparent 

in Figure 4-7 was investigated further, and the under-estimation found to be compensated 

elsewhere in the model.  Specifically, SI was over-estimated in the later payment quarters of 

experience, and then extrapolated into the future.  This is an example of the identifiability 

problem when AQ, DQ and PQ effects are all included in the basis functions. 

Figure 4-8  Estimated loss reserves for data set 3 

 

Note: the chainladder result for accident quarter 40 exceeds the scale of the plot. 

 

Data set 4: Addition of more complex interactions 

The model involves 53 parameters.  The main feature of this data set was SI that varied over 

both PQ and DQ.  Therefore, Figure 4-9 and Figure 4-10 plot PQ effects for DQ = 5, 15 

respectively.  These plots correspond to Figure 4-4 and Figure 4-5 for data set 2 and, as there, 
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the plotted “PQ effect” is actually a mixture of AQ and PQ effects.  In any event, the lasso 

appears to track the true data trends closely. 

Figure 4-9  Model PQ effect tracking at DQ=5 for data set 4 

 

Figure 4-10  Model PQ effect tracking at DQ=15 for data set 4 
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Of course, the ultimate purpose of the claim modelling here is forecast of a loss reserve.  For 

this reason, Figure 4-11 (top) plots the lasso loss reserve estimates, separately by AQ, compared 

with the true expected values.  The figure also includes error bars for each reserve.  These have 

been obtained as follows: 

• The simulation of the data set was replicated 500 times, generating a sample of 500 data 

sets. 

• The lasso has been applied to each replication, in each case with 𝜆 set equal to the 𝜆  

min value corresponding to the originally chosen model (strictly speaking, a path of 

decreasing values of 𝜆 values was used, each corresponding to a different model, from 

which the model corresponding to the original model’s 𝜆 min value was selected, since 

it is often faster to fit a whole path in glmnet than compute a single fit). 

Some experimentation was conducted with an alternative (and considerably more time-

consuming) approach in which the value of 𝜆 was optimized within each of 100 replications, 

and little change in results was found. 

Figure 4-11 (bottom) gives the corresponding plot for the chain ladder on the same scale. 

It is seen that: 

• Both models exhibit some upward bias, except that, for the most recent AQs, the chain 

ladder under-estimates considerably. 

• As is often the case, the chain ladder exhibits large prediction error in connection with 

the more recent AQs, whereas the lasso produces much tighter forecasts. 
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Figure 4-11  Lasso and chain ladder estimates of loss reserves for data set 4 compared to 

the underlying mean 

 

 

It may be possible to shrink the parameter set further in all four of the above examples.  The 

basis functions selected at the start of this sub-section for the modelling of column effects are 
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open-ended ramp functions.  Some number of these are required to fit the kind of curvature 

observed in Figure 4-3. 

The profile displayed there resembles a Hoerl curve, for which 

𝛽𝑗 = 𝐴 + 𝐵 𝑙𝑛 𝑗 + 𝐶𝑗 

Thus, the addition of the functions 𝑙𝑛 𝑗 and 𝑗 to the set of basis functions might lead to a more 

economical model.  The ramp basis functions could be retained to accommodate deviations 

from the Hoerl curve. 

 

4.3. Real data 

4.3.1. Data set 

As explained at the start of Section 4.2.1, synthetic data form a useful test of a model’s ability 

to detect and reproduce known (albeit complex) features.  In the case of real data, on the other 

hand, the correct model is unknown and so validation of the fitted model is less sure.  However, 

the real data set may have the advantage of challenging the model with subtle, unknown 

features that may not have been contemplated in the construction of synthetic data. 

The real data set selected for use here is drawn from a privately underwritten, but publicly 

regulated, scheme of Auto Bodily Injury Liability in one of the Australian states.  It consists of 

the claim history from the scheme commencement on 1 September 1994 to 31 December 2014.  

This totals 82 quarters if the initial month September 1994 is counted as 1994Q3. 

The data set comprises a unit record claim file, containing only finalized claims, of which 

there are about 139,000.  Each record includes inter alia the following fields in respect of the 

claim to which it relates: 

• Date of accident; 

• Date of finalization; 

• Injury severity score at finalization; 

• Legal representation status at finalization; 

• For each individual payment: 

o Date of claim payment; 

o Amount of claim payment. 

The injury severity score is the Motor Accident Injury Severity (MAIS), which assumes 

values 1 to 5 for injuries, 6 for a fatality, and 9 in the case where generally there is insufficient 

information to determine a score.  Values 1 to 5 ascend with increased severity.  Severity 5 

would usually involve paraplegia, quadriplegia, or serious brain injury.  Claim sizes vary very 

considerably according to MAIS. 

Legal representation simply notes whether or not the claimant is represented.  The great 

majority of claimants with MAIS 2 to 5 are legally represented, but MAIS 1 includes a 

substantial proportion of minor injuries for which legal representation has not been obtained.  

For the purpose of the present investigation, a new covariate maislegal has been created, 

defined as: 

maislegal = 0, if MAIS = 1 and the claimant is unrepresented; 
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= 1, if MAIS = 1 and the claimant is represented; 

= MAIS, otherwise. 

Claim payments have been summarized into a (finalized) claim size.  Each claim payment has 

been adjusted by the State wage inflation index from the date of payment to 31 December 2014, 

and all adjusted payments then summed.  This produces a claim size expressed in 31 December 

2014 dollars.  

Most claims involve a sequence of payments, but there is usually a dominant one, and it is 

usually not greatly separated in time from the finalization date.  Hence, for the purpose of the 

analysis, all payments in respect of a specific claim are regarded as made on the date of 

finalization (albeit correctly indexed for inflation).  This has some implications for the 

measurement of SI. 

Finally, the data have been aggregated into cells labelled by maislegal, accident and 

development quarter (and, by implication, payment quarter). The number of finalizations in 

each cell has also been recorded for use as a weight in the analysis.  

This step was not essential in principle, but was aimed purely at reducing the computational 

load so that a greater number of basis functions could be considered.  With an additional load, 

modelling at the individual claim level would be possible. 

Two of the authors have worked on the data set continually over a collective period of more 

than 15 years, conducting quarterly analyses.  There are a number of data complexities but, 

with this experience, the data set is believed to be well understood. 

Complexities include the following: 

(a) Claim processes undergo change from time to time.  In consequence, there have been 

occasional material changes in the rate of claim settlement. 

(b) SI experience has been typical of schemes of this type, with periods of rapid increase 

in claim sizes, punctuated by periods of quiescence. 

(c) It is apparent that SI does not affect all claim sizes equally.  The largest claims are 

largely unaffected by it.  These are claims involving the provision of income and 

medical support for life, and there is little scope for dispute over the extent of liability.  

The opposite is true of less serious claims.  These often involve soft tissue injury for 

which objective determination of severity is difficult.  In the absence of change to the 

rules of assessment, the trend in claim sizes is usually upward. 

(d) The scheme was subject to major legislative change from December 2002.  This was 

the Civil Liability Act (CLA).  The changes affected claims with accident dates after 

that date, and had the effect of elimination of many of the smallest claims, and reducing 

the cost other relatively small claims.  This caused a radical change in the distribution 

of claim sizes. 

(e) As a result of the elimination of a material proportion of claims from the scheme, claim 

management resources were released to process and settle the remaining claims earlier 

than had been the case in AQs prior to the CLA. 

(f) The reduction in claim sizes resulting from the CLA was gradually eroded in AQs 

subsequent to 2003Q1, causing further changes in the distribution of claim sizes. 
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All of these changes are incompatible with the chain ladder model, or indeed with any model 

that assumes the same payment delay pattern for all accident periods.  Some of the changes 

(specifically, (a) and (d)-(f)) are row effects, whereas some are diagonal effects ((b) and (c)).  

This creates a challenge for many models. 

In view of (a), operational time (OT), as defined in Section 2, is a much more useful metric 

of time than real development time, such as development quarters.  The OT 𝜏[𝑘] is computed 

for each claim 𝑘 according to its AQ, and attached to the relevant claim record. In the 

aggregated data, the operational time for in an (accident, development) quarter cell within a 

particular maislegal is taken as the average of the individual operational times in that cell. 

 

4.3.2. Results 

The data were aggregated by quarter, and the lasso was used to model average claim size where 

• 𝑠 = maislegal; 

• 𝑖 = AQ; 

• 𝑗 = DQ; 

• 𝑡 = PQ. 

• 𝜏𝑖,𝑗,𝑠 = OT in AQ 𝑖 and DQ 𝑗 for maislegal 𝑠; 

• 𝑦𝑖,𝑗,𝑠 = average claim size (response variate) in AQ 𝑖 and DQ 𝑗 for maislegal 𝑠; 

• 𝑛𝑖,𝑗,𝑠 = number of claim finalizations (weight variate) in AQ 𝑖 and DQ 𝑗 for maislegal 

𝑠. 

All variates here other than DQ, the response and the number of claim finalizations are 

covariates. 

The basis functions for main effects in the lasso were chosen as: 

• 𝐼(𝑠 = 𝑚), 𝑚 = 0,1,2, … ,6, 9 

• 𝑅ℓ(𝜏𝑖,𝑗,𝑠), ℓ = 0, 0.05, 0.10, … ,0.95, 1 

• 𝑅𝑇(𝑡), 𝑡 = 1,2, … ,82 

where the calendar quarters 1994Q3,…,2014Q4 are labelled 1,…,82 for convenience.   

All observations were assumed Poisson distributed, as discussed later in Section 6.1. 

The basis functions for interactions were chosen as: 

• 𝐼(𝑠 = 𝑚)𝑅𝑇(𝑡), 𝑚 = 0, … ,6,9; 𝑇 = 1,2, … ,82; 

• 𝐼(𝑠 = 𝑚)𝑅ℓ(𝜏𝑖,𝑗,𝑠), 𝑚 = 0, … ,6,9; ℓ = 0,0.05,0.10, … ,1;  

• 𝐼(𝑠 = 𝑚)𝐻ℎ(𝑖)𝐻ℓ(𝜏𝑖,𝑗,𝑠), 𝑚 = 0, … ,6,9; ℎ = 1,2, … ,82; ℓ = 0,0.05,0.10, … ,1; 

• 𝐼(𝑠 = 𝑚)𝐻𝑔(𝑡)𝐻ℓ(𝜏𝑖,𝑗,𝑠), 𝑚 = 0, … ,6,9; 𝑔 = 1,2, … ,82; ℓ = 0,0.05,0.10, … ,1. 

There are 109 main effects basis functions and 26,728 interaction basis functions.  Regression 

problems of this size are computation-intensive.  The analyses of the present sub-section were 

performed using a PC with 16Gb RAM, 2 cores, and a 2.9GHz chip using the Microsoft R 

Open 3.5.0 release.  With these resources, a single regression occupied 5 hours. 
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It should be pointed out that this regression alone is only part of the entire program of loss 

reserving.  For example, the computation of OT requires an estimate of the ultimate numbers 

of claims incurred in each AQ (see Section 2), so the estimation of IBNR counts is required as 

a preliminary exercise. 

The loss reserve estimate depends on future finalizations in respect of past AQs.  These must 

be assigned to future PQs if SI is to be accounted for correctly, so a forecast of future 

finalization counts by AQ and PQ forms another preliminary exercise.  Moreover, although the 

lasso model will have provided estimates of past rates of SI, future rates are exogenous and 

will require forecasts. 

The loss reserve consists of the ultimate cost of future finalizations (for past AQs), less the 

indexed amount already paid in respect of claims open at the valuation date (which will be 

finalized in future).  There may be other subsidiary issues to be addressed.  For example, 

finalized claims may sometimes re-open. 

Thus, the loss reserving model of this example consists of multiple sub-models.  The present 

sub-section deals with just one of those. 

The lasso model contained 94 non-zero coefficients including the intercept.  Although this is a 

moderately large number of coefficients, it should be recognised as covering the 8 distinct 

maislegal categories.  These were all modelled separately in the consulting exercise described 

in Section 4.3.1.  In this sense, the 94 parameters might be thought of as about 12 per maislegal 

model. 

In the case of analysis of real data, it is not possible to compare actual and fitted effects as in 

Figure 4-2 to Figure 4-7, Figure 4-9 and Figure 4-10, since the actual effects are unknown.  The 

following model validation diagnostics therefore compare actual and fitted total cost of 

finalization.   

For example, Figure 4-12 compares, for each value of maislegal and for each development 

quarter, the total (inflation indexed) cost of finalizations to 31 December 2014 with the total of 

the fitted costs of all the claims involved.  Note that these values, and all in subsequent figures,  

have been scaled by a constant value for confidentiality, and, in some cases,  the scaled values 

are shown on a log scale for readability.  

Attention is given in the following discussion to maislegal 1, since it is by far the largest 

category, accounting for 62.5% of all finalizations in the data set. 
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Figure 4-12  Model fit to real data by development quarter 

 

Figure 4-13 gives the corresponding plot by payment quarter.  
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Figure 4-13  Model fit to real data by payment quarter 

 

Figure 4-12 and Figure 4-13 illustrate a relatively faithful reproduction of the data by the model, 

at least in aggregate over development and payment quarters respectively.  Similarly the 

models tracks the data reasonably well by accident quarter, though there are two notable 

exceptions for maislegal=1 as may be seen in Figure 4-14 where there are differences over 

AQs 2 to 8 (1995Q1 to 1996Q4) and 35 to 40 (2003Q2 to 2004Q3). 

An anomaly in the second of these periods is not altogether surprising.  Note the mention in 

points (d) to (f) of Section 4.3.1 of legislative change from late 2002, known to have caused 

abrupt changes in the cost of claim finalizations.  Figure 4-14 (left) suggests that the model has 

smeared the abruptness over a year or two. 

Figure 4-14 (right) sheds additional light on this matter.  It is a 2-dimensional heat map of the 

ratio A/F, where A, F denote actual and fitted total finalization costs at the cell level.  Several 

features are prominent: 

(a) An abrupt change in fit is indeed apparent at AQ 34 or 35.  For 3 or 4 years after this, 

the model over-states claim costs in the early DQs. 

(b) In later AQs, this over-statement persists at a more moderate level in the first 

development year or so, but then tends to under-estimate in the second development 
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year.  This is probably explained by the changing payment pattern mentioned in point 

(e) of Section 4.3.1. 

(c) In the early AQs mentioned above, the model exhibits the reverse tendency, with over-

estimation in the first DQs, and under-estimation in the next few. 

 

Figure 4-14  Model fit to real data for maislegal=1 

 

 

4.3.3. Adjustment for special circumstances 

The legislative change discussed in Sections 4.3.1 and 4.3.2 appears somewhat troublesome in 

the abruptness of its effects, and is worthy of further discussion.  It is accommodated in the 

model by interactions of main effects with the step function 𝐻𝑘(𝑖) for 𝑘 in the vicinity of 34.  

These interactions could have been anticipated. 

Recall that the lasso applied in Section 4.3.2 used loss function (3.6) in which the same penalty 

𝜆 is applied to each covariate.  Recall also the Bayesian interpretation of the lasso in Section 

3.2.2 in which this 𝜆 relates to the reciprocal dispersion of the prior on each covariate’s 

regression coefficient.   

Such a penalty treats the 𝐻𝑘(𝑖) interactions as no more likely to be non-null in the vicinity of 

𝑘 = 34 then anywhere else, in contradiction of strong expectations to the contrary.  It would 

be possible to recognize the virtual inevitability of these interactions by using the alternative 

loss function (3.7) with 𝜆𝑟 for these interactions assuming a lesser value than for other 𝜆𝑟. 

The objective stated in Section 1 was to automate the modelling of claims experience, and the 

contemplation of 𝜆𝑟 varying with 𝑟 seems to run counter to this objective.  On the other hand, 

it would appear perverse to deliberately overlook the effects of a known material change to the 

claim environment. For this reason, we are broadly in favour of removing the penalty term 

corresponding to parameters that would track known discontinuities in the data. 
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We would also take this a step further and recommend the consideration of customized 

parameters (i.e. beyond those included in the set of features) that capture specific experience. 

These customised parameters would be included with a penalty of 0. 

In the case of the anomaly relating to the legislative change here, we have conducted a small 

side experiment by including some customized variables based on the following 

considerations: 

• The legislative change introduced a discontinuity at AQ 35 for maislegal 1. This 

suggests including a Boolean covariate for AQ 35 and higher. 

• The effect differed in the first year compared to later years. This suggests including 

some specific modelling for AQ 35-38. 

• The legislative change had the effect of removing lower value claims but leaving more 

serious claims unaffected. This translates to an increase in claim sizes at lower 

operational times but this increase gradually wears off as operational time increases. 

This suggests using variables that contain a reverse operational time spline – the spline 

is non-zero at low operational times but reduces to 0 for higher operational time terms. 

To select exact terms to be included in the model, a GLM was fitted with over-dispersed 

Poisson error and using the same covariates as selected by the lasso illustrated above.  

Additional terms were then added to deal with the special features just identified. A heat map 

similar to that in Figure 4-14 was used to guide covariate selection.  

The following custom terms were selected for inclusion in the lasso model after a short period 

of experimentation: 

• 𝐼(𝑠 = 1)𝐻35(𝑖); 

• 𝐼(𝑠 = 1)(𝐻35(𝑖) − 𝐻39(𝑖)); 

• 𝐼(𝑠 = 1)𝐻35(𝑖)(1 − 𝜏) 

• 𝐼(𝑠 = 1)𝐻35(𝑖) max(0, 0.05 − 𝜏)  

• 𝐼(𝑠 = 1)(𝐻35(𝑖) − 𝐻39(𝑖)) max(0, 0.4 − 𝜏)  

• 𝐼(𝑠 = 1)(𝐻35(𝑖) − 𝐻47(𝑖)) max(0, 0.2 − 𝜏) 

The lasso model was then fitted in the usual way, except that the 6 variates above were included 

without penalty, along with the other basis functions described in Section 4.3.1. 

After refitting the lasso, the tracking of model and experience for maislegal 1 was re-examined. 

This has improved, as is apparent from Figure 4-15. 
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Figure 4-15  Customized model fit to real data for maislegal=1 

 

 

4.3.4. Comparison of lasso and custom-built GLM predictions 

Projections from model from the previous section (i.e. the lasso model together with the custom 

modifications for the known legislative effect) were compared with those from a custom built 

GLM of the individual claim size data. This model was manually constructed by those 

intimately familiar with the data, and has previously been discussed by Taylor & Sullivan 

(2016). As discussed in Section 1, building such a model consumes a significant amount of a 

skilled resource. 

Both models are projected forward excluding SI. Comparisons of the loss reserve by accident 

quarter (on a log scale) are presented in Figure 4-16. Again payments have been scaled. 

Overall the comparison is reasonable. The results for maislegal 1 are very similar, while other 

maislegal groups are generally comparable. Note that the differences in maislegal 9 are 

magnified due to the scale of that plot. Furthermore, this class contains small numbers of 

claims. 

Evidently, the lasso, with a small amount of customization, has produced numerical results 

very close to those derived from many hours of a skilled consultant’s time.  The lasso might 

therefore be considered as effective as the consultant in the estimation of quantities such as 

average claim size, ultimate claim cost, run-off schedules, etc. 

However, the lasso model, in common with other machine learning models, is subject to the 

interpretability problem.  This manifests itself in a model that fits well to data, forecasts 

efficiently, yet is a rather abstract combination of basis functions.  A physical interpretation 

will often be possible, but may be achieved only on by means of some detailed analysis.  

While it is true that the lasso produces a more interpretable model than an ANN, for example, 

it is still the case that modelled effects may be a combination of a number of spline and 
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interaction terms. Additional work would be required to interpret these and translate them to 

specific data features, which in turn could form the basis for extrapolation to a loss reserve. 

The consultant’s modelling, on the other hand, will be more targeted at specific data features, 

and consequently less abstract and more easily interpretable. 

 

Figure 4-16  Comparison of projections under the lasso model and the custom-built GLM 

 

5. Prediction error 
Every forecast needs to be accompanied by some information on its dispersion, possibly 

standard error, but preferably the entire predictive distribution.  This can be achieved in relation 

to a loss reserve generated from a lasso model by a bootstrap of that model. 

This approach is well documented in the literature, and can be readily bolted onto the 

forecasting procedure outlined in Section 4.  In view of this lack of novelty, the bootstrap is 

not followed up numerically in the present paper.  However, the following three sub-sections 

add a few comments on each. 

To consider prediction error, let 𝑍 be the future random variable to be forecast, and let 𝐸[𝑍] =

𝜇.  Let �̂� be the forecast from the thinned lasso model.  The prediction error is 
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�̂� − 𝑍 = (𝐸[�̂�] − 𝜇) + (�̂� − 𝐸[�̂�]) + (𝜇 − 𝑍) (5.1) 

The first of the three members on the right is the error in the long-run model estimate (i.e. the 

average over many replications of the model estimate), and is the effect of the difference 

between the selected model and reality.  It is called model error.  The second member is the 

component of prediction error arising from the limited size of the data set, and the resulting 

sampling error in parameters estimates.  It is called parameter error.  The final member 

reflects the assumption that the predictand is drawn from a stochastic process, and represents 

the noise in that process.  It is called process error. 

It is usual to assume that all three components of (5.1) are stochastically independent, so that 

the mean square error of prediction (MSEP) of forecast �̂� is 

𝑀𝑆𝐸𝑃[�̂�] = 𝐸 [(�̂� − 𝑍)
2

] = 𝐸 [(𝐸[�̂�] − 𝜇)
2

] + 𝐸 [(�̂� − 𝐸[�̂�])
2

] + 𝐸[(𝑍 − 𝜇)2]  

  

= 𝑀𝑆𝐸𝑚𝑜𝑑𝑒𝑙[�̂�] + 𝑀𝑆𝐸𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟[�̂�] + 𝑀𝑆𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠[�̂�] (5.2) 

where the last three members are the mean square errors of model, parameter and process 

errors. 

 

5.1. Bootstrap of a GLM 

Bootstrap of a lasso is an extension of bootstrapping a GLM, and so some aspects of the latter 

are first recalled as background to the former. 

The application of the bootstrap to a loss reserving GLM is discussed in some detail in Taylor 

& McGuire (2016).  It is noted there that various forms of bootstrap are available, most notably 

(nomenclature varies somewhat from place to place): 

• Parametric bootstrap.  Bootstrap replications are generated by re-sampling of model 

parameters from a selected distribution (usually normal) with first and second moments 

as estimated by the GLM. 

• Non-parametric bootstrap. A bootstrap replication is generated by re-sampling of the 

data set, and the fitting of the GLM form to it.  

In these bootstrap procedures, the GLM is taken as the correct model, and so model error is not 

considered.  However, an estimate of 𝑀𝑆𝐸𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟[�̂�] may be obtained from replications of 

�̂�, and 𝑀𝑆𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠[�̂�] may be estimated by simulation of the noise. 

 

5.2. Bootstrap of lasso 

In an analogous process, a non-parametric bootstrap may be applied to the entire lasso.  The 

replications then generate a collection of different data sets, and hence possibly different 

models (i.e. different subsets of selected covariates).  Aggregation of the first two members on 

the right side of (5.1) yields 

�̂� − 𝑍 = (�̂� − 𝜇) + (𝜇 − 𝑍) (5.3) 
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Now, if it is reasonable to assume that the lasso is unbiased, then the average �̅� of �̂� over all 

replicates (and therefore over different models) will approximate 𝜇, and an approximate 

version of (5.3) is  

�̂� − 𝑍 = (�̂� − �̅�) + (𝜇 − 𝑍) (5.4) 

Then replicates of (�̂� − �̅�) can be used to estimate 𝑀𝑆𝐸𝑚𝑜𝑑𝑒𝑙[�̂�] + 𝑀𝑆𝐸𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟[�̂�].  An 

estimate of 𝑀𝑆𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠[�̂�] may be obtained in the usual way. 

The computational load from a bootstrap of the entire lasso would vary depending on the 

number of basis functions considered and the size of the data set. For example, a single run of 

the glmnet procedure for the synthetic data took 6-10 seconds while the full cross-validation 

run required approximately 3 minutes. By contrast, the run-times for the real data example were 

approximately 20 minutes and 4.5 hours, mainly due to the significantly greater number of 

basis functions. Therefore, bootstrapping using a single glmnet procedure, as described in 

relation to Figure 4-11, with cross-validation omitted, will produce acceptable computation 

times in many, though not all, cases. 

Note also that bootstrapping a lasso, as described above, would not enable partition of 

𝑀𝑆𝐸𝑚𝑜𝑑𝑒𝑙[�̂�] + 𝑀𝑆𝐸𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟[�̂�] into its two components.  This would require replications 

within replications, a form of iterated bootstrap (Hall, 2013).  A single replication, involving a 

fixed GLM, would be expanded to multiple replications of re-sampled parameter estimates 

with that model held fixed.  This would provide an estimate of 𝑀𝑆𝐸𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 for that single 

model.  Evidently, this would be even more computer-intensive, though the replications to 

estimate parameter error would run more quickly due to the constrained set of basis functions. 

Unfortunately, the above estimate of 𝑀𝑆𝐸𝑚𝑜𝑑𝑒𝑙[�̂�] would probably fall short of its true value 

in two respects. 

First, the universe of models from which any lasso model is selected is only the vector space 

spanned by the chosen basis functions.  This may be smaller than the space of all conceivable 

models. 

Second, resampling of the data set can generate only pseudo-data sets that are broadly 

consistent with the trends and features of the original data set.  For example, it is unlikely to 

generate a data set consistent with rates of SI that are uniformly double those underlying the 

original data set.  Yet such a regime of high SI might occur in future. 

Thus, the model MSE obtained from a bootstrap lasso will include only models of the future 

that broadly resemble those of the past.  This sort of distinction is discussed in some detail in 

Risk Margins Taskforce (2008), who decompose model MSE into (their nomenclature): 

• External systemic error, which includes model error induced by features that are 

possible in future data but not present in the data set; and 

• Internal systemic error, which accounts for only error in the selection of a model 

consistent with the data set. 

No model based only on claim data is likely to include allowance for external systemic error, 

so the most that one can expect of the lasso is inclusion of internal systemic error. 
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6. Further development 
6.1. Model thinning

The lasso is implemented here by means of the R procedure glmnet.  This provides a limited 

choice of error distributions.  The most appropriate available for analysis of claim experience 

is Poisson, and this has been used for initial lasso modelling.  The result is that a min CV model 

often includes some number of very small coefficients, seemingly with very little influence on 

the model. 

The statistical significance of these coefficients was tested as follows.  In the case of each data 

set considered here, a GLM was fitted to the full data set, including only those covariates 

included in the min CV lasso model and assuming, in common with the lasso, a Poisson error 

distribution.  The resulting regression coefficients do not equal those of the lasso, because the 

GLM is unpenalized.  The majority are found to be significant. 

However, the conclusion on significance fails to recognize the effect of the very restrictive 

Poisson assumption that the mean of observations equals the variance.  In practice, this can 

estimate an unrealistically low variance.  The standard errors associated with estimated 

regression coefficients reflect this variance, and can also be unrealistically low. 

This creates a very low hurdle for significance of the coefficients, and consequent over-

statement of that significance.  In order to overcome this shortcoming, an experimental GLM 

was fitted, again including only those covariates included in the min CV lasso model, but now 

assuming more realistic error distributions, either over-dispersed Poisson or gamma.   

The major effect was that the standard errors of coefficients were considerably expanded 

relative to those of the Poisson GLM, significance was reduced, and a much more economical 

model resulted.  This model is referred to as a thinned model. 

In common with other Bayesian estimators that shrink towards a prior mean, lasso estimates of 

regression coefficients are biased.  The thinned model, consisting of an unpenalized GLM, 

would mitigate this bias. 

The thinned model is preferable when it does not degrade fit or forecast performance.  

However, this was not always the case.  It usually performed almost as well as the unthinned 

model in fitting to observations.  In forecasting, it usually performed well on the real data set, 

but poorly on the synthetic, though even this was not consistently the case.     

Model thinning might be a useful area of further investigation, and it might be useful in the 

case of more highly supervised modelling.  However, in view of the uncertainty as to its 

performance, the thinned model is not recommended as a self-assembling model at this stage. 

A possible future project might consist of revisiting this question. 

 

6.2. Bayesian lasso 

The version of the lasso used in this paper is non-Bayesian.  A Bayesian version is also 

available. 
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A Bayesian interpretation of the lasso model (where the penalty term is interpreted as a 

Laplacian prior on the parameters; see equation (3.8)) permits the usage of standard Bayesian 

machinery to infer distributional properties for the parameters as well as the observation error, 

which allows a broader estimate of uncertainty. 

One common approach is to interpret the Laplacian prior as a mixture of Gaussians which 

means that the 𝛽𝑗 and their corresponding variance parameters can be estimated as a 

hierarchical model; see for instance Park and Casella (2008). This had the added advantage of 

normal distributions throughout, which is a convenient assumption for conjugacy and Gibbs 

sampling.  

The joint sampling of the distribution then allows estimation of the full posterior distribution 

of other statistics, such as the reserve implied by a set of 𝛽 estimates.  This might be valuable 

for the estimation of variability and quantiles of reserve, including allowance for internal 

systemic error.  As in the case of the bootstrap (Section 5.1), such estimates would include no 

allowance for external systemic error. 

The Bayesian approach also presents options for the estimation of the penalty term 𝜆. There 

are plug-in estimates possible using empirical Bayes approaches, or a low-information prior 

can be applied to give a posterior distribution for 𝜆, jointly with the other parameters. Again, 

see Park and Casella (2008).  

 

 

7. Conclusions 
The objective of this paper is to identify an automated system of claims experience modelling 

that will track complex data sets sufficiently well without supervision.  The lasso, with 

judiciously chosen basis functions as covariates, seems to achieve this.  This is subject to the 

issue of feature selection, discussed in Section 4.1, and which might sometimes require a brief 

preliminary investigation. 

A routine procedure has been developed, and once the basis functions have been specified, no 

parameter input nor supervision is required.  The model will self-assemble the model that is 

optimal according to the lasso criterion. 

This procedure has been applied to both synthetic and real data.  The synthetic data contain 

known complexities, and so form a control against which to assess any model.  The lasso-based 

procedure appears to identify these features and estimate that describe them reasonably 

accurately. 

The real data set relates to Auto Bodily Injury claims, and so is comparatively long tailed.  

Eccentricities of the data cannot be known with certainty.  However, as the authors have more 

than 15 years’ experience with the data set, a number of features are known with reasonable 

confidence.  Of course, real data might also contain other unknown subtleties. 

The data set contains a number of features that are awkward for traditional claim modelling 

(“traditional” here means those that stop short of a GLM framework).  They include changes 

in all three of row, column and diagonal effects.  Even within a GLM, considerable time and 
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effort is required to explore these features thoroughly, and account for them satisfactorily in a 

model. 

But the lasso-based procedure appears to identify them and model them relatively accurately.  

This reduces a claims modelling assignment from a duration of possibly several days of senior 

analyst time to a few hours of junior analyst time.  It was found that the lasso model closely 

reproduces the forecasts of a manually and expensively custom built GLM.  However, a custom 

built GLM is likely to provide a less abstract representation of the data, be more interpretable, 

and yield insight into the dynamics of the claim process with less analysis than would be 

required by the lasso for the same outcome. 

One weakness that emerged was failure of the model to recognize instantaneous material 

changes such as might result from legislation with a drop-dead date for changes.   

However, where the occurrence (though perhaps not the effectiveness nor efficiency) of such 

changes can be anticipated, as would be the case for legislation, the model is capable of 

modification in such a way as to enhance its recognition of the changes.  This aspect was tested 

in the case of real data, and found satisfactory. 

The proposed procedure is applicable to data at any level of granularity, from traditional 

aggregation to individual transaction level.  The required set of basis functions may vary from 

one application to another, and time spent in careful choice of these will probably repay itself. 

Estimation of prediction error may be performed by one of several bolt-on procedures that are 

already well known.  Of particular note is the fact that one of them, non-parametric 

bootstrapping of the entire lasso, will provide an estimate of prediction error that includes at 

least a part of model error.   

To the authors’ knowledge, no other documented loss reserving procedure does this, though 

one might conjecture that some future machine learning methods that contemplate a universe 

of alternative model forms (e.g. neural nets), will be able to do so.  

It must be said that the lasso-based procedure discussed here can be computer-intensive.  While 

a fit to an aggregate triangle data can be relatively fast, a single model fit (with cross-validation) 

to a large unit record dataset was not possible on a relatively heavy-duty PC.. 

A few cautionary comments.  First, although the model can accurately estimate past effects, 

such as variations in SI and variations in claim payment delays due to changing rates of claim 

settlement (and others), it is not an oracle.  It cannot pronounce on future rates of SI and claim 

settlement.  These must be inserted “by hand” into any forecasts. 

The unsupervised procedure suggested here amounts to a form of machine learning.  One would 

be well advised, in handing control of one’s destiny to a robot, to maintain strict surveillance 

to ensure adequate performance of the robot. 

Although an unsupervised procedure is proposed, it would be advisable to supplement it with 

strong back-end supervision.  This would consist of a number of comparisons of the model 

with the data to which it is fitted.  Examples (by no means exhaustive) appear in Sections 4.2.2 

and 4.3.2, and include actual-to-fitted heat maps, plots of actual and fitted response against 

major individual covariates (AQ, DQ, etc.), and extraction of specific model effects. 
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