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Abstract

The field of mortality risk and longevity risk and in particular the accurate forecasting

and financial management of such risks has become a topic of great interest to aca-

demics, actuaries and financial professionals. As individual life expectancies continue

to improve and the era of low equity returns and low interest rates persists the cur-

rent mechanisms for providing adequate coverage for individuals in their later years

are coming under strain. In addition the development of financial hedging products

has enabled many financial risks to be laid off and has exposed longevity risk as ar-

guably the most significant un-hedged risk in the developed world. The new visibility

of longevity risk and the constraint capacity of insurance firms and pension providers

to accommodate it has led to a need and desire to create innovative ways to lay this

risk off to new parties, namely the capital markets. This has resulted in the area of

longevity becoming a key new growth area for the capital markets who are designing

the products to be able to isolate, transfer and manage this risk.

Essential to the desire to create mechanisms to transfer longevity risk is the need

to accurately forecast mortality rates. This will ensure that new products are priced

appropriately and that a transparent market with willing sellers and buyers of the risk

can emerge. Current research in mortality modelling does not prioritise the forecasting

of mortality rates, instead it focuses on providing models that give a best fit to the

data and on providing adequate short term forecasts. It also focuses on statistical,

extrapolative time-series methods rather than engaging with the socio-economic and

epidemiological factors that may be causing mortality improvements.

In this SA0 thesis I contribute to the existing literature on modelling mortality rates

with focus given to the forecasting ability of models and to the value of socio-economic

and epidemiological information. I introduce a new extrapolative forecasting model

which improves upon the existing extrapolative models in terms of the fit quality and

more importantly the forecasting ability. I also develop a dynamic factor model of

mortality rates adopted from the economic literature which shows surprisingly good

performance when compared to the current mortality models. In chapter 4 of the thesis

ix



I statistically identify a weakness of the current extrapolative models. Namely, the ac-

celeration in mortality improvement occurring since the early 1970’s, and the inability

of current models to adequately capture this.

The second half of the thesis focuses on socio-economic and epidemiological data

and in particular the usefulness of this type of data in helping to explaining the changes

that we see in mortality rates. In chapter 5 I consider the correlation between mortality

rates and socio-economic variables across Northern Ireland and give some surprising

findings in terms of which socio-economic variables correlate well with mortality rate

changes. Finally, in chapter 6 I take socio-economic and epidemiological information

and use this to inform future forecasts of mortality rates using an adaptation of the

Girosi and King model.
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Chapter 1

Introduction

1.1 Background

Since the very earliest years people have had an interest in the human lifespan. In

modeling and predicting longevity and mortality rates and in expected future lifetimes.

Initially as a topic of general interest, later as a necessity in pricing insurances relating

to lifetime and later still to quantify some of the major risks facing the ageing devel-

oped world. Edmund Halley, better known as an astronomer, in 1693 wrote his textAn

estimate of the degrees of mortality of mankindand was probably the first to consider

a scientific approach to pricing annuity products using data on numbers of deaths. So

was born the mortality table.

Early mortality tables were deterministic and static in nature assuming no further

improvement in mortality rates over time and treating all lives as homogeneous with re-

spect to mortality. In more recent years, and as populations age more rapidly and more

stake-holders enter the market for mortality risk, greater attention has been given to the

modelling and forecasting of mortality and in particular to the uncertainty surrounding

mortality rates. Longevity risk is now seen as one of the world’s most pressing finan-

1
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cial risks as there appears to be no slow down in trend of improving life expectancy.

In 2010 the Office for National Statistics published, as part of the National Population

Projections1, projections of period and cohort life expectancy until 2035. For males,

the cohort life expectancy projection figure had improved to 94.2 for a new born in

2035, whilst the female equivalent figure had increased to 97.2. See table 1.1 for fur-

ther figures. These numbers are more astonishing when you consider that only 30 years

ago life expectancy for males and females in the U.K. were 71 and 77 respectively. In

straight terms this means life expectancy has increased by 5.5% per decade for males

and 4.5% per decade for females over the last 3 decades. More importantly, the impact

that increasing life expectancy has on individuals in terms of pension provision and on

society as a whole in terms of cost for the elderly is staggering. The International Mon-

etary Fund recently gave some food for thought on increasing life expectancy warning

that adding three years to average life expectancy could cost the UK economy 750bn

and the eurozone 4.6 trillion. Given that in the next 25 years the O.N.S. is projecting

life expectancy for a new born to increase by around 5 years from 2010 to 2035 the

issue of accurately forecasting mortality rates suddenly becomes clear.

Mortality rates are very volatile and vary from year to year and from age group

to age group as displayed by figures 1.1 and 1.2. As can be seen from the first fig-

ure. Mortality rates have declined for each age group over time but that rate of de-

cline has varied from year to year and is not the same across age groups. From the

second figure we can see the profile of mortality across age with snapshots taken at

1950,1965,1980 and 2005. What we can initially see here is that the shape of mor-

tality curve has changed little over time with perhaps the only adjustments being that

the accident hump has become more pronounced in more recent years and the gradi-

ent of the senescence orlater life mortality declining slightly. These two changes in

1The O.N.S. report can be found athttp://www.ons.gov.uk/ons/dcp171776_253938.
pdf
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Figure 1.1: Logarithm of mortality by year for U.K. males aged (a) 15, (b) 35, (c) 55,
and (d) 75.

the mortality profile suggest individuals are perhaps leading more riskier lives in their

younger years but that having survived to the older ages they are now experiencing

lower probabilities of death, perhaps due to medical advances.

What is clear from the diagrams is that mortality in the U.K. has been declining

over time and this will have an adverse effect on financing in the future. What is of

interest to academics however, is how to model the variation in mortality rates in such

a way that we capture the dynamics adequately and are able to then forecast accurately.

Answering the questions; (i) Why are mortality rates declining? and (ii) How can be

better get to grips with estimating future mortality rates? In the following subsections

we give a potted summary of some of the key contributions to mortality modelling
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Figure 1.2: Logarithm of mortality for U.K. males during the years (a) 1950, (b) 1965,
(c) 1980, and (d) 2005.

leading up to the current thinking on stochastic models of mortality rates.

1.1.1 Early mortality modelling

Early attempts to model mortality did not take account of potential future improve-

ments in mortality rates. Rather, they took current and past data and assumed that

future mortality would behave in the same way. An important step towards the devel-

opment of early age-continuous mortality models came from the early mortality laws

originating from the fitting of a mathematical formulae to the mortality data. Probably

the first attempt to mathematically model mortality with a continuous formulae was
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proposed in 1725 by Abraham De Moivre, who suggested

lx = k
(
1− x

86

)
for12 ≤ x ≤ 86

where lx is the number of individuals still alive at agex last birthday from an

original pool, l0, of individuals, andk is a normalizing constant, the assumption in

this model being that all individuals will have died by age 86. However, as Haberman

(1996) noted, a new era for the actuarial science started in 1825 with the law proposed

by Benjamin Gompertz, the pioneer of a new approach to survival modelling. As it

is well known, Gompertz’s ideas can be properly expressed in terms of what we now

call a ”force” of mortality. Denoting byµx the force of mortality, Gompertz’s law is

as follows:

µx = α exp(βx)

whereα andβ are positive parameters andx is the age.

Gompertz’s law constitutes one of the most influential proposals in the early times

of survival modelling. Actually, many contributions in the field of mortality laws,

throughout the latter half of the 19th century, generalize or proceed from Gompertz’s

ideas. Remarkable examples are given by the laws proposed by William Makeham in

1860, Wilhelm Lazarus in 1867, Thorvald Thiele in 1867 and Ludvig Oppermann in

1870.

The Gompertz model of mortality focused on older ages (beyond infant and young

adult periods were accidental deaths have a major contribution to mortality rates). This

was seen as a weakness of the model and focussing on the problem of representing the

mortality over the whole lifetime span, Thiele proposed the following function as the
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force of mortality:

µx = α1 exp(−β1x) + α2 exp(−β2(x− η)2) + α3 exp(β3x)

where all parameters are positive (non-negative) real numbers. The model can be

broken down into it’s three constituent parts. The first term on the right hand side

represents the (decreasing) mortality at very young ages (improvements in mortality

after overcoming the risks around birth). The second term represents the mortality

hump at young-adult ages (recognising that mortality at these ages has less to do with

natural deaths and more to do with lifestyle and accidental effects). The third term

(which coincides with Gompertz’s law) represents the mortality at adult and old ages.

Combining the three components together Theile hoped to capture the variability in

mortality rates across the whole lifespan. Withα1 = β1 = β2 = 0 we obtain a specific

case of the Theile model known as Makeham’s law, which can be written as follows:

µx = γ + α exp(βx)

whereα, β > 0 andγ > 0. Clearly this generalizes Gompertz’s model and is gen-

eralized by the Theile model. The two terms on the right side can be interpreted as

the background mortalityγ which is independent of age and the senscent mortality

α exp(βx) dependent on the age.

Fitting Thiele’s formula to experienced mortality is not a trivial matter (particularly

at the time it was proposed). It is worth noting that, a century later, Heligman and

Pollard (1980) proposed the same structure to model mortality odds rather than rates:

qx

px

= A(x+B)C

+ D exp
[
−E(lnx− lnF )2

]
+ GHx
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In 1932, W.F. Perks proposed a family of survival models, represented by the fol-

lowing formula:

µx =
α exp(βx) + γ

ε exp(−βx) + δ exp(βx) + 1

Settingε = δ = 0, we find Makeham’s law, which is then also a member of the

Perk’s family. Perk’s models constitute the first examples of heterogeneous modelling

in the mortality arena. It should be noted that, for usual values of the parameters, the

Perks intensity departs from the Makeham (and the Gompertz) intensity asx increases.

In particular, whilst in Makeham’s law (as well as in Gompertz and Thiele) we have

lim
x→∞

µx = ∞

whereas with the Perks model we have:

lim
x→∞

µx =
α

δ

Thus with the Makeham and Gompertz models of mortality mortality rates tail off

to zero over time, whereas with the Perks model mortality rates never reach zero but

approach a positive rateα
delta

. The asymptotic behaviour of mortality is a very impor-

tant issue when analyzing the mortality pattern at very old ages. It has been recently

observed that the force of mortality is slowly increasing at very old ages, approaching

a rather flat shape. In other words, the exponential rate of mortality increase at very

old ages is not constant, as for example in Gompertz’s law, but declines. This goes

against the view that life expectancy should have a biological limit. However, many

serious academics, e.g. James Vaupel (2005), see figure 1.3 would argue that there is

much cause to believe that life expectancy could increase indefinitely. It is with this
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level of uncertainty about the direction of future longevity that we see the proliferation

of models of mortality in the last two decades.

The linear-regression trend in figure 1.3 is depicted by a bold black line (slope =

0.243) and the extrapolated trend by a dashed grey line. The horizontal black lines

show asserted ceilings on life expectancy, with a short vertical line indicating the year

of publication. The dashed red lines denote projections of female life expectancy in

Japan published by the United Nations in 1986, 1999, and 2001. Notice the altered

UN projection between 1999 and 2001. As can be seen life expectancy has regularly

overshot forecasts.

It is also important to note at this point that increasing life expectancy is not re-

stricted to being a U.K. only issue, although the presence of a well developed annuity

market in the U.K. has made the problem more visible. Life expectancy around the

world has been increasing in a similar way to the U.K. albeit starting off from a differ-

ent position. The O.E.C.D. published a report into life expectancy at birthhttp://

www.oecd.org/social/familiesandchildren/47697608.pdf , across

O.E.C.D. countries (see figures 1.4 and 1.5) which showed that life expectancy is high

and is increasing across all developed countries.

The proliferation of models that have been developed in the last two decades have

been helpfully categorised by Booth and Tickle (2008) into one of three types of model.

• Extrapolative models - taking past data and extrapolating identified trends

• Explanatory models - modelling mortality as a dependent variable explained by

socio-economic, biological and environmental factors

• Expectations models - taking advantage of the expert knowledge of actuaries and

demographers and targeting future life expectancy at some expert held belief.

In this thesis we focus on the extrapolative and explanatory approaches to mod-
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elling mortality leaving the expectations method to the actuarial experts. In the past

the actuarial profession has relied on the expectations method of forecasting mortality

rates valuing highly their history and expertise in the area but they are now moving

more towards the extrapolative method (Continuous Mortality Investigations Bureau

2002,2005, 2006, 2007) as computing power increasing and methods for analysing

large amounts of data become more accessible. Although interestingly the latest CMI

model, CMI2011,2 retains some expectations element allowing the actuary to use his

or her expert judgement to decide on a long term reduction factor for mortality rates.

The most successful approach to modelling mortality in recent decades has been

the extrapolative method which relies heavily on data which has become more and

more available in recent years. Chapters 2 and 3 of this thesis adopt this approach

to modelling mortality rates and contribute to the existing literature on extrapolative

methods. In chapter 4 we identify a particular weakness of the extrapolative approach

using statistical methods to identify the presence of structural breaks which extrapola-

tive methods cannot deal with. A particular reason why the extrapolative approach has

become so popular becomes clear when you consider the end users of the forecasts.

The main users of mortality forecasts are actuaries and finance professionals who re-

quire the predictions to be able to price life insurance related products. This has meant

that naturally they are less keen to need an answer to the question;Why are mortality

rates improving?and have more of a tendency to want the answer to the question;

Where are mortality rates going next?. The explanatory approach has suffered in this

respect with limited work having been done academically in the area. Chapters 5 and

6 in this thesis will consider the potential of socio-economic data to contribute to the

2The CMI 2011 mortality model was created by the Institute and Faculty of Actuaries and
can be found at http://www.actuaries.org.uk/research-and-resources/
pages/cmi-working-paper-55 and a user guide for applying it can be found at
http://www.actuaries.org.uk/research-and-resources/documents/
user-guide-cmi-mortality-projections-model-cmi2011
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explanation of future mortality. In the remainder of this section we briefly summarize

the progress made in the extrapolative and explanatory literature.

1.1.2 Extrapolative modelling

In the early 1990’s researchers began to look at modelling mortality using time series

to extrapolate the time trend based on historic mortality experience. These sorts of

models make the implicit assumption that past trends identified in the data will con-

tinue into the future. They do not make any allowance for structural changes in those

trends and the consequences that might have for mortality however, they are the best

attempts that we have to date for modelling mortality. The first and most recognized of

these types of models is the Lee Carter mortality model which models the time trend

using a one factor stochastic model.

The Lee and Carter model, published in 1992, was the first attempt to model

longevity data in a stochastic fashion by fitting the past mortality data and modelling

the time trend as a stochastic process. The benefit of this for an actuary or an end user

of mortality forecasts is that the uncertainty associated with mortality forecast can also

be visualised as well as the mean or expected value. The Lee Carter model takes no

account of cause of death or any explanatory modelling of mortality. Instead it models

the data as a stochastic time series. It has become the baseline model against which all

stochastic models of mortality have since been compared.

The model was developed as a simple one factor model which ensured the plausi-

bility of projected age patterns. According to Fopuy and Haberman (2004), the Lee

Carter model was a trade off between on the one hand, the separate age-specific pro-

jections that lacked consistency and plausibility and on the other hand, the rigidity

of models projecting the parameters of a baseline model over all ages such as the

Heligman-Pollard model.
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The Lee-Carter model has a relatively simple formulation as a one-parameter fam-

ily of life tables, one for each agex. The model postulated by Lee and Carter is given

by:

ln(mx,t) = ax + bxkt + εx,t

Wheremx,t is the central rate of mortality for a life agedx for the yeart. The

model is made up from a componentax, which is independent of time and the product

of a second age dependent component,bx, and a time dependent parameterkt. The

ax term can be considered to represent the underlying mortality profile independent

of time effects and thebx term can be considered as a modulating factor adjusting

the common time improvement effectκt for each specific agex. The εx,t are error

terms representing age-specific influences that are not captured by the model. They

are assumed to be normally distributed with mean zero and standard deviationσε.

The Lee-Carter model, similar to many stochastic mortality models which followed

it, is known to suffer from an identifiability problem. For example ifbx andkt where

to solve the model then the we can see that another perfectly acceptable solution to the

model would be given by:

a(1)
x = ax + αbx b(1)

x =
bx

β
k

(1)
t = β(kt − α).

To avoid this problem, and to force a unique solution we need to impose two con-

straints on the parameters. With the Lee Carter model the natural choice of constraints,

and that used in the paper by Lee and Carter is to set the following conditions on the
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parameters:

n∑

k=0

kt = 0
n∑

k=0

bx = 1

The first of these conditions implies that for eachx the value ofax will be approx-

imately equal to the average value over time of thelog(mx,t). The second condition

ensures that the values ofax andbx are unique for eachx. When the model is fit using

Ordinary Least Squares (OLS) the parameters can be interpreted as follows:

• ax exactly equals the average trend ofln(mx,t) averaged over the time variable.

• bx represents the age-specific patterns of mortality change. It indicates the sen-

sitivity of the logarithm of mortality to changes in the time indexkt

• kt represents the time trend. The forces of mortality change according to the

overall mortality indexkt modulated by the age specific parametersbx.

The model was fitted to age-specific rates of mortality for U.S. population between

the years of 1933 to 1987. The data which included numbers of deaths,Dx,t, and

numbers of lives exposed to death,Ex,t,for lives aged x last birthday during year t

were grouped into 5 year age bands for the purpose of the fitting an forecasting of

mortality rates. Grouping ages in this way reduced the volatility of the data points and

ensured that all age groups had credible amounts of data in them.

Whilst the Lee Carter model opened up the door to stochastic modelling of mortal-

ity it had several, quite major flaws which have added to the development of a range

of alternative models. The simple nature of the model reduces its flexibility and means

that there is a simple correlation structure between projected mortality rates for dif-

ferent age groups. Since all age groups are projected using a single value forkt this

means that mortality improvements for the younger generations would be linked to
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mortality improvements for the older generations via the modulation coefficientsbx.

Also, the Lee Carter model requires a significant number of parameters. for modelling

age groups in 5 year age bands up to the 85+ aged band we require 36 parameters for

ax andbx. The Lee Carter model also ignores additional effects later identified in the

data for several countries such as the cohort effect.

In 2002 Brouhnset alproposed an alternative method to fit the Lee Carter model

using Poisson error terms rather than the Gaussian error terms used in the original Lee

Carter approach. The advantage of this becomes apparent when you consider data at

the older ages where the logarithm of the observed force of mortality at older ages is

much more variable. This is because of the smaller absolute number of deaths at older

ages making the Gaussian assumption an unrealistic one (Brouhnset al2002).

The fact that the number of deaths can be thought of as a counting variable makes

the poisson assumption a plausible one for the error terms. The model is re expressed

in this form:

Dx,t ∼ Poisson(Ex,tmx,t)

with mx,t = exp(ax + bxkt) + constant. We can then estimate the parametersax,

bx, andkt using a maximum likelihood function approach. The likelihood function is

given by:

L(a, b, k) =
∑
x,t

Dx,t(ax + bxkt)− Ex,texp(ax + bxkt) + constant

wherea = (a1, a2, . . . , aM), b = (b1, b2, . . . , bM), k = (k1, k2, . . . , kN) and there are

M data points for each calender year andN calender years of data.

Again, after fitting theax,bx andkt an ARIMA model is used to forecast the time
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trendkt, the forecastkt then being used to forecast mortality rates. The parameter

estimation by this method shows a similar trend to that when using the classical Lee

Carter approach to estimatingax, bx andkt. It is also found that the Poisson error

approach is able to account for slightly more of the variability than the SVD method.

Around the same time that Brouhns had proposed the poisson approach to mod-

elling mortality rates, Renshaw and Haberman were also producing a paper that looked

at developing the Lee Carter approach further. In their paper they proposed several ad-

justments to the original Lee Carter model including; (i) Lee Carter with the addition of

the second SVD component, (ii) Poisson linear model, (iii) Poisson linear with hinge,

(iv) Poisson bilinear (as in the Brouhns et al paper), and (v) Poisson double bilinear.

In their analysis they also concluded that the only significant difference between the

traditional Lee Carter approach and the Poisson error approach occurs in the older

age groups where the Poisson error structure explains more of the variability than the

traditional Lee Carter approach. They also explored the Generalised Linear Model

approach to mortality modelling and developed several models in this framework.

The use of a penalised spline model was proposed in 2004 (Currie 2004, CMI

2006). A P-splines model takes the form:

ln(mx,t) =
∑

θi,jBi,j(x, t)

where theBi,j are pre-specified basis functions with regularly-spaced knots and the

θi,j are parameters to be estimated. It is well known that the use of splines leads

to over parameterised models that fit the data ”too well” and the resulting mortality

surfaces are therefore extremely lumpy. This is solved by penalising the roughness

in the parameter estimatesθi,j. Smoothing in this way itself introduces additional

complications since too much smoothing in the time space leads to systematic over or
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under estimation of future mortality rates. This led Currie (2007) to develop a P-splines

model which incorporates period shocks.

In terms of fitting, the P-splines model is shown to fit the mortality data better

(Currie et al 2004) due to the local nature of the parameters it is able to adapt more

readily to variability in the mortality rates. It does this with fewer parameters than

the Lee Carter model, about 64 parameters for the P-splines model vs 231 for the Lee

Carter model (Currie et al 2004 page 292). The P-splines model also provides a much

lighter forecast of future mortality than the Lee Carter model.

Several multi-factor models have been developed that incorporate age and period

effects and which extend mortality modelling in the vain of Lee and Carter. In Renshaw

and Haberman (2003) a model was proposed which had two dependent time effects.

Their model is formulated:

ln(mx,t) = β1
x + β2

xκ
2
t + β3

xκ
3
t

whereκ2
t andκ3

t are dependent period effects.

When comparing this model to the single factor Lee Carter model using either a

gaussian or poisson error structure Renshaw and Haberman’s finding are inconclusive.

In 2006, Cairns Blake and Dowd decided to focus on mortality at the older ages

60-89 on the basis that this would be where most of the interest would lie in terms of

uncertainty. They developed a two factor model of mortality, (the CBD model) with

the first factor affecting mortality at all ages equally and the second factor affecting

mortality in a way proportionate to the age. The model itself is a stochastic version of
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the Perks (1932) model:

µx =
α exp(βx) + γ

ε exp(−βx) + δ exp(βx) + 1

and is specified as:

q̃(x, t) = 1− p(t + 1, t, t + 1, x) =
exp A1(t + 1) + A2(t + 1)(x + t)

1 + exp A1(t + 1) + A2(t + 1)(x + t)

In this modelp(t + 1, t, t + 1, x) is a probability function that has been devel-

oped along parallel lines to the interest-rate terminology. In this case the function

p(t, T0, T1, x) denotes the probability at time t that an individual, aged x at time0 and

alive at timeT0 will still be alive at timeT1.

A1(t) andA2(t) are estimated for each t using ordinary least squares on the trans-

formed mortality rates

log(
qt

pt

) = A1 + A2t + ε

They are then projected forward by modelling the future distribution ofA(t) = (A1(t), A2(t))

as a two dimensional random walk with drift. Specifically,

A(t + 1) = A(t) + µ + CZ(t + 1)

The model displays some of the signs of a biologically reasonable model of mor-

tality as defined by Cairns Blake and Dowd (2009). In particular the trend valueµ1is

negative in the fitted model indicating that mortality, as predicted by the model, is
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generally improving. The positive fitted value ofµ2 indicates that mortality rates at

higher ages are improving at a slower rate. The model does predict that morality rates

beyond age 113 are deteriorating which may be though of as an undesirable feature in

the model but the authors ignore this for the purpose of their analysis as the turning

point happens at such a late age.

The authors also choose to fit the two factor model using data over two differing

periods. Firstly, they fit the model using data from the years 1961 - 2002. They then

repeat the exercise fitting the model using data from 1982 - 2002. In this way they

demonstrate a steepening in the mortality trendµ after 1982 suggesting that mortality

improvements have been accelerating over more recent history. Looking at the cohort

aspect of the mortality model a biologically reasonable model should also demonstrate

increasing mortality rates for older generations than for younger generations. In other

words for fixed timet the functionq̃(t, x) should be increasing inx. For the two

factor model this reduces to requiring thatA2(t) remains positive. TheoreticallyA2

could become negative but Cairns et al conclude that this would not be the case, at

least for the data set on which they base the paper, since the starting point forA2

is relatively high and the drift factorµ2 is positive. The CBD model has also been

extended several times, firstly to allow for the cohort effect in a level way, secondly to

include a quadratic term in the age parameter and finally to allow for a cohort effect

which diminishes over time.

In Plat (2009) sought to bring together the positive aspects of each of these ex-

trapolative models in a unifying extrapolative model. The model maintains the good

aspects of the existing models whilst leaving out the weaker features. The result was

a four factor model which took its beginnings from the Lee-Carter model and which

added factors to capture the second age-period effect, as per the Cairnset al. (2006)

model and the cohort effect, as per the Renshaw and Haberman (2006) model. The
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innovation in the Plat model was to then add a further period factor affecting only the

lower ages and designed to allow the model to fit to the whole age range. The model

specification is given by:

ln(mx,t) = ax + κ1
t + κ2

t (x̄− x) + κ3
t (x̄− x)+ + γt−x + εx,t, (1.1)

where theax is similar to that of the Lee-Carter model and makes sure that the

overall shape of the mortality curve by age is reasonable, theκ1
t andκ2

t model the

mortality rates as in the Cairnset al. (2006) model and theκ3
t models the effects

specific to the lower ages only where(x̄ − x)+ takes the value(x̄ − x) when this is

positive and zero otherwise. Finally theγt−x models the cohort effect.

A particular problem with each of these types of model, and one which we high-

light in chapter 3 of this thesis is that of the presence of structural changes in the

identified trends in the mortality data. In many of the models above the forecasting

plausibility boils down to the first time factor,κt or κ1
t , which contributes in a major

way to the forecast robustness and reasonableness. In each of the models above this is

fitted using Box-Jenkins methods and ultimately results in a fitted random walk with

appropriate drift. The problem with this however is that it suggests that (removing

random fluctuations) the mortality improvement factor will change in a linear fashion

going forwards with the gradient of that improvement being determined by the start

and end dates of the sample data. Cairnset al(2006) identified this when creating their

2 factor model which when fitted to differing time periods showed a steepening of the

mortality improvement factor after 1982. In chapter 3 we statistically investigate this

for several of the above models using the methods of Bai and Perron (2003) to identify

structural breaks in the models.
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1.1.3 Explanatory models

The explanatory approach to modelling mortality is an under developed method, per-

haps owing to the ease with which extrapolative models can be developed. They are

based on structural or causal models of all cause mortality or specific cause mortality

and use either known risk factors associated with specific casues of death or more gen-

eral social or economic environmental factors. Thus use is made of medical, economic

and socio-demographic knowledge and information on behavioural and environmen-

tal change. The main advantage of the explanatory approach is that the modelling

approach can be used to identify significant risk factors which may then feed into pol-

icy and process in order to influence future mortality profiles. If we can identify the

risk factors influencing longevity this might also provide useful insights into a deeper

understanding of longevity. The explanatory approach to forecasting has yet to be

fully developed as the relationships between risk factors and mortality are imperfectly

understood but there has been some progress.

Many of the models used in explanatory forecasting are regression-based and there-

fore fit within the G.L.M. framework. They differ from regression-based extrapolative

models in that they incorporate explanatory variables or risk factors, which are either

lagged or forecast. When structural models are based exclusively on exogenous lagged

risk factors, forecast horizons are limited to the shortest lag time. For example, in King

and Soneji (2011) the authors lag the smoking variable in their structural model by 25

years and then forecast mortality rates 25 years into the future. In chapter 6 we carry

out a King and Soneji approach but applying exogenous variables contemporaneously

to overcome this issue.

The King and Soneji (2011) approach extends the work of Girosi and King (2008)

that developed a method of modelling mortality rates across ages, years and countries.

that method used a Bayesian hierarchical approach to information pooling. Their ob-
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jective in doing this was to make use of beliefs that data across neighbouring ages,

years or countries should show similar characteristics. For example, we might expect

that the mortality rate experienced by a 20 year old in a given year should be similar

to that experienced by the 21 year old or the 19 year old in the same year. Similarly,

the mortality rate in say 2000, for a given age should be similar to the mortality rate

for that same age in 1999 or in 2001. The hierarchical approach allows the smoothing

of mortality rates for a single country across ages and time and so produces realistic

forecasts of mortality that do not break norms in terms of age and time going forward

(for example, mortality rates increasing with age and improving in time). Considering

the logarithmically transformed mortality rate during year t for life aged x asmx,t they

set out the following model specification:

mx,t ∼ N
(
µx,t,

σ2
x

bx,t

)
(1.2)

µx,t = Zx,tβx,t

The specification only differs from a standard linear regression model in thebx,t

weighting that is applied to the variance and in the approach to defining the parameters

βx andσ2
x. The specification above provides the basic building block of the Bayesian

hierarchical approach in which we now interpret the coefficientsβx and standard de-

viationsσ2
x as random variables with their own prior distributions. The prior on the

coefficientsβx which depends on its own “hyper-parameter”θ is denotedP (β|θ) with

prior on the hyper-parameterP (θ). The prior for the variance random variableσis de-

notedP (σ). The functional form of the priors is chosen to be tractable and diffuse so

as not to influence the results with a gamma or inverse gamma density function being

used.

The prior for the coefficientβ is chosen to reflect the “similarity” belief across cross
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sections. This is formalised by introducing a density function for the prior defined as:

P (β|θ) ∝ exp
(− 1

2
Hβ[β, θ]

)
(1.3)

where

Hβ[β, θ] ≡ 1

2

∑
si,j ‖ βi − βj ‖2

θ (1.4)

where the notation‖ βi − βj ‖2
θ denotes a weighted Euclidean norm and where the

symmetric matrix s is called the adjacency matrix.

It’s entries reflect the “proximity” of cross section i to cross section j and hence

the weight put on the relationship between the coefficients of cross section i and cross

section j. Using this approach the fitted model shows forecasts that are smooth in the

age and time dimension and that do not violate the smoothness beliefs across age and

time that “may” be violated by using multiple regression methods.

Linear regression provides a useful framework for including potentially informa-

tive covariates, either a ‘cohort effect’ (e.g., a cohort’s earlier smoking patterns) or a

‘period effect’. Further by doing this within their model they also incorporate the em-

pirical regularities of smoothing by age and time imposed in this set-up. The approach

of King and Soneji (2011) was to develop a model with exogenous covariates by first

identifying the links between mortality rates and lagged covariates, specifically smok-

ing habits and obesity. They argued against using contemporaneous relationships in

favour of lagged relationships and from the literature determined the optimal lag period

to be 25 years in the case of smoking. They also argue that the additional forecasting

step required to project the exogenous variables would lead to additional uncertainty

in the model. In chapter 6 we adopt this approach but with the inclusion of more con-

temporaneous variables such as current GDP, health expenditure, alcohol consumption
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or diet.

In the following section we outline in more detail each of the chapters of the thesis.

1.2 Overview and outline

In this thesis we look at various aspects of the modelling of mortality. We introduce

several new models including the O’Hare and Li (2012) model in chapter 2 and the

O’Hare and French, dynamic factor model in chapter 3. In chapter 4 we investigate a

weakness of extrapolative mortality models, that is the inability of these models to ac-

count for structural breaks in the underlying data. We identify the structural breaks in

a range of existing models and demonstrate the improvement in forecasting as a result

of allowing for such structural breaks. In chapters 5 and 6 we consider the explanatory

approach to modelling mortality and shift the focus onto identifying exogenous vari-

ables which may impact upon mortality rates. In chapter 5 we carry out an analysis

of Northern Ireland mortality rates, linking the variation we see in mortality rates to

the exogenous measures that we have for each region. In chapter 6 we look at a wider

range of countries and identify explanatory exogenous variables for each of the coun-

tries considered, forecasting these factors to inform the future direction of mortality

rates. In the subsections below we give further details on each of the chapters.

1.2.1 Chapter 2 - modelling non-linearity of mortality

The last twenty years has seen a vast literature on stochastic mortality models. How-

ever, when the models are fitted to a wider age range 5-89 rather than 20-89 or 50-89,

the results are not satisfactory. This is mainly because the linear innovation are not

flexible enough to capture the non-linear dynamics at the lower ages, the so called

“lifestyle” mortality (accidents, drug abuse) profile. In this chapter we argue that a
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modification to the forth factor is needed to provide a better fit whilst not losing any of

the positive features of the existing models. The empirical results show that the pro-

posed model has a better fit to the actual data, is robust, and also has a better forecasting

ability.

We propose a model that combines the nice features from existing models as the

Plat (2009) did and also allows for a better fit at the lower ages. More specifically, the

model fits historical data very well, is applicable to a wider age range ages (5-89), fits

the lower ages in a non-linear way, captures the cohort effect, has a non-trivial (but

not too complex) correlation structure. The model has no robustness problems and it’s

structure remains relatively simple.

1.2.2 Chapter 3 - Dynamic factor modelling of mortality rates

In chapter 3 we apply a dynamic factor approach taken from the economic literature

and apply it to mortality data focusing on improving forecasting ability. We focus on

the short and longer term forecasting results and present improved accuracy against

a range of published models. Using techniques from macroeconomic forecasting we

propose a dynamic factor model of mortality that fits and forecasts mortality rates

parsimoniously. We compare the forecasting quality of this model and of existing

models and find that the dynamic factor model generally provides superior forecasts

when applied to international mortality data. We also show that existing multifactorial

models have superior fit but their forecasting performance worsens as more factors are

added. The dynamic factor approach used here can potentially be further improved

upon by applying an appropriate stopping rule for the number of static and dynamic

factors.
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1.2.3 Chapter 4 - Identifying structural breaks in mortality mod-

els

In chapter 4 we address statistically one of the main weaknesses of extrapolative mod-

els. namely their inability to address structural changes in mortality rates. Many

stochastic models of mortality identify linear trends in mortality rates by time, age

and cohort and forecast these trends into the future using standard statistical methods.

The modelling approaches used fail to capture the effects of any structural changes

in the trend and thus potentially produce incorrect forecasts of future mortality rates.

Here we consider a range of published stochastic models of mortality and tests for

structural breaks in the fitted mortality improvement factorκt or κ1
t . We carry out the

analysis using data from 1950 to 2000 for a range of developed countries and using

the models of Lee and Carter, Carins, Blake and Dowd, Plat, and O’Hare and Li. We

find that in almost all cases structural breaks in the time series are present and when

allowing for these the resulting forecasts are significantly different.

1.2.4 Chapter 5 - Spatial variability of mortality in Northern Ire-

land

A concern for actuaries in using national mortality rates to price insurance and pen-

sions products is the inherent heterogeneity that is present in populations. In this chap-

ter we explore this in terms of the Northern Ireland region.

Mortality rates are known to vary by geographical location and to depend on socio-

economic factors. Demographic, ethnic and socio-economic mortality factors vary by

geographical location. Regions that are in close proximity to one another are expected

to have similar mortality because of similar socio-economic factors and demographic

characteristics. In this chapter the spatial variability of Northern Ireland mortality is
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assessed using a spatial model encompassing explanatory risk factors including age,

income, employment, health and education. We include a measure of the variability

of the density of loyalist / nationalist populations and applying a similar technique to

the spatial model we employ a ”social” model using political density as an explana-

tory variable for mortality variability. Data is split by geographical region based on

super output area (SOA) and comes from the Northern Ireland Statistics and Research

Agency (NISRA).

Regressions are estimated using an hierarchical Bayes model with Markov Chain

Monte Carlo methods for mortality rates in 890 super output areas in Northern Ireland

using data from the year 2008. We demonstrate the improved fitting achieved by using

a spatial or social models explain mortality variation particularly when limited data

is available for socioeconomic factors. Deprivation factors, which also vary spatially,

reduce the need for spatial models for mortality. The modelling has implications for

pricing and risk management in life insurance companies.

1.2.5 Chapter 6 - Forecasting death rates using exogenous deter-

minants

Mortality models used for forecasting are predominantly based on the statistical prop-

erties of time-series and do not generally incorporate an understanding of the forces

driving trends. In this chapter, we identify explanatory variables for mortality vari-

ation in a number of developed countries using statistical techniques developed in

macroeconomics and finance. We consider whether the space spanned by the latent

factor structure in mortality data can be adequately described by developments in GDP,

health expenditure and lifestyle-related risk factors. These covariates are then shown

to improve forecasts when we compare the forecasting performance of our variant of
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the Bayesian hierarchical modelling approach of King and Soneji to forecast mortality

against the benchmark mortality models in the field.

1.3 Further Discussions

The chapters presented in this thesis contribute to the literature in mortality modelling

by developing a new extrapolative mortality model, widening the age range that it may

be applied to and by applying modelling methods from the field of economics to intro-

duce a new model to the mortality sphere. It also provides statistical evidence of the

inability of some of the leading extrapolative models of mortality to adequately capture

the structural breaks present in mortality rates. Particularly the acceleration in mortal-

ity improvement seen in the early 1970’s due to improved mortality at older ages. In

the later chapters of this thesis attention is drawn to the ability of socio-economic vari-

ables explain some of the variability seen in mortality rates. At a within-country level

we identify the correlations between mortality rates and quality of housing environ-

ment. At a global level we identify the ability of G.D.P., smoking habits and alcohol

intake to explain mortality rates.

Further research could be done to look at the temporal effects of socio-economic

factors at a within-country level. It is also clear that different countries are at different

positions on themortality spectrum. Further work could be carried looking at mortality

rates between countries to identify the common drivers of mortality improvements be

they medical, social or economic and to track these between countries. This may be

able to provide an opportunity to plot the future mortality path for current lagging

countries on the mortality spectrum.



Table 1.1: U.K. life expectancy from age in the year 2010, 2011, 2021, 2031 and 2035
Males Females

From age 2010 2011 2021 2031 20352010 2011 2021 2031 2035
Period

0 78.5 78.6 81 82.8 83.4 82.4 82.6 84.7 86.5 87
15 63.9 64.1 66.5 68.2 68.7 67.9 68.1 70.1 71.8 72.3
60 22.1 22.3 24.4 25.8 26.3 24.9 25.1 27 28.5 29
65 18.1 18.3 20.3 21.7 22.1 20.7 20.9 22.7 24.1 24.6
75 11.1 11.3 13.1 14.3 14.6 12.9 13.1 14.7 16 16.4
85 6 6.1 7.3 8.4 8.7 6.9 6.9 8.1 9.2 9.5

Cohort
0 90.2 90.3 92 93.5 94.2 93.7 93.8 95.2 96.6 97.2
15 73.4 73.6 75.2 76.7 77.3 77.1 77.3 78.6 80 80.6
60 25.5 25.6 26.9 28.2 28.7 28.5 28.6 29.8 31 31.5
65 21 21.1 22.4 23.5 24 23.7 23.8 25 26.1 26.6
75 12.8 13 14.3 15.3 15.6 14.7 14.9 16.2 17.1 17.5
85 6.5 6.6 8 8.8 9.1 7.3 7.4 8.9 9.8 10.1

Figure 1.3: Record female life expectancy from 1840 to the present.
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Figure 1.4: Trends in OECD life expectancy at birth: 1960-2008, female and males

Figure 1.5: Life expectancy at birth, in years, females and males, 2008



Chapter 2

Explaining young mortality

2.1 Introduction

In recent years there has been an increasing amount of attention put on the modelling

of mortality risk as a significant risk that pension providers and insurance firms are

exposed to. These development have been driven in part by the introduction of more

stringent regulation and historically low rates of interest and inflation. The later has

exposed longevity risk as being a significant risk in its own right and the development

of innovative hedging products has allowed risk holders to unbundle longevity risk

from the interest and inflation risks.

There is a significant amount of literature on stochastic modelling of mortality

rates. The impetus for the rapid development in stochastic mortality modelling started

with the often used model of Lee and Carter (1992) who modeled US male data using

a one factor time series approach. Many innovations of the Lee-Carter model have

been developed since including, Boothet al. (2002), Brouhnset al. (2002), Girosi

and King (2005), Renshaw and Haberman (2006), Cairnset al. (2006), Currieet al.

(2004), Currie (2006), H́ari et al. (2008), Tulijapurkar (2008), and Plat (2009).

29
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Many papers propose that mortality in advanced ages is influenced by the mortality

experiences at the younger age range and it is clear that the average life expectancy of a

population will be affected by experience at all ages. This cumulative effect means that

experience at the younger ages is important to consider when modelling the mortality

experience of a population. From a demographic viewpoint it is also clear that being

able to model and forecast mortality at all ages is important. Hauser and Weir (2011)

and Weir (2010) state that greater attention must be given to study designs that allow

early-life exposures, experiences, and characteristics to be included in the analysis of

outcomes in later life. Cohort effects1 have been identified as an important component

in a mortality model and yet existing models are missing significant information on

the most recent cohorts by excluding the younger ages from their models. When we

fit existing models to a wider age range starting from age 5 rather than age 20 or 50,

the results are not satisfactory2 since the linear innovations are not flexible enough to

capture the non-linear dynamics at the lower ages, the so called “lifestyle” mortality

(accidents, drug abuse) profile. In this paper we propose a mortality model that aims to

improve upon the fit quality of existing models on a wider age range whilst at the same

time not losing sight of the positive aspects of existing models. In particular, using a

wider age range introduces a non-linear profile of mortality and we aim to capture this

in a better way.

Using the data of a range of developed countries’ from 1950 - 2006 we find that the

proposed model fits the data very well, is applicable to a fuller age range and captures

the cohort effect. It also has a non-trivial correlation structure, captures the non-linear

effects at lower ages, has no robustness problems and can take into account parameter

1The cohort effect was identified in reports by the Government Actuary’s Department (1995, 2001,
2002). These reports highlighted that the generations born between 1925 and 1945 (centered on the
generation born in 1931) experienced more rapid improvement than earlier and later generations. This
feature had been noted for both males and females in the UK.

2We show later in the paper that fitting errors more than double in some cases when a wider age
range is fitted. See tables 2.6 and 2.7 model M9 for example.
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risk, while the structure of the model remains relatively simple.

The remainder of the paper is organized as follows. First, in Section 2 the back-

ground to stochastic mortality modelling is reviewed. In Section 3 an empirical com-

parison of existing models is conducted which further motivates the paper. In Section

4 a modification of the Plat (2009) model is proposed and its fitting and forecasting

performance is assessed using the mortality data of 7 different countries. Conclusions

are drawn in Section 5.

2.2 Background

Due to the increasing focus on risk management and measurement for insurers and

pension funds, the literature on stochastic mortality models has developed rapidly dur-

ing the last twenty years. A need to measure the performance quality of these models

led to the development of a range of criteria against which models could be assessed.

In this section we discuss the background to stochastic mortality modelling starting

with the criteria. We follow this with an overview of existing stochastic mortality

models up to and including the Plat (2009) model.

In order to assess the quality of a model (from both a fitting and a forecasting per-

spective) we need to have a range of metrics on which we can quantify the performance

of the model. A good set of criteria should allow us to quantify the performance of

a mortality model against a range of aspects considered to be “good qualities” for a

model of mortality rates. Cairnset al. (2011) proposed criteria against which a model

can be assessed. For example, the model must fit the existing data well, the model must

produce biologically reasonable forecasts etc. Using these criteria we can determine

how good a particular model is at fitting and forecasting mortality.

Stochastic mortality models either model the central mortality rate or the initial



32 CHAPTER 2. Explaining young mortality

mortality rate (see Coughlanet al., 2007). LetDx,t be the number of people with age

x that died in yeart, andEx,t, the exposure being the average population with agex in

the yeart, the central mortality rate3 mx,t is defined as:

mx,t =
Dx,t

Ex,t

, (2.1)

The first and most well known stochastic mortality model is that of Lee and Carter

(1992):

ln(mx,t) = ax + bxκt + εx,t, (2.2)

whereax andbx are age effects andκt is a random period effect.4 Applying the neces-

sary constraints theax are given by

ax =
1

N

N∑
t=1

ln mx,t. (2.3)

The bilinear partbxκt was then determined as the first singular component of a singular

value decomposition (SVD), with the remaining information from the SVD considered

to be part of the error structure. Theκt are estimated and refitted to ensure the model

maps onto historic data and the subsequent time seriesκt is used to forecast mortality

rates using normal time series forecasting techniques.

Among many discussions of the Lee-Carter model, Cairnset al. (2006, 2009, and

2011) summarized the main disadvantages of the model. The model has one factor,

resulting in mortality improvements at all ages being perfectly correlated (trivial corre-

lation structure). For countries where a cohort effect is observed in the past, the model

3The initial mortality rateqx is the probability that a person agedx dies within the next year. The
different mortality measures are linked by the approximation:qx ≈ 1− e−mx .

4This model was fitted to US mortality data for ages 0-110 between the years of 1933 and 1987.
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gives a poor fit to historical data. The uncertainty in future death rates is proportional

to the average improvement ratebx which for high ages can lead to this uncertainty

being too low, since historical improvement rates have often been lower at high ages.

Also, the model can result in a lack of smoothness in the estimated age effectbx.

Despite the weaknesses of the Lee-Carter model it’s simplicity has led to it being

taken as a benchmark against which other stochastic mortality models can be assessed.

There has been a significant amount of literature developing additions to, or modifica-

tions of, the Lee-Carter model. For example Boothet al. (2002), Brouhnset al. (2002),

Lee and Miller (2001), Girosi and King (2005), De Jong and Tickle (2006), Delwarde

et al. (2007) and Renshaw and Haberman (2003, 2006).

Mortality data is 2 dimensional with deaths and exposures being recorded by year

and by age. We can therefore consider the data from three different viewpoints, the age

profile (or how mortality changes from age to age), the time profile (how mortality rates

for a specific age change over time), and more recently identified, the cohort profile

(how mortality for a specific cohort of the population - those born in a particular year

- changes in relation to other cohorts). The Lee Carter model identified the interaction

between age and time through the one bilinear factorbxκt. Many of the modifications

since the Lee Carter model have sought to capture additional age-period effects or

cohort effects and they can be grouped as such.

2.2.1 Cohort effect additions

Renshaw and Haberman (2006) modified the Lee-Carter model by simply adding a

factorγt−x to capture effects that could be attributed to the year of birth(t− x),

ln(mx,t) = ax + b1
xκt + b2

xγt−x + εx,t, (2.4)
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whereκt is defined as before andγt−x is a random cohort effect.

The model does have a much better fit for countries such as the UK where a cohort

effect has been identified, however it suffers from a lack of robustness perhaps due

to the presence of more than one local maximum in the likelihood function. Among

others, for instance Currie (2006) noted that if the model was fitted using data from

1961-2000 then the parameters showed qualitatively different characteristics to those

obtained when fitting to data from 1981-2000. Furthermore, as noted by Currie (2006),

although the model incorporates the cohort effect, for most of the simulated mortality

rates the correlation structure is still trivial with the simulated cohort parameters only

being relevant for the higher ages at the far end of the projection.

Following this analysis Currie (2006) applied a simplified age-period-cohort model

of Clayton and Schifflers (1987) to mortality which removed the robustness problem

but at the expense of the fitting quality:

ln(mx,t) = ax + κt + γt−x + εx,t. (2.5)

2.2.2 Age-period effect additions

Cairnset al. (2006) observed that for England & Wales and United States data, the

fitted cohort effect appeared to have a trend in the year of birth. This suggested that

the cohort effect was compensating for the lack of a second age-period effect, as well

as trying to capture the cohort effect in the data. This led them to introduce a two factor

model of mortality,

logit(qx,t) = κ1
t + κ2

t (x− x̄) + εx,t, (2.6)
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wherex̄ is the mean age in the sample range and(κ1
t , κ

2
t ) are assumed to be a bivari-

ate random walk with drift. The two factors in this model were both period factors

with no cohort effect allowed for. This was rectified in Cairnset al. (2009), namely

capturing the cohort effect as an additional effect on top of the two age-period effects.

All these models have multiple factors resulting in a non-trivial correlation structure

which mirrors the reality that improvements in mortality rates are different for differ-

ent age ranges. A further adaptation was also created allowing for the cohort effect to

diminish over time. The main problem with these models arises from the fact that they

were designed for higher ages and so ignored the modelling of mortality at the lower

ages (for example the accident hump). Cairnset al. (2009) argue that the significant

cost associated with mortality is at the older ages and thus their modelling focused on

those ages. When using these models for full age ranges, the fit quality is relatively

poor and the projections are biologically unreasonable.

2.2.3 Age-period and cohort additions combined

Plat (2009) wanted to develop a model which maintained the good aspects of the ex-

isting models whilst leaving out the weaker features. The result was a four factor

model which took its beginnings from the Lee-Carter model and which added factors

to capture the second age-period effect, as per the Cairnset al. (2006) model and the

cohort effect, as per the Renshaw and Haberman (2006) model. The innovation in the

Plat model was to then add a further period factor affecting only the lower ages and

designed to allow the model to fit to the whole age range. The model specification is

given by:

ln(mx,t) = ax + κ1
t + κ2

t (x̄− x) + κ3
t (x̄− x)+ + γt−x + εx,t, (2.7)
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where theax is similar to that of the Lee-Carter model and makes sure that the overall

shape of the mortality curve by age is reasonable, theκ1
t andκ2

t model the mortality

rates as in the Cairnset al. (2006) model and theκ3
t models the effects specific to the

lower ages only where(x̄− x)+ takes the value(x̄− x) when this is positive and zero

otherwise. Finally theγt−x models the cohort effect.

The range of existing models described above meet most of the criteria set out by

Cairnset al. (2011) and the Plat model meets all of the criteria by it’s very design.

However, when the age range is widened to allow for the non-linear characteristics of

young mortality experience then as far as we are aware, none of the existing models

meet the above criteria adequately (although some are close). This is the starting point

of this paper.

2.3 Empirical comparison of existing models

In this section we empirically compare the existing models to see their performance

when the age range is widened to allow for the non-linear mortality experience at lower

ages. For ease of notation we will use the naming convention established by Cairnset

al. (2009). Table 2.5 in the appendix sets out the names we will use for each of the

models.

We fit the models to different countries and to different age ranges for each country.

The data sets5 used are: Male mortality data during 1950-2006 for age ranges 5-89,

20-89 and 50-89 of Great Britain (GB), England & Wales (E&W), Scotland (SCO),

United States (US), Australia (AUS), New Zealand (NZ), and The Netherlands (NL).

Although a longer history is available for some of the countries, we have used the pe-

riod 1950 - 2006 for all the countries as this data is more reliable and will allow a valid

5The data consists of numbers of deathsDx,t and the corresponding exposuresEx,t and is extracted
from: www.mortality.org, see HMD 2004.
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comparison with the results of Cairnset al. (2009 and 2011), and with Plat (2009)

who used the period 1960 - 2006. The model fit is compared using the Mean Aver-

age Percentage Error (MAPE) measure and the Bayesian Information Criterion(BIC)

measure.

The MAPE measures the average difference in absolute value betweenm̂x,t, the

estimate ofmx,t, andmx,t itself, it is defined by:

MAPE =
1

NM

∑
x,t

‖m̂x,t −mx,t‖
mx,t

. (2.8)

where we have N time dimensions (in this case N=57) and M age dimensions (in this

case M=70). The BIC measure provides a trade-off between fit quality and parsimony

of the model and it is defined as:

BIC = L(φ̂)− 1

2
K ln(P ), (2.9)

whereL(φ̂) is the log-likelihood of the estimated parameterφ̂, P is the number of

observations andK is the number of parameters being estimated.

Table 2.1 gives a comparison of the fitting results (in terms of MAPE) to the age

range 5-89. Tables 2.2 and 2.3 show the fitting results to ages 20-89 and 50-89. We

see from tables 2.1 and 2.2 that when a wide age range is used (5-89 or 20-89), the

Plat model M9 is not the best fitting model, however, if we exclude model M2, which

suffers from robustness issues, the Plat model is confirmed to be the best fitting model

over the age range 20-89. When fitting to the age ranges 5-89 and 20-89 it is important

to note that the models of Cairnset al. (2006, 2009) do not perform very well for these

age ranges, since they were designed for higher ages only. For comparison we also

fit the existing models to data between 1950 and 2006 for ages 50-89 only. Table 2.3
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shows that the Plat model still outperforms other models.

Table 2.1: The MAPE for the model fit to ages 5-89 (%)

Model M1 M2 M3 M5 M6 M7 M9
GB 6.14 3.91 6.96 21.83 16.71 12.88 7.56

E&W 6.38 4.16 7.08 21.83 16.87 13.03 7.64
SCO 10.97 9.28 12.76 19.99 18.74 15.76 14.72
US 4.58 2.96 5.43 16.08 15.59 15.20 5.65
NL 8.99 7.01 7.91 23.57 17.82 12.95 7.22

AUS 7.45 6.44 8.80 23.86 20.46 18.52 9.61
NZ 12.32 11.86 13.66 27.42 25.46 23.84 13.74

Table 2.2: The MAPE for the model fit to ages 20-89 (%)

Model M1 M2 M3 M5 M6 M7 M9
GB 14.45 3.19 14.53 16.53 9.93 7.60 3.27

E&W 14.34 3.39 14.42 16.82 10.09 7.73 3.50
SCO 15.67 6.31 15.70 16.45 10.32 8.81 6.31
US 12.47 2.46 12.53 14.07 7.92 6.30 2.76
NL 12.54 4.16 12.62 16.14 11.20 8.03 4.22

AUS 5.67 4.56 5.84 17.10 10.99 8.40 5.25
NZ 9.57 8.57 9.26 19.20 15.32 12.06 9.19

We also look at the fitting results based on the BIC. Tables 2.6, 2.7, and 2.8 in the

appendix show the BIC measures for the seven countries, based on fitting to the full

age 5-89, the 20-89 age range, and the 50-89 age range, respectively. We see from

the tables that it is unclear which model is the best performing using a BIC measure

with the Renshaw-Haberman model, M2, showing some good fitting performances,

but with models M3, M5, M6, and M9, all performing well on some countries data

sets. A particular point to note at this stage (and to motivate the discussion further), is

that by widening the age range from 20-89 to 5-89 we can see that for the Plat model

for example, the fit quality moves from3.27% on the 20-89 age range to7.56% on the

5-89 age range.

To understand why the Plat model does not perform very well for the wider age
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Table 2.3: The MAPE for the model fit to ages 50-89 (%)

Model M1 M2 M3 M5 M6 M7 M9
GB 2.86 1.75 2.00 3.87 1.93 1.531.36

E&W 2.94 1.87 2.13 4.03 2.02 1.621.48
SCO 4.05 3.33 3.17 4.57 3.29 3.142.82
US 2.21 1.47 1.61 2.52 2.09 1.871.41
NL 4.05 2.39 2.59 4.01 2.19 2.162.07

AUS 3.18 3.22 3.78 3.62 2.94 2.652.59
NZ 5.64 5.46 5.94 6.35 5.81 5.785.37

range and to motivate our further analysis, we look at male data from GB and US. At

first, it might be informative to split the data into the period effect and the age effect.

Figures 2.1 and 2.2 plot the time effect for GB and US males at ages 15, 35, 55 and

75 with each graph showing the natural logarithm of mortality between the years 1950

and 2006. We see from figures 2.1 and 2.2 that the logarithm of mortality for both GB

and US shows a markedly downward trend over time for each of the age ranges, and

the mortality looks more volatile at the younger ages, in this case the 15 and 35 year

old samples. This might be attributed to the small numbers of deaths at those ages and

the fact that deaths at the lower ages are due to a wider range of causes influenced by

“lifestyle” choices and so are not linked to general deterioration due to ill health and

old age.

Focusing on specific years and looking at the mortality effect for the whole age

range, in figures 2.3 and 2.4, we can see that a linear pattern does emerges beyond

age 25 or so, however, looking at the mortality below that age we see a very clear

non-linear pattern arising. Again this is due to “lifestyle” factors and in order to model

these effects we require more flexibility in the factors than the existing model allow.

Looking at the 4 factor model of Eq. (4.6), the design innovation was to include the

additional factorκ3
t (x̄−x)+. This factor adds, in a linear way, an additional flexibility

for ages less than the mean of the data set. In the case of Plat this would be for ages
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Figure 2.1: Logarithm of mortality by year for GB males aged (a) 15, (b) 35, (c) 55,
and (d) 75.

less than 55. Figures 2.3 and 2.4 show clearly that the logarithm of mortality for ages

below the mean of 55 are far from linear.

As we have seen from tables 2.1 - 2.3 whilst the Plat model performs relatively

well when fit to the data set from age 20, its performance dips somewhat when fitted

to the larger data set. In terms of the MAPE when looking at tables 2.1 and 2.2 we find

that when the wider age range is fitted the percentage error more than doubles across

all countries for which we have fit the model. This implies that the addition of a fourth

linear factor is inadequate when modelling mortality at lower ages. In the following

section we propose a modification to the Plat model which introduces some additional

flexibility into the model allowing it to be more adequately fitted to a wider age range.
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Figure 2.2: Logarithm of mortality by year for US males aged (a) 15, (b) 35, (c) 55,
and (d) 75.

2.4 A modification to the Plat model

In this section we incorporate the non-linear features of mortality at younger ages into

an adaptation of the Plat model proposing an alternative better fitting model. We show

the quality of the fit of the proposed model with that of the existing models by fitting to

data from a range of countries for the age ranges 5-89, 20-89 and 50-89 and for years

1950-2006.
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Figure 2.3: Logarithm of mortality for GB males during the years (a) 1950, (b) 1965,
(c) 1980, and (d) 2005.

2.4.1 The model

We model the central mortality ratemx,t as:

ln(mx,t) = ax +κ1
t +κ2

t (x̄−x)+κ3
t

(
(x̄−x)+ +[(x̄−x)+]2

)
+γt−x + εx,t, (2.10)

whereax makes sure that the basic shape of the mortality curve over ages is in line with

historical observations as in the Lee-Carter model (4.1) and theκ1
t factor represents

changes in the level of mortality for all ages. Following the reasoning in Cairnset al.

(2006), the (long-term) stochastic process for this factor should not be mean reverting.

Theκ2
t factor allows changes in mortality to vary between ages reflecting the historical
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Figure 2.4: Logarithm of mortality for US males during the years (a) 1950, (b) 1965,
(c) 1980, and (d) 2005.

observation that improvement rates can differ for different age classes andκ3
t models

the effects specific to the lower age only as in the Plat model (4.6). The adjusted

coefficient ofκ3
t is designed to capture some of the non-linear effects observed at the

lower ages, the “quadratic lower age effect”6. Finally theγt−x models the cohort effect

in the same way as the models of Currie (2006) and Cairnset al. (2009) and Plat

(2009). The proposed model (2.10) has 4 stochastic factors, and so has a relatively

simple structure similar to the Plat (2009), Currie (2006) and the Cairnset al. (2006)

6We also look at the more general caseln(mx,t) = ax + κ1
t + κ2

t (x̄ − x) + κ3
t

(
(x̄ − x)+ +

a[(x̄−x)+]2
)
+ γt−x + εx,t where the parameter “a” was included to test a range of different quadratic

coefficients. However, we found that the fit quality did not vary much, on both BIC and MAPE for
non-zero values of “a”, and we therefore focus on a model with a parametera = 1. Results of general
“a” are available on request.
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models.

Historical data indicates that the dynamics of mortality rates at lower ages (up to

age 40 / 50) whilst still showing a downward trend over time does show much more

variation around the trend. This can be attributed in part to the small number of deaths

and in part to the nature of deaths at these ages, the so called “lifestyle” mortality

factors (smoking, drug abuse, alcohol abuse, car accidents and violence) for example.

In the Plat model the factorκ3
t was added. In model (2.10) we modify the coefficient

of κ3
t to capture the non-linear dynamics observed in the historical data.

The factorκ1
t shows a trend and is fitted with a non-stationary ARIMA process.

The factorsκ2
t andκ3

t allow the model to have a non-trivial correlation structure be-

tween ages. Fitting a non-stationary ARIMA-process for these factors could result (in

some scenarios) in projected scenarios where the shape of the mortality curve over

ages is not biologically reasonable. Therefore, a stationary (mean reverting) process

will be assumed for these factors. The process for the cohort effect factorγt−x should

not have a trend since we should not expect cohort effects to improve year on year.

Therefore, a trendless mean reverting process will be assumed forγt−x.

As with all stochastic mortality models, the mortality model proposed above has an

identifiability problem, meaning that different parameterizations could lead to identical

values forln(mx,t). However, this can be resolved by setting identifiability constraints.

As the model has the same time series structure to that of the Plat (2009), following an

approach of Cairnset al. (2009, model M6), we have

1.
∑c=cl

c=c0
γc = 0

2.
∑c=cl

c=c0
cγc = 0

3.
∑

t κ
3
t = 0

wherec0 andc1 are the earliest and latest year of birth to which a cohort effect is fitted,
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andc = t − x. These constraints are the same as for the Plat(2009) model as is the

rationale behind the choice of the constraints.

Fitting methodology — The original method by which to fit such a stochastic

model was to use SVD as used in Lee and Carter (1992). Brouhnset al. (2002)

described an alternative fitting methodology for the Lee-Carter model in which the

number of deathsDx,t is modeled as a Poisson distribution with parameter(Ex,tmx,t)

wheremx,t is the mortality rate we are estimating. The main advantage of the Brouhns

et al. (2002) approach over the SVD approach is that it accounts for the heteroscedas-

ticity of the mortality data for different ages. Indeed this method has been used more

commonly, see for example Renshaw and Haberman (2003, 2006) and Cairnset al.

(2009), Plat (2009). We adopt this approach and model the number of deaths by

Dx,t ≈ Poisson(Ex,tmx,t). The parameters of model (2.10) are estimated by maxi-

mizing the log-likelihood function7:

L(φ; D, E) =
∑
x,t

Dx,t ln[Ex,tmx,t(φ)]− Ex,tmx,t(φ)− ln(Dx,t!). (2.11)

Besides estimates forax, the fitting procedure described above leads to time series of

estimations ofκ1
t , κ2

t , κ3
t , andγt−x. After fitting the model we take the fitted values

for the time series and fit suitable ARIMA-processes.

2.4.2 Comparison of fit quality with existing models

To evaluate whether the proposed model fits historical data well, we fit the model to the

data sets described in Section 3. We also fit the model to the three different age ranges,

5-89, 20-89 and 50-89 to show the flexibility of the proposed model. The fitting quality

7We used an adaptation of the R-code of the software package “Lifemetrics” which is an open
source toolkit for measuring and managing longevity and mortality risk, designed by J.P. Morgan, see
http://www.lifemetrics.com and http:// www.r-project.org/.
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for each of the countries, using a MAPE and BIC measure are presented in table 2.4.

Table 2.4: MAPE and BIC results for model M10

Country MAPE BIC
5-89 20-89 50-89 5-89 20-89 50-89

GB 5.88 2.77 1.29 -28326 -21887 -13148
E&W 6.05 2.79 1.37 -27549 -21634 -13074
SCO 11.88 2.79 2.76 -18586 -15768 -10096
US 4.14 2.31 1.35 -50487 -29998 -18727
NL 6.11 2.67 1.99 -19586 -16729 -10601

AUS 8.14 2.65 2.48 -22466 -18327 -10956
NZ 13.65 2.69 5.39 -17272 -14714 -9433

When a wider age range is used the logarithm of mortality is no longer relatively

linear. However, when comparing the results with table 2.1 (Excluding the results

from model M2,the Renshaw-Haberman model, because of robustness problems) we

see that this non-linearity is captured adequately by the quadratic lower age effect in

the proposed model. Across all countries considered in this paper the proposed model

fits the data better than the previous best fitting models. Looking at the results when

compared with table 2.2 the performance of the model is still very good when com-

pared with the leading stochastic models of mortality. Comparisons with the results

of table 2.3 show that the model still outperforms the existing stochastic models for

the age range 50-89. As the improved specification has been done within a 4 factor

framework this model has a similar structure to the previously best performing model

on a fitting measure, namely the Plat model. Thus the model remains relatively par-

simonious and this is reflected in the BIC measures in table 2.4 when compared with

tables 2.6, 2.7, and 2.8 in the appendix.

The goodness of fit of stochastic mortality models can be evaluated by analyzing

residuals of the models, Dowdet al. (2010a) applied the t-test, variance ratio test, and

the Jarque-Bera test among others to six stochastic mortality models (M1, M2, M3,

M5, M6 and M7) using the English and Welsh male mortality data. We carried out
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similar tests for model M10 using US and GB data. Results8 of these tests show that

the proposed M10 model performs adequately when compared to those in the Dowdet

al. (2010a).

Fitting the ARIMA processes— In the remainder of this subsection, we focus on

the populations of GB and US males and on fitting to the age range 5-89. After fitting

the model to the population data the next step is to select and fit suitable ARIMA-

process to the time series’ ofκ1
t , κ2

t , κ3
t , andγt−x. The fitted parametersκ1

t , κ2
t , κ3

t ,

andγt−x for GB males are given in figure 2.5 and for US males are given in figure 2.7.

The estimates for theαx parameters are given in figure 2.6 and figure 2.8. The figures

shows that the pattern of the important parameterκ1
t is well-behaved. The patterns of

the other parameters all reveal some autoregressive behavior. Since the factorκ1
t drives

a significant part of the uncertainty in mortality rates, its relatively regular behavior (for

this particular dataset) will also show in the relatively narrow confidence intervals.

The parameters for the Plat model are plotted in the appendix as figures 2.11, 2.12,

2.13 and 2.14 for comparison purposes. They show that the qualitative characteristics

of the parametersκ1
t , κ2

t , κ3
t , andγt−x remain unchanged with the more general model

specification.

It is commonly assumed that the time series driving the dynamics, namelyκ1
t

should be fitted with an ARIMA(0,1,0) time series. For the other parameters, which

show some autoregressive behavior, we have fit them with ARIMA(1,0,0) processes as

in Plat (2009). It is also commonly assumed (see Renshaw and Haberman (2006), CMI

(2007) and Cairnset al. (2011)) that the process forγt−x is independent of the other

processes, so the parameters of this process can be fitted independently using Ordi-

nary Least Squares. The other processes can be fitted simultaneously using Seemingly

Unrelated Regression.

8The results are available upon request.
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Figure 2.5: Estimated values of (a)κ1
t , (b) κ2

t , (c) κ3
t , and (d)γt−x based on GB males

aged 5-89 between years 1950 and 2006.

2.4.3 Forecasting

This section shows the simulation results and results of robustness tests for the pro-

posed mortality model.

Using the fitted ARIMA processes and the fitted values forax andγt−x (see figures

2.5, 2.6, 2.7 and 2.89), future mortality rate scenarios can be constructed using Monte

Carlo simulation. Figures 2.9 and 2.10 show simulation results for ages 15, 35, 55 and

75 for GB males and US males.

For higher ages, the widths of the confidence intervals are broadly similar as the

9The fitted values forax andγt−x for England & Wales, Scotland, Netherlands, Australia and New
Zealand are available in the appendix in figures 2.15 and 2.16.
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Figure 2.6: Estimated values ofax based on GB males aged 5-89 between years 1950
and 2006.

models of Plat (2009) and Cairnset al. (2011) confirming the results are biologically

plausible. The results for younger ages (15 and 35) also seem plausible, where the

observed historical variability is reflected in the wider confidence intervals.

Recall that some models suffer from a lack of robustness, for instance the Renshaw-

Haberman model is not robust for changes in range of years. The model proposed in

this paper is tested for robustness by fitting the model to data from 1975-2006. In

doing this we are looking to observe that the qualitative characteristics of the fitted pa-

rameters have not changed because the fitting period is different. We are not looking to

show that the trend direction is unchanged, or that the actual forecasts are unchanged.

It is a characteristic of these sorts of models that the forecasted trend will to an extent

be dependent on the period over which the model has been fitted to the data. Given

that it is likely the trend forecast will be different when fit to the period 1975-2006

compared to 1950-2006, it is inevitable, for all models, that the simulation results will

be somewhat different.

Figures 2.17 and 2.18 in the Appendix plot the fitted parameters for GB and US

data from 1975-2006. The illustrations show that the estimated parameters do not show

significantly different qualitative characteristics when fitted to a different data set. The
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Figure 2.7: Estimated values of (a)κ1
t , (b) κ2

t , (c) κ3
t , and (d)γt−x based on US males

aged 5-89 between years 1950 and 2006.

conclusion is that the proposed model is robust for the fitting periods given above.

Furthermore, backtesting (as in Dowdet al. 2010) of the model has been carried

out, meaning that the model is fitted to historical data, 1950-1999 in this case, and the

forecast results are compared with the actual observations for the period 2000-2006.

The results are illustrated in figure 2.19 in the Appendix where we can see that the

proposed model performs adequately.

We have shown so far that the proposed model produces plausible results and they

seem robust. Plat (2009) came to the same conclusion for model M9 and Cairnset al.

(2011) came to the same conclusion for the models of Currie (2006) and Cairnset al.

(2006, 2009), M7. The models of Cairnset al. (2006, 2009) are designed for higher
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Figure 2.8: Estimated values ofax based on US males aged 5-89 between years 1950
and 2006.

ages, so will not produce plausible results for lower ages. Compared to those models

the proposed model has the advantage that it does produce plausible results for a full

age range.

Compared to the model of Currie (2006) the proposed model has the advantage

that it has a non-trivial correlation structure. This is important because often insurers

and pension funds have different type of exposures for younger or middle ages (term

insurance, pre-retirement spouse option) than for higher ages (pensions, annuities).

Aggregating these different types of exposures can only be done sufficiently if the

model has a non-trivial correlation structure. Assuming an almost perfect correlation

between ages, as in the Currie (2006) model, will possibly lead to an overstatement

of the diversification benefits that arise when aggregating these exposures. Compared

to the model of Plat (2009) the proposed model produces plausible forecasts for the

lower age range (below age 20) for which the Plat model was not designed.
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Figure 2.9: Log mortality rates from 1950-2006 followed by forecasting results 2006
- 2026 (mean and 95% confidence intervals) for ages (a) 15, (b) 35, (c) 55, and (d) 75
for GB males.

2.5 Conclusions

In this paper we identify and address a limitation of the Plat (2009) model and previous

stochastic mortality models. This limitation is in the inability of existing models to

adequately fit mortality rates at the lower ages due to the non-linear dynamics at the

lower ages, the so called “lifestyle” mortality profile. We believe that it is important

to be able to factor in such mortality rates into a single mortality model because of

the cumulative nature of mortality and from a demographic viewpoint it is clearly

important to be able to model and forecast mortality rates at all ages. The proposed

model has the additional flexibility to fit to the mortality rates of a wider age range,
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Figure 2.10: Log mortality rates from 1950-2006 followed by forecasting results 2006
- 2026 (mean and 95% confidence intervals) for ages (a) 15, (b) 35, (c) 55, and (d) 75
for US males.

5-89. In particular, the model captures the non-linear profile of mortality at lower ages.

We show that the model has a better fit for the range of countries considered in this

study. We have also shown that the model does not lose any of the benefits of the

previous stochastic models.

The results of this analysis have exposed the weakness of previous models when

trying to fit to non-linear features of the data and shows that a more non-linear flexibil-

ity is needed to capture the mortality profile, particularly at lower ages. To develop this

area further we now need to address the “lifestyle” factors affecting mortality rates in

this age range. These may be affected by policy, social, environmental and economic
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pressures suggesting that a future approach may be to model the underlying causes

rather than by trend forecasting.
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2.6 Appendix: Additional Figures and Tables

Table 2.5: The names of stochastic mortality models

Name Model and Name
M1 Lee and Carter (1992)

ln(mx,t) = ax + bxκt + εx,t

M2 Renshaw and Haberman (2006)
ln(mx,t) = ax + b1

xκt + b2
xγt−x + εx,t

M3 Currie (2006)
ln(mx,t) = ax + κt + γt−x + εx,t

M5 Cairnset al. (2006)
logit(qx,t) = κ1

t + κ2
t (x− x̄) + εx,t

M6 Cairnset al. (2009) with cohort effect
logit(qx,t) = κ1

t + κ2
t (x− x̄) + γt−x + εx,t

M7 Cairnset al. (2009) with cohort and quadratic age effect
logit(qx,t) = κ1

t + κ2
t (x− x̄) + κ3

t ((x− x̄)2 − σ2
x) + γt−x + εx,t

M9 Plat (2009)
ln(mx,t) = ax + κ1

t + κ2
t (x̄− x) + κ3

t (x̄− x)+ + γt−x + εx,t

M10 Quadratic effect model
ln(mx,t) = ax + κ1

t + κ2
t (x̄− x) + κ3

t

(
(x̄− x)+ + [(x̄− x)+]2

)
+ γt−x + εx,t

Note: The model M4 and M8 are not included in our analysis. The M4 is a P-splines
model developed in Currie (2006), it is of a structurally different nature to the remaining
stochastic models. The M8 in Cairnset al. (2009) with diminishing cohort effect is a
modification of the M5, it was primarily designed for ages over and above 50. The M10
is the model that we propose in this paper.
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Table 2.6: The BIC for the model fit to ages 5-89

Model M1 M2 M3 M5 M6 M7 M9
GB -38228 -28854 -34181 -150856 -96992 -57365 -33640

E&W -36686 -28315 -32984 -136658 -88876 -53211 -32295
SCO -20960 -20633 -20787 -29413 -25752 -22671 -20998
US -72612 -43997 -69820 -552628 -271679 -258323 -66989
NL -24914 -22122 -22516 -55568 -37711 -26912 -22178

AUS -24340 -23217 -25594 -82648 -44443 -29848 -25692
NZ -17842 -18288 -18154 -31360 -23208 -22149 -18284

Table 2.7: The BIC for the model fit to ages 20-89

Model M1 M2 M3 M5 M6 M7 M9
GB -33926 -24684 -27031 -91937 -58540 -39770 -24921

E&W -32516 -24236 -26558 -83889 -54516 -37511 -24551
SCO -18326 -17904 -17575 -22881 -19994 -18897 -17689
US -64565 -37863 -56350 -368252 -143067 -97548 -43425
NL -20928 -19012 -18980 -32420 -26601 -21424-18778

AUS -20833 -19909 -21449 -57681 -30301 -23740 -20697
NZ -15282 -15714 -15484 -22794 -18177 -16394 -15818



Table 2.8: The BIC for the model fit to ages 50-89

Model M1 M2 M3 M5 M6 M7 M9
GB -20246 -15074 -16493 -26013 -15756 -14874-14834

E&W -19591 -14891 -16301 -25094 -15524 -14817-14759
SCO -11394 -11247 -11050 -11675 -11111 -11146 -11259
US -29981 -20581 -22653 -35419 -27749 -22562 -21598
NL -13344 -11902 -11910 -13009-11684 -11786 -11909

AUS -12337 -12187 -12864 -12798 -12324 -12306 -12278
NZ -9534 -9873 -9801 -9698 -9847 -9993 -9984
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Figure 2.11: Estimated values of (a)κ1
t , (b)κ2

t , (c)κ3
t , and (d)γt−x based on GB males

aged 5-89 between years 1950 and 2006 for the Plat model.
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Figure 2.12: Estimated values ofax based on GB males aged 5-89 between years 1950
and 2006 for the Plat model.
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Figure 2.13: Estimated values of (a)κ1
t , (b)κ2

t , (c)κ3
t , and (d)γt−x based on US males

aged 5-89 between years 1950 and 2006 for the Plat model.
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Figure 2.14: Estimated values ofax based on US males aged 5-89 between years 1950
and 2006 for the Plat model.
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Figure 2.15: Estimated values ofax based on ages 5-89 for countries (a) Australia, (b)
England and Wales, (c) Scotland, (d) New Zealand and (e) Netherlands.
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Figure 2.16: Estimated values ofγt−x based on year of birth 1865-1955 for coun-
tries (a) England and Wales, (b) Scotland, (c) Netherlands, (d) Australia and (e) New
Zealand.
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Figure 2.17: GB fitted parameters (a)κ1
t , (b) κ2

t , (c) κ3
t , and (d)γt−x with data from

1975-2006.
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Figure 2.18: US fitted parameters (a)κ1
t , (b) κ2

t , (c) κ3
t , and (d)γt−x with data from

1975-2006.
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Figure 2.19: Log mortality rates from 1950 - 2006 plotted with 95% confidence inter-
vals from 2000-2006 based on fitting from 1950-2000. Plots show ages (a) and (b) 15,
(c) and (d) 35, (e) and (f) 55, and (g) and (h) 75 for countries GB and US respectively.



Chapter 3

A dynamic factor approach to

mortality modelling

3.1 Introduction

Defined benefit pension schemes receive contributions from individuals over their

working life. In exchange they provide a pension in retirement for the lifetime of

those members. The pension scheme trustees will invest contributions to generate a

return and draw from their total funds to make pension payments as and when they

are necessary. There are three major risks faced by a pension provider when offering

such a product which are interest rate risk, inflation risk and longevity risk. An annu-

ity product is a promise to pay a series of payments to an individual for their lifetime

and it is priced incorporating each of these risks (see Dicksonet al,2009). The pricing

of longevity risk relies on accurate mortality forecasts. In this paper, following Forni

et al. (2005) we propose a dynamic factor model of mortality which provides more

accurate forecasts than commonly used benchmark models.

Interest rate risk exists since members’ benefits are defined in advance and so the

65
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contributions received plus any investment return have to be sufficient to cover these

benefits. If interest rates fall below a forecasted level then the funds of the scheme may

not grow sufficiently large to be able to cover the benefits promised and the trustees

may no longer be able to pay those benefit. Inflation is a risk since many defined ben-

efit pension schemes offer benefits that are protected in real terms. This means that

during periods of high inflation the benefits that must be paid will be higher. The risk

absorbed by the pension provider is that the assets held in the fund will grow equally

as the benefits during periods of high inflation. Financial innovation in the areas of

interest rate and inflation derivative markets have led to interest rate and inflation risk

becoming less of an issue for pension providers since those risks can now be success-

fully hedged against using appropriate investment strategies. Since pensions are paid

for the lifetime of a member the amount of funds paid out to an individual will be

directly associated with the lifetime of that individual. Longevity risk is the major un-

hedged risk faced by many providers of annuities and pensions. Due to the increased

visibility of longevity risk and secular trends in life expectancy, there has been a pro-

liferation of mortality models in the literature (e.g. Lee and Carter, 1992 ; Cairns et

al., 2006 ; Currie, 2006 ; O’Hare and Li, 2012).

The significance of longevity risk and recognised capacity issues within the tra-

ditional financial institutions has resulted in the process of transferring longevity risk

through the traditional route becoming prohibitively expensive. This has led to the cap-

ital markets, who have historically had little involvement with longevity risk, recognis-

ing longevity risk as a potential market. Longevity risk is also seen to be relatively un-

correlated with the more traditional financial risks managed by the capital markets and

so it offers diversification opportunities. The potential size of the market in longevity

risk is huge. For example, recent deals involving longevity include Rolls Royce who

entered a£3bn longevity swap deal with Deutsche Bank in 2011 ; British Airways
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who entered a£1.3bn deal with Goldman Sachs in 2010 and again in 2011 and Pilk-

ington Glass who entered a£1bn with Legal and General in 2012. For a review of the

development of the international longevity market see Cairnset al(2006a), Barrieuet

al(2010), Blakeet al(2011).

Longevity hedging products are priced according to forecasts of mortality rates.

Therefore underpinning the development of a successful market in longevity is the

development of accurate and robust models of mortality rates that fit the data well and

that can be used to forecast mortality rates accurately. The existing literature in the

field is limited in this respect as many papers do not address the forecasting aspect

of their models adequately. In this paper we propose a model of mortality rates that

outperforms the existing models in the literature on several measures of forecastability.

We fit the model to a range of countries using data from 1950-1990 and forecast the

model rates from 1991-2006 testing forecasts against actual mortality rates. We repeat

this for a range of stochastic models that are standard in the literature for comparison.

The remainder of the paper is organized as follows. In Section 2, we discuss

longevity risk and the development of hedging products. We also discuss the existing

stochastic models in the literature. In section 3, we discuss the data that we are using to

carry out our analysis. Section 4 discusses the dynamic factor modelling methodology

in the context of modelling mortality rates. In Section 5 we explain why this approach

is appropriate for forecasting mortality and fit this model to mortality data from 6

different countries (USA,UK, Netherlands, France, Australia and Japan). We examine

the forecast performance of the dynamic factor model unlike many other studies which

emphasize the fit quality of their models. We compare results from this model with re-

sults from the seminal Lee Carter mdoel, a Lee Carter variant with a second factor for

older ages and a Lee Carter variant with a cohort effect as well as additional factors.

We then attempt to develop an ex-ante rule for selecting the numbers of dynamic and
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static factors to improve performance. Conclusions and the implications for pricing

are discussed in Section 6.

3.2 Context

3.2.1 Longevity risk

The risks associated with lifetime can be broken down into two types. Unsystematic

mortality risk is the risk that the actual number of deaths in a given population will

deviate from the anticipated number of deaths. This risk can be partly diversified away

by increasing the population size if we assume that individual lifetimes are indepen-

dent of each other. However, catastrophic mortality shocks due to violent storms or

epidemics cannot be diversified away. The second type of risk, systematic mortality

risk or longevity risk, is the risk that future mortality rates evolve in a different way to

that anticipated.

Quantifying these two different types of risk is important from a risk management

perspective for different stakeholders. For example, insurance firms writing large num-

bers of life policy business will take a keen interest in potential catastrophic events and

the associated catastrophic mortality risk as this may directly affect their outgo. In con-

trast, given the persistently improving trend in expected lifetimes, life annuity writers

will be particularly interested in minimising longevity risk.

Innovations in longevity risk started in the early 2000’s with the theoretical devel-

opment of the longevity bond by Blake and Burrows (2001) and with an adaptation of

the catastrophe bond, traditionally applied in the inflation linked securities space, to

mortality data. In the former, the longevity bond is designed to mitigate the longevity

risk faced by an annuity provider i.e. the risk that future longevity trends have been

mispriced into the annuity product. In the latter, the product innovation is designed
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with a relatively short lifespan, say three years, and the insured is covered for the event

of a catastrophic change in mortality experience over the short period, for example,

from a pandemic that wipes out a significant proportion of life assurance policyhold-

ers.

At the same times as these theoretical developments were taking place trades in-

volving the transfer of longevity risk were beginning to take place in the market. The

first of these were longevity bond based (the EIB / BNP Parabas longevity bond) and

were less successful. However, catastrophe bonds deals were successful (Swiss Re 3

year catastrophe bond) and mortality swap trades have also been relatively success-

ful. The size of these trades has been significant and the increasing frequency with

which they are taking place all point towards an appetite to innovative around this risk.

Developments by several parties (J.P.Morgan, Lifemetrics; Goldman Sachs, QxX.LS;

Deutsche Bank, Xpect Age) are now focused on standardising products so that a fluid

market in longevity risk can be created. A more detailed summary of the developments

in this respect can be found in Blakeet al (2011).

3.2.2 Existing stochastic mortality models

Stochastic mortality models either model the central mortality rate,mx,t or the initial

mortality rate,qx,t (see Coughlanet al., 2007)1. Let Dx,t be the number of people with

agex that died in yeart, andEx,t, the exposure being the average population with age

x in the yeart, the central mortality ratemx,t is defined as:

mx,t =
Dx,t

Ex,t

, (3.1)

1The initial mortality rateqx is the probability that a person agedx dies within the next year. The
different mortality measures are linked by the approximation:qx ≈ 1− e−mx .
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The seminal stochastic mortality model is that of Lee and Carter (1992) which is

given by:

ln(mx,t) = ax + bxκt + εx,t, (3.2)

whereax andbx are age effects andκt is a random period effect. Applying identifying

constraints theax are given by:

ax =
1

N

N∑
t=1

ln mx,t. (3.3)

The bilinear partbxκt was then determined as the first singular component of a

singular value decomposition (SVD), with the remaining information from the SVD

considered to be part of the error structure. Theκt are estimated and refitted to ensure

the model maps onto historic data and the subsequent time seriesκt is used to forecast

mortality rates using ARIMA time series forecasting techniques.

Cairnset al. (2006, 2009, and 2011) summarized the main disadvantages of the

Lee-Carter model. The model has one factor, resulting in mortality improvements at

all ages being perfectly correlated (trivial correlation structure). For countries where a

cohort effect is observed in the past, the model gives a poor fit to historical data. Also,

the model can result in a lack of smoothness in the estimated age effectbx. Despite

the weaknesses of the Lee-Carter model its simplicity has led to it being taken as a

benchmark against which other stochastic mortality models can be assessed.

Mortality data is two dimensional with deaths and exposures being recorded by

year and by age. We can therefore consider the data from three different viewpoints,

the age profile (or how mortality changes from age to age), the time profile (how
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mortality rates for a specific age change over time), and the more recent approach, the

cohort profile (how mortality for a specific cohort of the population - those born in a

particular year - changes in relation to other cohorts).

Several survey papers comparing the various models of mortality rates have been

published, see for example: Booth and Tickle (2008), Cairnset al(2011). In particular,

these identify the extrapolative approach of Lee Carter and its variants as having been

the most successful. Variants of the Lee Carter model allow for cohort effects and

add additional factors to account for the behaviour of mortality among particular age

groups (Cairns et al., 2006 ; Plat, 2009). The structure of these models is outlined in

table 3.1. For a more thorough review of these models and other variants, the reader is

referred to O’Hare and Li (2012).

We have benchmarked our model against these models since they have been the

most successful strand of extrapolative mortality modelling and between them capture

the young and older age effects as well as the cohort effects.

3.3 Data

The data that we use in this paper comes from the Human Mortality Database.2 The

data available for each country includes number of deathsDx,t and exposure to death

Ex,t for lives agedx last birthday during yeart. We can use this to gain a proxy for the

central mortality rate for lives agedx during yeart as:

mx,t =
Dx,t

Ex,t

(3.4)

2This can be found at http://www.mortality.org/. The database is maintained in the Department
of Demography at the University of California, Berkeley, USA, and at the Max Planck Institute for
Demographic Research in Rostock, Germany.
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Due to the exponential nature of mortality rates we model the logarithmically trans-

formed central mortality rates. We defined this asyx,t = ln mx,t.

Data is available going back to the mid nineteenth century in some cases but we

have restricted this study to data from 1950-2006 and to six countries representing a

geographical spread around the globe. Specifically, we fit the models to data between

1950-1990 and forecast in sample from 1991-2006 reporting the performance on U.K.,

U.S., Netherlands, France, Japan, and Australia. We focus on the age range 20-89

for several reasons. Firstly, the papers and models upon which we have based our

comparisons are also fitted to this age range. Secondly, and as identified by Currie

(2011), data at the older ages provide additional problems in terms of the reliability of

the data. Indeed in several cases mortality rates determined using older data appear to

fall sharply beyond age 95.

3.4 Methodology

The method we propose is a simplified dynamic factor model which is equivalent to

using a Lee-Carter model but estimating the common factor in two steps : (i) by es-

timating the common covariance among age-specific mortality rates in the frequency

domain and then (ii) by down-weighting age-specific mortality rates not following

common patterns. This method is consistent under much more realistic conditions

than allowed for in Lee-Carter.

The Lee-Carter model can be treated as a Principal Component model with one

component and other researchers have used this understanding to generalise the model

by extracting a larger number of components (Yang et al., 2010). We propose to gen-

eralise the model instead by taking account of the dynamic structure of mortality data

using dynamic factor modelling (Forniet al, 2005; hereafter FHLR). The approach has
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been traditionally used in forecasting macroeconomic indicators and is increasingly

also used in macroeconomic analysis (Breitung and Eickmeier, 2006). This approach

represents a generalisation of the traditional static factor model, building on the dy-

namic exact factor models of Geweke (1977) and Sargent and Sims (1977); the static

approximate factor model of Chamberlain and Rothschild (1983) and the dynamic ap-

proximate factor model of Stock and Watson (2002).

Static factor analysis is characterised by extraction of contemporaneous co-movements

in a vector of standardised datayt = [y1t, . . . ,yNt]
′ and is of the form

yt = ΛFt + ξt (3.5)

whereFt = [F1t, . . . ,Frt]
′,the idiosyncratic componentξt = [ξ1t, . . . , ξNt]

′ and the

factor loadingsΛ = [λ1, . . . , λN]′ for λi = [λi1, . . . , λiN]′. The estimator forΛ is

consistent for a fixed number of variables,N andT → ∞ as long asE(ξtξ
′
t) = Σ =

σ2I.The model is static in the sense thatyt is related contemporaneously withFt butFt

itself can be a dynamic process i.e.Ft = B(L)ft whereB(L) is a vector of dynamic

factor loadings (Bai and Ng, 2007).

The FHLR approach to dynamic factor analysis uses adynamic approximatefactor

model by which we mean (i) an approximate factor model where the idiosyncratic

errorsξt are allowed to be weakly correlated and (ii) a dynamic factor model where

the common factors are loaded onto the variables through a lag structure which is

assumed finite. The model is:

yt = B(L)ft + ξt (3.6)

whereft = [f1t, . . . , fqt]
′ andB(L) is a matrix whose(i, j) entry isbij(L), a poly-

nomial in the lag operator. The dynamic model therefore is similar to a static factor
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model where the set ofr static factors are lags ofq dynamic factors. In the empirical

work carried out in this paper, we use the smallest number of factors possible i.e.r = 1

andq = 1. In this case, the model reduces toyt = BFt + ξt for B = [b1, ..,bN]′

which has one parameter for each age as in the static factor Lee Carter model. How-

ever, in the static case, factors are estimated by an eigenvalue decomposition of the

data covariance matrix, while the dynamic factor approach uses an eigenvalue decom-

position of the data spectral density matrix leading to more efficient estimates.

First, the lag-k covariance matrices for the common component,Γχ
k, and the id-

iosyncratic component,Γξ
0, are estimated using a frequency-domain analysis i.e. ex-

plainingyt by cycles of different frequency. The factor space is then estimated by a

process equivalent to extracting static factors from data transformed by down-weighting

variables with large idiosyncratic components. Using the contemporaneous idiosyn-

cratic covariancêΓξ
0 estimated in the first step, standard principal components are ex-

tracted from the transformed vectorỹt = (Γ̂0
ξ
)−1/2yt. A fuller description is given in

the appendix and in FHLR.

The estimation procedure is consistent under the following assumptions:

(i) The idiosyncratic errorsξt = [ξ1t, . . . , ξNt]
′ can be serially correlated but

must be stationary.

(ii) They may also be heteroscedastic and weakly cross-correlated (i.e. ”finite

clusters of correlation”).

(iii) The factorft and idiosyncratic errorsξt may also be correlated.

To apply this approach to the context of mortality modelling, letDx,t denote the

number of deaths in a population at agex and periodt andEx,t the corresponding
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exposure. We define mortality rate

yx,t = ln mx,t = ln(
Dx,t

Ex,t

). (3.7)

To make the data stationary we take the first difference∆yx,t and standardizezx,t =

∆yx,t−µx

σx
. Forecasts are then generated by cumulatively summing the estimated change

in (log) mortality as

ŷx,T+h|T = yx,T + ∆̂yx,T+1|T + . . . + ∆̂yx,T+h|T (3.8)

Similar to the assessment of forecasting in GAD (2001), the prediction accuracy at

horizonh is evaluated using the following three measures:

• A measure of overall bias: the mean percentage error over all ages from 20 to

89 inclusive

E1h
y =

1

70 ∗ h

x=89∑
x=20

h∑

k=1

ŷx,T+h|T − yx,T+h

yx,T+h

(3.9)

• A measure of the magnitude of the error : the mean absolute percentage error

(MAPE) over all ages from 20 to 89 inclusive

E2h
y =

1

70 ∗ h

x=89∑
x=20

h∑

k=1

|ŷx,T+h|T − yx,T+h|
yx,T+h

(3.10)

• A measure of the standard deviation of the error : the root mean square of the

percentage error.

E3h
y =

√√√√ 1

70 ∗ h

x=89∑
x=20

h∑

k=1

( ŷx,T+h|h − yx,T+h

yx,T+h

)2

(3.11)
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Percentage errors are preferred in each measure so as to make the error size indepen-

dent of the size of the mortality rate.

In the context of mortality modelling, the FHLR dynamic approximate factor model

represents an improvement over simply extracting static factors from the data as

(i) By being approximate it allows the component of age-specific mortality rates

not explained by common factors to be correlated across a subset of ages (cross-

correlation) and across time (serial correlation). This is reasonable under the

plausible assumption that there are unidentified drivers affecting mortality only

for subsets of the population e.g. improvements in geriatric care for the very

elderly or alcohol consumption among young men.

(ii) By being dynamic it allows for a small number of core factors that are driving

mortality changes for every age but with possibly different lags. This would

capture cohort effects due to early life effects, educational improvements or the

young being quicker to adapt behaviour.

(iii) By projecting on an estimate of the common component it fully exploits the

dynamics of the data by using all contemporaneous and lagged covariances in

death rates across the ages considered.

(iv) By using generalised principal components to extract the common factor

it down-weights data which is not associated with the common trend and this

should provide more efficient estimates.

3.5 Results

In this section we discuss the characteristics of data that we would expect a dynamic

factor model to be able to capture, demonstrate the presence of these characteristics
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in our mortality data and compare forecasting results of existing models against the

dynamic factor model. Models are fitted to the years 1950 - 1990 and ages 20-89

and forecast from 1991 to 2006 for male death rates in United Kingdom (UK), United

States (US), Australia (AUS), France (FRA), the Netherlands (NTH) and Japan (JPN).

The data are first transformed to be stationary. Panel Unit root tests are provided

in Table 3.2. For all countries it is clear that the null hypothesis of non-stationarity

is rejected when the data is first-differenced. In levels, tests indicate non-stationarity

except when a trend term is added to the ADF regression but no lagged terms are added

to account for error autocorrelation. It therefore seems reasonable to first difference

the data to ensure stationarity as required by FHLR.

D’Agostino and Giannone (2007) state that a dynamic factor model would give a

reasonable representation of the data if the data displayed the following characteristics,

(i) strong co-movements in the data,

(ii) a rich dynamic structure, and

(iii) variation in the amount of idiosyncratic variance.

In the first instance therefore, we will examine U.S. mortality data for those aged

20-89 over the period 1950-1990 for these patterns taking each one in turn. All of the

mortality models reviewed in section 2 contain a common factor component (e.g.κt in

Lee-Carter orκ1
t ,κ

2
t ,andκ3

t in Plat) reflecting the consistent finding that death rates for

different ages tend to follow common secular trends. It should therefore be clear that

there should be co-movements in the data over time. This can also be seen in the sec-

ond row of table 3.3 where a standard principal components analysis (PCA) has been

performed on the data which has first been transformed to be stationary3. If the data

are contemporaneously cross-correlated then extracted factors should capture much of

3The natural logarithm of the data was first-differenced and standardised.
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the variation in the data. The percentage of variation explained is given for models

with one through to ten factors and in all cases the amount of variance explained by

the common factors is substantial. The first principal component explains 29% of the

variation in the data while ten factors explain 72% of the variation. Mortality at each

age is therefore strongly associated with trends over time that are common to all ages.

To check if there is a rich dynamic structure we also give the percentage variation

explained by one to ten dynamic factors in the third row4. It can be seen, first of all,

that a much smaller number of dynamic factors are required to capture the variation in

the data e.g. three dynamic factors capture approximately the same amount of variance

as nine static factors. If we extracted factors until 95% of the total variance of the data

was explained5 we would require ten dynamic factors and twenty-eight static factors.

This indicates that it may be possible to parsimoniously represent large numbers of

static factors by a linear combination of lags of a small number of dynamic factors

justifying the representation in (11).

Mortality rates for each age have different levels of association with these common

factors. Allowing for one dynamic factor, the percentage of the variation in mortality

rates not explained by the common factor is calculated for each age. The results are

graphed in figure 3.1. The variation is clear: while 57% of the variation in mortality

rates at age 52 is unexplained only 23% of the variation at age 77 is not captured by

the dynamic factor. The variation in signal to noise observed indicates that the FHLR

dynamic factor approach of correcting estimates of common factors by suppressing in-

formation from those variables with the highest idiosyncratic errors will provide more

efficient results. This is analogous to corrections for heteroscedasticity in ordinary

least squares by using weights inversely proportional to the error variance.

4As in D’Agostino and Giannone (2007), we usetrace(Γ̂χ
0 )

trace(Γ̂0)
as our measure of the percentage of

variance explained wherêΓχ
0 is estimated by the first q dynamic factors

5This rule is advocated by Joliffe (1986) to determine when to stop extracting factors.
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Generally, the simplest dynamic factor model provides a good fit to US male mor-

tality data. The correlation coefficient between the actual and forecast first differences

of log mortality rates over ages 20-89 is 0.52. However, as we have argued above, an

exact fit to the data is not necessarily helpful in improving the accuracy of predictions.

Forecasts and actual mortality rates at all ages are compared in figure 3.2 below. An

overprediction is indicated by a value greater than 1 and an underprediction by a value

less than 1. The general pattern is that younger age mortality rates are overpredicted,

middle age mortality rates are underpredicted and older age mortality forecasts are

quite accurate. Progressing from left to right, forecasts get worse the further into the

future we try to predict. For example in 2006, the forecast for age 32 is 53% higher

than the actual mortality rate in that year and the forecast mortality rate for age 49 is

16% lower than the actual mortality rate.

Other models also have large forecast errors. Looking at mortality rates for all

ages together, the measures of forecasting quality E1-E3 described in section 4 are

calculated below in tables 3.4-3.6 using data from all countries. The most accurate

forecast is highlighted in bold. Considering the E1 measure of forecasting bias which

measures the average forecast error, we see that in all cases except Japan forecasting

models overestimate mortality rates. The dynamic forecasting model is best in three

out of the six countries considered while Lee-Carter is best in the USA and UK and

Plat is best for Japan. In the latter case the Plat model which incorporates a second

age-period effect, cohort effects and younger age-period effect is vastly superior to

all others. The additional younger age period effect here appears to be modelling

a dramatic improvement in younger age mortality which is not correlated to general

trends in mortality. The Cairns model is the most biased in all countries.

Considering the E2 measure of forecast error which measures the magnitude of

difference between forecasts and actual rates, the magnitude of the forecast error can
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be seen to be roughly an inverse function of population size and is consequently largest

for Australia and the Netherlands. With this measure, the dynamic model is best for

all countries except the USA. The improvement in percentage error from using the

dynamic model instead of the Lee-Carter model for the UK is substantial at almost

5%. For Japan, the improvement is more slight. The Cairns and Plat models are

generally worse with the former being wildly inaccurate. The low level of forecast

error in the Lee-Carter model for the UK and the Plat model for Japan indicated by E1

disguises the true level of inaccuracy of forecasts seen in E2 indicating underestimates

and overestimates are negating each other to give a low bias estimate. Whereas E2

measures the average absolute error, E3 measures the root mean square of the error.

On this measure, the dynamic model is best for most countries.

Taking all error measures together across all countries, the more parameterised

models (Cairns and Plat) generally give worse forecasts. Much of the justification for

adding additional parameters to models in the literature reviewed above relies on the

goodness of fit over the period of estimation. The results given in this paper highlight

the importance of testing the ability to forecast instead of goodness of fit particularly

when the development of long term longevity hedging products is dependent on accu-

rate forecasts. The dynamic factor model gives superior forecasts everywhere. For the

Netherlands, France and Australia the dynamic factor model is both less biased and

more accurate (regardless of the measure). In the US, UK and Japan the dynamic fac-

tor model is generally more accurate than all other models with lower average absolute

error and root mean square error but is more systematically biased. When developing

hedging products based on forecasts of mortality rates the issue of low bias and high

absolute error (for example caused by recurring over and underestimation of mortality

rates), as measured by a low E1 and high E2 measure, is a particularly serious one. For

example, a longevity swap priced using a mortality model which may be unbiased but
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which produces estimates which fluctuate around the actual mortality profile would

lead to larger transactions and costs associated with the larger errors between actual

and predicted mortality. The alternative of a more bias model which has a low absolute

error, as measured by a high E1 and low E2, will result in a lower level of transactions

and associated costs. This issue partly contributes to the lack of appeal in long term

hedging of longevity risk and potentially rules out the use of models which suffer from

large absolute errors.

To investigate short term and longer term forecast accuracy we follow the rolling

origin approach proposed by Shanget al (2011). The fitting period is initially set to

1950-1990, and then we compute one-step-ahead (i.e. forecasting the 1991 mortality

rate) and ten-step-ahead point forecasts (i.e. the 2000 mortality rate). Forecast er-

rors E1 - E3 are computed as before. We then increase the fitting period by one year

(i.e. 1950-1991) and compute one-step-ahead and ten-step-ahead forecasts again. This

process is repeated until we have one-step and ten-step ahead forecasts for 2006. The

results are shown in tables 3.7 - 3.12. In the short term, the dynamic factor model

generally outperforms the comparator models on the E2 and E3 measures. The picture

is less clear on the E1 bias measure. In the longer term, the dynamic factor model out-

performs the comparator models on all measures for most countries except for the US

and Japan where the Lee Carter and dynamic factor forecast accuracy is comparable.

This indicates that the superior forecasting accuracy of the dynamic factor model over

the 16 year period highlighted above is due to a combination of superior short term

and longer term forecasts.

A simple dynamic factor with one dynamic and one static factor surpasses exist-

ing models in most countries according to these forecast measures. As a first step, it

therefore seems reasonable to advocate using dynamic factor modelling with a default

of q = 1, r = 1 as generally the most accurate approach to forecasting male mortality
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rates. The particular success of the Lee Carter model when fitting to U.S. data has led

to its extensive use as a reference model in stochastic mortality modelling. But as we

have shown here (and as has been shown by others), the Lee Carter model does not

perform particularly well in other countries.

We now examine whether there is a simple ex-ante rule-of-thumb for choosing

q and r to improve on the forecasting power of the simplest dynamic factor model.

Calculating the MAPE (E2) for the number of dynamic factorsq = 1, ..., 10 and the

number of static factorsr = 1, ......, 10 and ranking models on the size of the forecast

error (see table 3.13) we see that the simplest model is certainly nowhere near the most

accurate except in the case of Australia. We can use statistical approaches to termi-

nating factor extraction. Standard stopping rules for determining the number of static

principal components,r, in data which were developed in psychological or sociologi-

cal studies are not applicable in datasets with large number of variables (Breitung and

Eickmeier, 2005). Bai and Ng (2002) have developed a statistical test based on infor-

mation criteria with appropriately chosen penalties to determine the number of static

factors in this situation. In later work (Bai and Ng, 2007), they also develop a rule

for estimating the number of dynamic factors,q, based on a VAR of finite order inr

static factors (the ’restricted dynamic factor model’) . Hallin and Liska (2007) develop

an alternative test applicable when the VAR has infinite length (’the generalised dy-

namic factor model’). Applying the Bai and Ng rules to our data leads to the choice of

q̂BN = 1, r̂ = 1 (UK,NTH, AUS) or q̂BN = 2, r̂ = 2 (USA, FRA,JPN). The Hallin and

Liska estimates ofq suggest a much richer dynamic structure:q̂HL = 8 (USA,NTH)

or q̂HL = 9 (UK, FRA AUS,JPN).

Error measures are given in table 3.14 for models where the number of factors

is chosen ex-ante and compared to results from the simplest dynamic factor model.

The best results for each measure are then emboldened. There is little evidence that



3.6. Conclusions 83

selecting the number of factors by these rules consistently improves forecasts. Using

r̂ as above and̂qHL, results are slightly improved for the USA and Japan. For all

other countries using the rules is no more accurate than using the simplest model.

In conclusion, there does not appear to be a clear way to optimally choose factors

to maximize accuracy and the potential improvement anyway appears to be slight.

Dynamic factor models based on factor selection rules do not necessarily give the

most accurate forecasts due to the fact that these statistical rules are based on the fit

of factor models to the data over which the model is estimated and do not necessarily

relate directly to predictive power. In an assessment of the ability of factor selection to

improve forecast accuracy but in a macroeconomic application, Barhoumi et al (2010)

reached a similar conclusion - factor selection tests do not generally improve forecasts

from dynamic factor models and the nave model is often best.

3.6 Conclusions

In this paper we have provided an alternative approach to modelling and forecasting

mortality rates which gives superior forecasts to many of the standard stochastic mor-

tality models that form the basis of longevity hedging products. We have described

problems with developing long term mortality hedging products due to the lack of

consideration given to the forecastability of existing models. We focus on the forecast-

ing quality of our model using out of sample comparisons and conclude that existing

multifactorial models give poor forecasting performance. Even with the simplest of

specifications the dynamic model outperforms the the existing models of mortality.

Further work may be carried out to examine the forecasting power of the approach

over specific age ranges rather than the full age range, and over a longer forecast hori-

zon. Identifying the number of static and dynamic factors giving optimal forecasts
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needs to be further examined. In keeping with the current direction of research in this

area potential directions may be to (i) incorporate exogenous determinants into the dy-

namic factor model and (ii) to develop hedging products based on the dynamic factor

model.
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Figure 3.1: Distribution of noise to signal ratio on extracting 1 dynamic factor for US
male mortality, ages 20-89
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Figure 3.2: Projected / Actual males US: Base data 1950-1990
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Appendix 1 - Dynamic Factor modelling

It is assumed that each of the stochastic processesyit are stationary and thatyt = [y1t, . . . ,yNt]
′

can be decomposed as the sum of an idiosyncratic componentξt = (xi1t, . . . , ξnt)
′ and

a common componentχt = (χ1t, . . . , χnt)
′ which are assumed orthogonal i.e.

yt = χt + ξt

Eachχit is driven byq factorsft = (f1t, . . . , fqt)
′ with possibly different lags and

coefficients. Using the lag operator to indicate a linear combination of various lags of

a factorfjt we have

χit = bi1(L)f1t + bi2(L)f2t + . . . + biq(L)fqt

or χt = B(L)ft
then yt = χt + ξt = B(L)ft + ξt

Estimation of the dynamic factorsχt is performed in the frequency domain. Any

stationary variableyt can be written in the frequency domain as a weighted sum of

periodic functions

yt = µ +

∫ π

0

[α(ω) cos(ωt)dω + δ(ω) sin(ωt)]dω

The spectral density ofyt is then given by

σii(ω) =
1

2π
Σ∞

j=−∞γje
−iωj

whereγj is thejth autocovariance (Hamilton, 1994). The frequency domain rep-

resentation of the factor model is given byΣy(ω) = Σχ(ω) + Σξ(ω). The first step of

the process provides an estimate ofΣχ(ω) and consequentlyΣξ(ω) by extracting the
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first q principal components from an estimate ofΣy(ω) . This is known asdynamic

principal components analysis(Brillinger, 1981). By taking inverse Fourier transforms

of the respective spectral densities we can determine the autocovariance matricesΓχ
k

andΓξ
k and this information is used in the second step to generate a more efficient

representation of the factor space than standard PCA. A linear combination of the pro-

cessesyit is chosen so as to approximate the factor space i.e. sinceayt = aχt + aξt

we choosea such thatvar(aξt) is minimised subject to the constraintvar(ayt) = 1.

Using the covariance matriceŝΓχ
0 and Γ̂ξ

0 estimated in the first step this problem re-

duces to a generalised principal components problem of the form

ẐjΓ̂
χ
0 = v̂jẐjΓ̂

ξ
0

such thatẐjΓ̂
ξ
0Ẑj = 1 andẐiΓ̂

ξ
0Ẑj = 1 for i 6= j. It can be shown that the generalised

principal components ofyt are equivalent to the standard principal components of the

transformed vector̃yt =
(
Γ̂ξ

0

)1/2
yt. Therefore this approach provides estimates of the

common factors that weights the data in such a way as to suppress information from

those variables with the highest idiosyncratic errors. This should provide more efficient

estimates. Forecasts are then obtained from the generalised principal components

Ẑ =
(
Ẑ1

′
, . . . , Ẑr

′)′

giving

χ̂T+h|T =
[
Γ̂χ

hẐ
′
(
ẐΓ̂0Ẑ′

)−1][
Ẑxt

]
.
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3.7 Appendix: Additional Figures and Tables

Table 3.1: Stochastic mortality models

Model Structure
Lee Carter (1992) ln(mx,t) = ax + bxγt + εx,t

Cairns, Blake and Dowd (2006) logit(qx,t) = γ1
t + γ2

t (x− x̄) + εx,t

Plat (2009) ln(mx,t) = ax + γ1
t + γ2

t (x̄− x) + γ3
t (x̄− x)+ + κt−x + εx,t

Table 3.2: Panel Unit Root tests for log mortality in levels and first differences

Levels First differences
Constant Constant & Trend Constant Constant & Trend

Lags Lags Lags Lags

p=0 p=1 p=2 p=0 p=1 p=2 p=0 p=1 p=2 p=0 p=1 p=2
USA 13.1 13.1 13.1 4.9 8.0 6.7 -54.6 -29.0 -16.7 -54.5 -27.8 -14.6
UK 3.6 7.5 13.5 -12.6 -0.1 5.9 -77.8 -45.4 -29.3 -79.3 -46.7 -31.4
NTH -7.3 0.8 4.9 -13.6 -0.4 5.6 -79.8 -45.9 -25.7 -82.1 -47.2 -25.8
FRA 1.9 7.4 12.6 -18.8 -1.1 5.8 -88.0 -48.8 -25.9 -89.6 -48.7 -23.7
AUS 5.9 12.7 15.4 -6.4 4.8 9.2 -75.6 -43.8 -27.0 -77.1 -44.2 -28.2
JPN 1.3 6.0 10.7 -12.5 -3.6 2.8 -64.6 -47.8 -29.3 -64.7 -48.0 -28.8

Note: Following Im, Pesaran and Shin (2003) we useWtbar(p, ρ) =
√

N
(
t−barNT− 1

N

∑N
i=1 E[tiT (pi,0)|βi=0]

)
√

1
N

∑N
i=1 V ar[tiT (pi,0)|βi=0]

wheret− barNT is the simple average of the t-tests for the null of unit roots (βi = 0) in the Augmented

Dickey-Fuller test∆yit = αi + δit + βiyi,t−1 +
∑p

j=1 ρi,j∆yi,t−j + εit. The lag length p is fixed

across all ages. The statisticWtbar(p, ρ) is asymptotically normally distributed. Emboldened results

represent a rejection of the null hypothesis using a left-sided test (i.e.Wtbar < −1.64). Results are also

given for ADF specification with constant only (δi = 0∀i).

Table 3.3: Percentage variance explained by factors

Number of Factors 1 2 3 4 5 6 7 8 9 10

Static 29.3% 42.2% 47.7% 52.4% 56.5% 60.3% 63.8% 67.1% 69.8% 72.3%
Dynamic 41.3% 58.6% 69.3% 77.6% 83.6% 88.2% 91.4% 93.4% 94.8% 95.8%



Table 3.4: E1 - the mean percentage error of projection (overall bias) for males aged
20-89

Country Lee & Carter Cairnset al. Plat Dynamic

USA 6.14% 14.74% 14.59% 7.82%
UK 3.75% 27.28% 12.63% 6.43%
NTH 16.98% 25.90% 17.39% 10.72%
FRA 12.67% 30.85% 20.28% 10.83%
AUS 14.90% 36.72% 24.61% 12.61%
JPN -11.90% 12.85% -2.93% -12.07%

Table 3.5: E2 - the mean absolute percentage error of projection (overall error magni-
tude) for males aged 20-89

Country Lee & Carter Cairnset al. Plat Dynamic

USA 11.30% 28.70% 18.30% 10.82%
UK 17.05% 48.48% 15.97% 12.18%
NTH 18.83% 41.35% 20.28% 14.94%
FRA 16.91% 46.57% 22.61% 13.40%
AUS 20.15% 62.27% 26.89% 16.40%
JPN 14.80% 50.31% 16.16% 14.42%

Table 3.6: E3 - the root of the squared percentage error of projection (standard devia-
tion of the error) for males aged 20-89

Country Lee & Carter Cairnset al. Plat Dynamic

USA 14.56% 34.06% 25.51% 16.25%
UK 21.13% 62.51% 22.28% 16.36%
NTH 25.52% 52.28% 27.55% 20.05%
FRA 26.79% 63.36% 31.81% 20.56%
AUS 26.85% 78.50% 37.86% 22.06%
JPN 21.10% 69.00% 20.03% 19.44%
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Table 3.7: E1 - the mean percentage error of projection (overall bias) of one-step-ahead
point forecasts for males aged 20-89

Country Lee & Carter Cairnset al. Plat Dynamic

USA 0.73% -6.86% 1.35% 0.61%
UK -4.32% -7.17% 2.40% 1.12%
NTH 0.61% -6.93% 3.65% 2.19%
FRA 4.45% -6.72% 2.21% 1.62%
AUS 0.49% -7.79% 4.97% 1.99%
JPN -6.26% -8.90% 1.58% -1.15%

Table 3.8: E2 - the mean absolute percentage error of projection (overall error magni-
tude) of one-step-ahead point forecasts for males aged 20-89

Country Lee & Carter Cairnset al. Plat Dynamic

USA 6.80% 14.40% 7.30% 2.76%
UK 7.92% 16.10% 6.82% 4.50%
NTH 6.57% 14.57% 7.08% 7.18%
FRA 9.55% 14.58% 8.35% 4.33%
AUS 8.10% 23.33% 9.89% 6.67%
JPN 9.36% 13.40% 5.71% 4.13%

Table 3.9: E3 - the root of the squared percentage error of projection (standard devia-
tion of the error) of one-step-ahead point forecasts for males aged 20-89

Country Lee & Carter Cairnset al. Plat Dynamic

USA 9.64% 21.22% 9.81% 3.62%
UK 9.84% 24.42% 11.78% 5.83%
NTH 9.00% 22.85% 9.54% 10.11%
FRA 14.77% 20.32% 12.29% 5.92%
AUS 11.20% 31.58% 17.40% 8.87%
JPN 13.41% 21.72% 7.19% 5.42%
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Table 3.10: E1 - the mean percentage error of projection (overall bias) of ten-step-
ahead point forecasts for males aged 20-89

Country Lee & Carter Cairnset al. Plat Dynamic

USA 13.29% 20.28% 20.80% 12.51%
UK 9.35% 31.87% 18.91% 9.11%
NTH 24.73% 33.37% 27.94% 17.06%
FRA 23.56% 40.19% 32.91% 18.73%
AUS 21.64% 43.06% 33.51% 16.98%
JPN -10.51% 17.00% 0.18% -12.06%

Table 3.11: E2 - the mean absolute percentage error of projection (overall error mag-
nitude) of ten-step-ahead point forecasts for males aged 20-89

Country Lee & Carter Cairnset al. Plat Dynamic

USA 15.46% 31.36% 22.34% 14.79%
UK 18.22% 55.56% 21.17% 14.90%
NTH 25.46% 48.35% 28.01% 19.16%
FRA 23.84% 50.31% 33.50% 20.06%
AUS 24.15% 69.51% 33.60% 19.75%
JPN 15.15% 56.90% 20.22% 16.29%

Table 3.12: E3 - the root of the squared percentage error of projection (standard devi-
ation of the error) of ten-step-ahead point forecasts for males aged 20-89

Country Lee & Carter Cairnset al. Plat Dynamic

USA 19.18% 34.30% 28.70% 20.02%
UK 21.52% 61.29% 27.06% 17.81%
NTH 29.65% 52.54% 33.47% 22.67%
FRA 32.81% 58.57% 42.33% 27.61%
AUS 29.00% 75.93% 43.05% 22.80%
JPN 20.94% 65.80% 22.80% 20.35%
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Table 3.13: Rank of simplest dynamic factor model (q=1, r=1) on E2 measure
compared to multifactorial dynamic factor models (100 combinations of q=1,...,10 ;
r=1,...,10)

Country Rank of simplest dynamic factor model

USA 92
UK 76
NTH 83
FRA 37
AUS 8
JPN 41

Table 3.14: Rank of simplest dynamic factor model (q=1, r=1) on E2 measure
compared to multifactorial dynamic factor models (100 combinations of q=1,...,10 ;
r=1,...,10)

Country Rank of simplest dynamic factor model

USA 92
UK 76
NTH 83
FRA 37
AUS 8
JPN 41
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Chapter 4

Identifying structural breaks in

mortality data

4.1 Introduction

Over the past recent decades, life expectancy in developed countries has risen to his-

torically unprecedented levels. The prospects of future reductions in mortality rates

are of fundamental importance in various areas such as demography, actuarial studies,

public health, social insurance planning, and economic policy. Over the last years,

significant progress has been made in mortality forecasting (for a recent review see

Booth, 2006). The most popular approaches to long-term forecasting are based on the

Lee and Carter (1992) model. It describes the time-series movement of age-specific

mortality as a function of a latent level of mortality, also known as the overall mor-

tality index, which can be forecasted using simple time-series methods. The method

was initially used to forecast mortality in the U.S., but since then has been applied

to many other countries (amongst others see Tuljapurkar and Boe, 1998; Lee, 2000;

Carter and Prskawetz, 2001; Lee and Miller, 2001; Booth et al., 2002; Brouhns and

95
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Denude, 2002; Renshaw and Haberman, 2003 and Kosso et al., 2005).

The original Lee-Carter model received a number of criticisms (see the discussion

in Lee and Miller, 2001) primarily due to its simplistic structure and so inability to

fully capture the variations present in mortality data adequately. Particularly the fact

that we do not see improvements in mortality rates across ages that are correlated to

each other. This has led to several extensions being proposed in the literature (see

Booth et al., 2006) to address these inadequacies. One major issue concerns the sta-

bility of the model over time. Since the method is usually applied to long time-series

there is a risk that important structural changes may have occurred in the past and any

neglected structural change in the estimation period may result in forecasts that have

a tendency to deviate from the future realizations of the mortality index. This could

lead to potentially large long-term forecast errors. In fact, historically, mortality in the

U.S. has not always declined in a linear way as depicted in Lee and Carter (1992) for

the period 1900-1989. The authors of that paper also re-estimated their random walk

with drift model for the mortality index for several shorter and more recent periods

and concluded that there was some instability. Other studies also document that there

has been a systematic overestimation of the projected mortality rates in many coun-

tries (Kosso et al., 2005). In a multi-country comparison of several versions of the

Lee-Carter method, Booth et al. (2006) find significant differences in the forecasting

performance when alternative fitting periods are used, providing further evidence of

different trends in the mortality rate.

In the demographic literature (e.g., Kannisto et al. 1994; Vaupel 1997) it has been

observed that, for many developed countries, the reduction in mortality rates has accel-

erated in the 1970s. Although this observation has important implications for social,

health, and research policy, there has been little attempt to test or quantify the existence

and effects of such a shift. In this paper we provide evidence for the structural breaks
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present in some of the main models of mortality. We examine the Lee Carter model

and several of its variants and test the extracted time series for structural breaks. More

specifically, having identified and fitted time series in the various models we apply the

generalised fluctuations test framework of Kuan and Hornik (1995) to statistically test

for and date any structural breaks. Having identified the presence of structural breaks

we then refit the models allowing for these and present improved forecasting results.

The proposed method is based on recent advances in testing and estimating structural

change models.

Consideration has been given to structural changes in mortality trends in the actu-

arial literature. Li, Chan and Cheung (2011) applied a broken trend stationary model to

the extracted mortality trendκt of the Lee carter model using the Zivot and Andrews’

(1992) procedure. They applied the model to data from the U.S. and from England and

Wales and in each case identified break points in the mid 1970’s. Their findings con-

firmed those of Renshaw and Haberman (2003) who also identified an improvement in

fitting if an adjustment in the trend was allowed for at 1975. Coelho and Nunes (2011)

repeated this analysis using the tests of Harevyet al (2009) and Harriset al (2009) to

identify the presence of and date any structural breaks in the extracted mortality trend

κt. Their study was wider focusing on 18 different countries in total and focusing on

both males and females. Notably they found structural breaks in 16 of the 18 countries

for males but in only 5 of the 18 countries for females suggesting that any potential

acceleration in mortality improvement has had a greater impact on male mortality than

on female mortality. They also found a range of structural break dates from 1955, for

Japanese females, through to the year 2000 for Netherlands males. They also forecast

with and without an allowance for the identified structural breaks and in the case of

Portugal suggest an increase in life expectancy at birth of just over 2 years (80.9 vs.

78.7) when allowing for the break. It is important to note in each of the cases studied
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the mortality improvement factorκt appears to accelerate after the break suggesting

that if there is a structural break identified then the resulting model allowing for this

break will predict a higher life expectancy. In particular, using a model which doesn’t

adequately capture any structural change in the improvement in mortality rates for

pricing and reserving may lead to an under provision of reserves or prices.

This paper contributes to the existing literature by considering not only the Lee

Carter (1992) model but also a selection of extensions from the Lee carter model.

The purpose of this is to test whether the inclusion of additional age, time or cohort

effects has any effect on the presence or not of structural breaks in the fitted mortality

improvement factorκt. The proposed methodology is applied to male data over the

period 1950-2006 for a selection of developed countries. Structural changes in the

rate of decline in the overall mortality rate are found for almost every country and

model considered. By allowing for the structural breaks and showing the improved fit

and forecast quality we demonstrate that accounting for a structural change leads to a

major impact in mortality estimates.

The paper is organized as follows. Section 2 presents a brief review of extrapola-

tive models such as the Lee-Carter model and its extensions. In section 3 we discuss

the data used in this study and in section 4 we discuss the methodology we use to

identify the structural breaks. An analysis of the fitted parameters in the Lee Carter

model and its variants is discussed in section 5. In section 6 we present the results of

our analysis to identify structural breaks and to quantify the impact we demonstrate

the fitting and out of sample forecasting results with and without allowance for the

identified structural changes. Finally, section 7 concludes with some ideas for further

research.
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4.2 Lee Carter and its variants

The current leading method for forecasting mortality rates is the stochastic extrapola-

tion approach. In this method data is first transformed (by taking natural logarithms)

and then analysed using statistical methods to identify and extract patterns. These

patterns are then forecast using well known time series approaches. The resulting

forecasts are then used to predict future mortality rates. The first and most well known

stochastic mortality model of this type is the Lee and Carter (1992) model. Based on

U.S. data the model uses a stochastic, time series framework to identify a single pe-

riod effect pattern in the natural logarithm of mortality rates. This linear trend over

time is extracted and using Box-Jenkins an appropriate ARIMA processes is fitted to

the data (a random walk with drift in each case). The random walk with drift is fore-

cast and resulting future mortality rates predicted. Also known as a one factor or one

principle component approach the model became a benchmark and underlined a new

approach to modelling mortality rates for several reasons; (1) firstly, the model has an

extremely simple structure and so is very easy to communicate, and (2) secondly, the

use of the random walk with drift enabled the authors not only to predict the expected

future mortality rates but also to visualise the uncertainty associated with the predic-

tions. The full model, outlined below includes two age dependent parametersax and

bx which respectively represent the intercept and gradient for the log mortality rate at

each age and the time or period trendκt which is forecast using a random walk with

drift:

ln(mx,t) = ax + bxκt + εx,t, (4.1)

whereax andbx are age effects andκt is a random period effect.1

1This model was fitted to US mortality data for ages 0-110 between the years of 1933 and 1987.
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The model is known to be over parameterised and applying the necessary con-

straints as in the original Lee and Carter (1992) paper theax are given by

ax =
1

N

N∑
t=1

ln mx,t. (4.2)

In the original paper the bilinear partbxκt of the model specification was deter-

mined as the first singular component of a singular value decomposition (SVD), with

the remaining information from the SVD considered to be part of the error structure.

Theκt were then estimated and refitted to ensure the model mapped onto historic data

Finally the subsequent time seriesκt was used to forecast mortality rates.

Despite the attractiveness of the models simplicity it has several weaknesses. Among

many discussions of the Lee-Carter model, Cairnset al. (2006, 2009, and 2011) sum-

marized the main disadvantage of the model as having only one factor, resulting in

mortality improvements at all ages being perfectly correlated (trivial correlation struc-

ture). They also note that for countries where a cohort effect is observed in the past,

the model gives a poor fit to historical data. The uncertainty in future death rates is

proportional to the average improvement ratebx which for high ages can lead to this

uncertainty being too low, since historical improvement rates have often been lower

at high ages. Also, the model can result in a lack of smoothness in the estimated age

effectbx.

Despite the weaknesses of the Lee-Carter model it’s simplicity has led to it being

taken as a benchmark against which other stochastic mortality models can be assessed.

There has been a significant amount of literature developing additions to, or modifica-

tions of, the Lee-Carter model. For example Boothet al. (2002), Brouhnset al. (2002),

Lee and Miller (2001), Girosi and King (2005), De Jong and Tickle (2006), Delwarde

et al. (2007) and Renshaw and Haberman (2003, 2006).
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Renshaw and Haberman (2006) modified the Lee-Carter model by simply adding

a factorγt−x to capture effects that could be attributed to the year of birth(t− x),

ln(mx,t) = ax + b1
xκt + b2

xγt−x + εx,t, (4.3)

whereκt is defined as before andγt−x is a random cohort effect.

The model does have a much better fit for countries such as the UK where a cohort

effect has been identified, however it suffers from a lack of robustness perhaps due

to the presence of more than one local maximum in the likelihood function. Among

others, for instance Currie (2006) noted that if the model was fitted using data from

1961-2000 then the parameters showed qualitatively different characteristics to those

obtained when fitting to data from 1981-2000. Furthermore, as noted by Currie (2006),

although the model incorporates the cohort effect, for most of the simulated mortality

rates the correlation structure is still trivial with the simulated cohort parameters only

being relevant for the higher ages at the far end of the projection.

Following this analysis Currie (2006) applied a simplified age-period-cohort model

of Clayton and Schifflers (1987) to mortality which removed the robustness problem

but at the expense of the fitting quality:

ln(mx,t) = ax + κt + γt−x + εx,t. (4.4)

Cairnset al. (2006) observed that for England & Wales and United States data, the

fitted cohort effect appeared to have a trend in the year of birth. This suggested that the

cohort effect was compensating for the lack of a second age-period effect, as well as

trying to capture the cohort effect in the data. This led them to introduce a two factor



102 CHAPTER 4. Identifying structural breaks in mortality data

model of mortality,

logit(qx,t) = κ1
t + κ2

t (x− x̄) + εx,t, (4.5)

wherex̄ is the mean age in the sample range and(κ1
t , κ

2
t ) are assumed to be a bivari-

ate random walk with drift. The two factors in this model were both period factors

with no cohort effect allowed for. This was rectified in Cairnset al. (2009), namely

capturing the cohort effect as an additional effect on top of the two age-period effects.

All these models have multiple factors resulting in a non-trivial correlation structure

which mirrors the reality that improvements in mortality rates are different for differ-

ent age ranges. A further adaptation was also created allowing for the cohort effect to

diminish over time. The main problem with these models arises from the fact that they

were designed for higher ages and so ignored the modelling of mortality at the lower

ages (for example the accident hump). Cairnset al. (2009) argue that the significant

cost associated with mortality is at the older ages and thus their modelling focused on

those ages. When using these models for full age ranges, the fit quality is relatively

poor and the projections are biologically unreasonable.

Plat (2009) wanted to develop a model which maintained the good aspects of the

existing models whilst leaving out the weaker features. The result was a four factor

model which took its beginnings from the Lee-Carter model and which added factors

to capture the second age-period effect, as per the Cairnset al. (2006) model and the

cohort effect, as per the Renshaw and Haberman (2006) model. The innovation in the

Plat model was to then add a further period factor affecting only the lower ages and

designed to allow the model to fit to the whole age range. The model specification is
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given by:

ln(mx,t) = ax + κ1
t + κ2

t (x̄− x) + κ3
t (x̄− x)+ + γt−x + εx,t, (4.6)

where theax is similar to that of the Lee-Carter model and makes sure that the overall

shape of the mortality curve by age is reasonable, theκ1
t andκ2

t model the mortality

rates as in the Cairnset al. (2006) model and theκ3
t models the effects specific to the

lower ages only where(x̄− x)+ takes the value(x̄− x) when this is positive and zero

otherwise. Finally theγt−x models the cohort effect. In 2012 O’Hare and Li (2012)

modified the Plat (2009) model to provide a better fit for a wider age range including

ages 5-20.2

A weakness of the Lee Cater (1992) model that is not addressed by any of the above

models and which is a key assumption in each of these models, is that any identified

and extracted patterns in the data will not change over time. It is this assumption that

we test in this paper.

4.3 Data

The data that we use in this paper comes from the Human Mortality Database.3 The

data available for each country includes number of deathsDx,t and exposure to death

Ex,t for lives agedx last birthday during yeart. We can use this to gain a proxy for the

central mortality rate for lives agedx during yeart as:

mx,t =
Dx,t

Ex,t

(4.7)

2See chapter 2 of this document for the details.
3This can be found at http://www.mortality.org/. The database is maintained in the Department

of Demography at the University of California, Berkeley, USA, and at the Max Planck Institute for
Demographic Research in Rostock, Germany.
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Due to the exponential nature of mortality rates we model the logarithmically trans-

formed central mortality rates.

Data is available going back to the mid nineteenth century in some cases but we

have restricted this study to data from 1950-2006 and to the countries U.S., U.K.,

Netherlands and Australia. These countries were chosen to representing a geographical

spread around the globe. Specifically, we fit the models to data between 1950-2000

and forecast between the years 2001-2006 testing our forecasts against actual data

over that period. We focus on the age range 20-89 for several reasons. Firstly, the

papers and models upon which we have based our comparisons are also fitted to this

age range. Secondly, and as identified by Currie (2011), data at the older ages provide

additional problems in terms of the reliability of the data. Indeed in several cases

mortality rates determined using older data appear to fall sharply beyond age 95. Since

we are interested in identifying if structural changes are present in the data which re not

picked up by the models we plot graphics of the parameters that are fit in the models

and eyeball them for changes in direction.

4.4 Methodology

To identify if there are any structural breaks present in the models, we first need to

fit the models to the data and extract the corresponding time seriesκt or κ1
t (in the

case of Cairns Blake Dowd (2006), Plat (2009) and O’hare and Li (2012)). This time

series reflects the average mortality rate improvement factor in each of the models and

is the main driver of the forecasts of mortality derived from each of the models. We

use Box-Jenkins approach to identify the most suitable ARIMA process to fit to the

extractedκt which is all cases turns out to be a simple random walk with drift. If the se-

lected ARIMA processes are appropriate then we should expect residuals whose mean
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does not deviate significantly from zero. We consider a couple of test frameworks for

identifying structural breaks, the F test statistics and the Generalised Fluctuations test:

• F statistics (Andrews 1993; Andrews and Ploberger 1994) are designed for a

specific alternative, and

• generalized fluctuation tests (Kuan and Hornik 1995) do not assume a particular

pattern of deviation from the null hypothesis.

F statistics test against a single-shift alternative of unknown timing, and tests against

this alternative are usually based on a sequence of F statistics for a change at timei the

OLS residualŝu(i) from a segmented regression, i.e., one regression for each subsam-

ple, with breakpointi, are compared to the residualsû from the unsegmented model

via

Fi =
ûT û− û(i)T û(i)

û(i)T û(i)û(i)/(n− 2k)
(4.8)

These F statistics are then computed fori = nh, . . . , n− nh, for (nh > k) andH0

is rejected if their supremum or average or exponential functional, see Andrews and

Ploberger (1994), is too large. In applications,nh = [nh] is a trimming parameter that

is set toh = 0.15 in our case. Bai and Perron (1998, 2003) extend this approach to F

tests for 0 vs.̀ breaks and̀ vs. ` + 1 breaks respectively with arbitrary but fixed`.

The generalized fluctuation test framework includes formal significance tests but

its philosophy is basically that of data analysis as expounded by Tukey (1962). Essen-

tially, the techniques are designed to bring out departures from constancy in a graphic

way instead of parameterizing particular types of departure in advance and then de-

veloping formal significance tests intended to have high power against these particular

alternatives.4. More precisely, the model is fitted to the data and an empirical process
4see Brown, Durbin, and Evans (1975) for details
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is derived that captures the fluctuation either in residuals or in parameter estimates.

Under the null hypothesis these are governed by functional central limit theorems (see

Kuan and Hornik 1995) and therefore boundaries can be found that are crossed by

the corresponding limiting processes with fixed probabilityα under the null hypothe-

sis. Under the alternative the fluctuation in the process is in general increased. Also,

the trajectory of the process often sheds light on the type of deviation from the null

hypothesis such as the dating of the structural breaks. In this paper we carry out the

empirical fluctuations tests leaving the F-stat tests for future research. We compute

several empirical fluctuations processes based upon the residuals described in Zeileis

(2005) and repeated below for information:

4.4.1 Cumulative sums of residuals - CUSUM processes

The first type of empirical fluctuations process that can be computed are (CUSUM)

processes, which contain cumulative sums of standardized residuals,Rec-CUSUM.

Brown et al. (1975) suggested to consider cumulative sums of recursive residuals:

Wn(t) =
1

σ̂
√

η

k+[tη ]∑

i=k+1

ũi (4.9)

whereη = n− k is the number of recursive residuals and[tη] is the integer part of

tη.

Under the null hypothesis the limiting process for the empirical fluctuation process

Wn(t) is the Standard Brownian Motion (or Wiener Process)W (t). More precisely

the following functional central limit theorem (FCLT) holds:

Wn ⇒ W (4.10)



4.4. Methodology 107

asn ⇒ ∞, where⇒ denotes weak convergence of the associated probability mea-

sures.

Under the alternative, if there is just a single structural change pointt0, the recur-

sive residuals will only have zero mean up tot0. Hence the path of the process should

be close to 0 up tot0 and leave its mean afterwards.

Ploberger and Kr̈amer (1992) suggested to base a structural change test on cumu-

lative sums of the common OLS residuals. Thus, theOLS-CUSUMtype empirical

fluctuation process is defined by:

W 0
n(t) =

1

σ̂
√

n

[nt]∑
i=1

ũi (4.11)

The limiting process forW 0
n(t) is the standard Brownian bridgeW 0(t) = W (t)−

tW (1). It starts in0 at t = 0 and it also returns to0 for t = 1. Under a single structural

shift alternative the path should have a peak aroundt0.

4.4.2 Moving sums of residuals - MOSUM processes

Another possibility to detect a structural change is to analyze moving sums of resid-

uals, Rec-MOSUM(instead of using cumulative sums of the same residuals). The

resulting empirical fluctuation process does then not contain the sum of all residuals

up to a certain timet but the sum of a fixed number of residuals in a data window

whose size is determined by the bandwidth parameterh ∈ (0, 1) and which is moved

over the whole sample period. Hence the Recursive MOSUM process is defined by

Mn(t|h) =
1

σ̂
√

η

k+[Nηt]+[ηh]∑

i=k+[Nηt]+1

ũi, (0 ≤ t ≤ 1− h) (4.12)
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whereNη = (η − [ηh])/(1− h).

Similarly the OLS-based MOSUM process,OLS-MOSUMis defined by

M0
n(t|h) =

1

σ̂
√

n

( k+[Nnt]+[nh]∑

i=k+[Nnt]+1

ũi

)
= W 0

n

( [N − nt] + [nh]

n

)
−

( [N − nt]

n

)
(0 ≤ t ≤ 1−h)

(4.13)

whereNn = (n− [nh])/(1− h). As the representations 4.13 and 4.12 suggest, the

limiting process for the empirical MOSUM processes are the increments of a Brownian

motion or a Brownian bridge respectively. This is shown in detail in Chu et al. (1995).

If again a single structural shift is assumed att0, then both MOSUM paths should also

have a strong shift aroundt0.

4.5 Fitting and forecasting results for Lee Carter and

its variants

Each of the models we consider in this paper improves upon the previous one by in-

corporating additional patterns identified in the data and forecasting these. The key

assumption in each of these models is that future patterns in mortality can be ascer-

tained from the past patterns and indeed these do not change over time. Fitting each

of the models to the data over the period from 1950-2000 the tables below present the

results using the mean average percentage error (E1), the Mean absolute percentage

error (E2) and the root mean square error (E3). The definitions of these are set out

below for information;
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The average error, E1 – this equals the average of the standardized errors i.e.

E1 =
1

X1 −X2 + 1

X2∑
x=X1

T∑
t=1

projected(mx,t)− actual(mx,t)

projected(mx,t)
(4.14)

This is a measure of the overall bias in the projections.

The average absolute error, E2 – this equals the average of absolute value of the

standardized errors i.e.

E2 =
1

X1 −X2 + 1

X2∑
x=X1

T∑
t=1

|projected(mx,t)− actual(mx,t)

projected(mx,t)
| (4.15)

This is a measure of the magnitude of the differences between the actual and pro-

jected rates.

The standard deviation of the error, E3 – this equals the square root of the average

of the squared errors,

E3 =
√ 1

X1 −X2 + 1

X2∑
x=X1

T∑
t=1

(
projected(mx,t)− actual(mx,t)

projected(mx,t)
)2 (4.16)

As can be seen from the fitting results 4.1the models, excluding the Cairns Blake

Dowd model which was designed for older ages, the accuracy of the fit is very good

for all of the above models. Indeed the errors are in the main less that a few percent-

age points suggesting that each model is adequately capturing the variability present

in past mortality data. However, if mortality models are to be of any use they need

to adequately forecast mortality rates. Again, each of the following models have been

backtested and the results of forecasting from 2001-2006 have been tested and mea-

sured against each of the three error measures. Table 4.2 shows the forecasting results

when each model is backtested over the years 2001-2006.

Whilst the forecasting and fitting results look reasonable it is difficult to see from
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Table 4.1: Fitting results for US, UK, Netherlands and Australia male mortality rates
by single age 20-89, 1950-2000 measured on E1 E2 and E3

USA E1 E2 E3
Lee and carter (1992) 0.4% 3.8% 0.3%
Cairns Blake Dowd (2006) -1.6% 12.0% 3.3%
Plat (2009) 0.2% 2.8% 0.2%
Ohare and Li (2012) 0.1% 2.6% 0.1%
UK E1 E2 E3
Lee and carter (1992) 0.5% 4.9% 0.5%
Cairns Blake Dowd (2006) 0.4% 13.8% 4.3%
Plat (2009) 0.3% 2.8% 0.2%
Ohare and Li (2012) 0.2% 2.8% 0.2%
NTH E1 E2 E3
Lee and carter (1992) 0.0% 6.1% 0.7%
Cairns Blake Dowd (2006) -1.9% 13.7% 4.5%
Plat (2009) 0.3% 4.0% 0.4%
Ohare and Li (2012) 0.2% 3.9% 0.3%
AUS E1 E2 E3
Lee and carter (1992) 0.4% 5.2% 0.6%
Cairns Blake Dowd (2006) -1.3% 16.4% 6.1%
Plat (2009) 0.7% 4.8% 0.6%
Ohare and Li (2012) 0.6% 4.6% 0.5%
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Table 4.2: Forecasting results for US, UK, Netherlands and Australia male mortality
rates by single age 20-89, 2001-2006 measured on E1 E2 and E3

USA E1 E2 E3
Lee and Carter (1992) 2.8% 8.0% 1.2%
Cairns, Blake and Dowd (2006)-3.6% 16.4% 5.6%
Plat (2009) -3.6% 7.4% 0.8%
Ohare and Li (2012) -0.1% 5.5% 0.5%
UK E1 E2 E3
Lee and Carter (1992) -1.7% 9.3% 1.2%
Cairns, Blake and Dowd (2006) 0.4% 24.0% 9.3%
Plat (2009) 3.3% 9.6% 2.2%
Ohare and Li (2012) 7.6% 9.6% 2.1%
NTH E1 E2 E3
Lee and Carter (1992) 7.4% 10.6% 2.0%
Cairns, Blake and Dowd (2006) 4.4% 22.7% 8.5%
Plat (2009) 5.4% 10.0% 1.7%
Ohare and Li (2012) 11.1% 13.2% 3.0%
AUS E1 E2 E3
Lee and Carter (1992) 4.8% 11.5% 2.6%
Cairns, Blake and Dowd (2006) 2.3% 31.0% 14.0%
Plat (2009) 8.9% 13.2% 6.5%
Ohare and Li (2012) 13.8% 16.3% 6.6%
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the tabular results the issue of structural breaks. To demonstrate the potential problems

with the above models we plot the extracted main period effects below in figure 4.1

and in the appendix figures 4.4-4.6. Note for the Lee Carter model there is only 1

period effect,κt, whilst for the for the Cairns Blake Dowd model there are two,κ1
t and

κ2
t (we plotκ1

t ) and for the Plat (2009) and Ohare and Li (2012) models there are 3,

κ1
t , κ2

t , andκ3
t (again, we plotκ1

t ) for each of the countries considered.

1960 1970 1980 1990 2000 2010
Year

Lee Cater (1992) mortality improvement factor
 

U.S.
U.K.
Netherlands
Austalia

Figure 4.1: Plots of theκt factor for the Lee carter model for countries Australia
(purple), Great Britain (orange), England and Wales (green), USA (blue), Japan (light
green) and New Zealand (light blue)

As can be seen from the diagrams the trend in each of the time series appears

to shift and in particular to accelerate as we move beyond the 1970’s. For the Lee

Carter (1992) model this is clear in the graph 4.1 where a peak has occurred around

1970 for each of the countries considers with the value ofκt falling rapidly thereafter.

Equivalent figures for the Cairns, Blake, Dowd (20060, Plat (2009) and O’Hare and Li

(2012) models can be found in the appendix figures 4.4-4.6. With the Cairns, Blake,

Dowd (2006) model the same comments as for the Lee Carter (1992)κt can be made
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for the parameterκ1
t (albeit with a less obvious change in direction) but the direction of

theκ2
t parameter is less clear. For the Plat (2009) and the O’Hare and Li (2012) models

the direction change is clear for theκ1
t parameter but again, whilst a shift can be seen

in κ2
t andκ3

t , the shift is less dramatic. In each of these models it is theκ1
t parameter

which drives the mortality forecast for all ages. The other time series parameters reflect

the variation in the logarithmically transformed mortality rates specific to certain age

groups but not to all age groups. As such, it is the forecast ofκ1
t that is the most

important to get right. If we do not forecast the direction of mortality improvement

correctly then this will cause problems not least because most mortality models use

a fitting period from 1950 onwards and so may underestimate this improvement rate.

This could have severe implications for the pricing of annuity and life products which

are sensitive to the mortality rate.

4.6 Identifying structural breaks

In the following sections we now formalise our tests for structural breaks in the time

series that we have extracted from each of the models in the previous section. To

clarify, we have fit each of the models to the Male mortality data of the U.S., U.K.,

Netherlands and Australia between the years 1950 - 2000 inclusive. We have then

taken the main mortality improvement seriesκt or κ1
t from each of the models and

fitted a random walk with drift process as the Box-Jenkins identified best ARIMA

process to fit the time series. If the random walk process is indeed an appropriate time

series capturing theκt or κ1
t factor then the resulting residuals should have a mean

which does not deviate from zero. We test this using the empirical fluctuations test

framework described by Zeileiset al(2003) and the functionefpwhich sits within the R
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packagestrucchangewhich is freely available5. Specifically we use the methods of Bai

and Perron to identify structural breaks. The foundation for estimating breaks in time

series regression models was given by Bai (1994) and was extended to multiple breaks

by Bai (1997ab) and Bai & Perron (1998). Thebreakpointsfunction in theStrucchange

package implements the algorithm described in Bai & Perron (2003) for simultaneous

estimation of multiple breakpoints given we know they exist. The distribution function

used for the confidence intervals for the breakpoints is given in Bai (1997b). The ideas

behind this implementation are described in Zeileiset al. (2003).

The structural change is located and dated by plotting the cumulative sum of resid-

uals and then comparing this with the known limiting processes. Fluctuations that fall

outside these known boundaries are judged to be improbably large and hence suggest

a structural change in the mean value. The known limiting process, otherwise known

as the boundary is plotted along with the cumulative sum of residuals in figures 4.2

below and 4.7 to 4.9 in the appendix.

As can be seen from the above tests there are unexpectedly large fluctuations

(demonstrating the presence of a structural break) for the majority of cases consid-

ered. However, the results are not as conclusive as in the cases of Li Chan and Cheung

(2011) and Coelho and Nunes (2011). For the Lee Carter model there appears to be

a structural break present for 3 out of the 4 countries considered with the only coun-

try for which the above test does not confirm the presence of a structural break being

the U.K. In the case of the Cairns, Blake and Dowd (2006) model we have similar

conclusions with again the extracted mortality improvement factorκ1
t , for the U.K.

not demonstrating any presence of a structural break under the test we have carried

out. For the larger factor models of Plat (2009) and O’hare and Li (2012) the results

are mixed again. In the case of Plat (2009), the fluctuations test showed up a struc-

5The package strucchange is available athttp://cran.r-project.org/web/packages/
strucchange/index.html and can be implemented using the statistical software package R
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Figure 4.2: Cumulative sum of residuals test for the Lee Carter (1992) model for (from
top left clockwise) US, UK, Netherlands and Australia
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tural break for all four countries considered whilst the O’Hare and Li (2012) model

did not show up any structural breaks for the U.S. or the U.K. This could be due to

the quadratic effect parameterα1
x applied to theκ1

t in the case of the O’hare and Li

(2012) model as compared with the linearα1
t in the Plat (2009) case. In all the models

considered we were able to identify some structural breaks for some countries.

Having identified the presence of structural breaks the next step is to date these and

then using this information, re-forecast the models allowing for the structural break.

We date the structural break using the functionsbreakpointswithin the packagestruc-

change. As can be seen from the table 4.3 and the figures 4.3 below and figures 4.10 -

4.12 in the appendix the structural breaks identified occur with the period 1968 - 1979

with the vast majority occurring in the early 1970’s. This confirms previous findings

and would be well worth further investigation.

4.7 Empirical analysis of modelling with and without

structural changes

Having identified and dated the presence of a structural break in each of theκt factors

for our models we fit each of the models again but this time allowing for the structural

break. Again we fit up to the year 2000 and forecast from 2001 to 2006 inclusive.

We allow for the identified acceleration in the mortality improvement factorκt by

refitting the model using a data set in each case which excludes data prior to the year

in which the structural break occurs. Again we measure the forecasting quality using

the average error (E1), the mean absolute error (E2) and the root mean square error

(E3). The results are outlined in table 4.4 with and without this adjustment.

As can be seen in table 4.4 in two-thirds of the cases allowing for the structural

break results in a more accurate forecast measured on any of the three measures con-
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Figure 4.3: Test of the structural break for the Lee Carter (1992) model for (from top
left clockwise) US, UK, Netherlands and Australia
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sidered. In the case of the Netherlands, in every case allowing for the structural break

improved the result. This indicates that structural changes should be allowed for if we

are to accurately forecast mortality rates.

4.8 Conclusions

In this paper we have considered several of the leading extrapolative models of mortal-

ity rates and have applied the methods of Bai and Perron (2003) to test for the presence

of structural breaks in the model specifications. More specifically we have fitted the

models of Lee and Carter (1992), Cairns, Blake and Dowd (2006), Plat (2009) and

O’Hare and Li(2012) to the data for U.S., U.K., Australia and the Netherlands. Hav-

ing noted that the forecasts of mortality resulting from these models are driven by the

κ1
t parameter, we have fitted the best ARIMA process to the extracted time series (in

each case the ARIMA process used was a random walk with drift) and then tested the

residuals for deviation from zero.

In each case we found that there was indeed a breakpoint visible in the residuals

falling somewhere around the 1970’s confirming previous demographic research. We

then carried out the forecasting process again making allowance for the structural break

providing the results in section 5. The results show that in nearly two-thirds of cases

the model allowing for structural breaks provides a more accurate forecast measured on

each of the E1, E2 and E3 measures. Whilst the findings are important in highlighting

the importance of the sample period when fitting a model to mortality data they make

no reference to future structural breaks. Further research could look at more recent

developments in the identification of structural breaks in models. Namely, monitoring

data for structural breaks as and when they occur. This would then allow for these

breaks to be incorporated into mortality models more efficiently reducing any future
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forecast errors.

4.9 Appendix: Additional Figures and Tables

1960 1970 1980 1990 2000 2010
Year

Cairns, Blake Dowd (2006) mortality improvement factor
 

U.S.
U.K.
Netherlands
Australia

Figure 4.4: Plots of theκ1
t factor for the CBD 2 factor model for countries Australia

(purple), Great Britain (orange), England and Wales (green), USA (blue), Japan (light
green) and New Zealand (light blue)

1960 1970 1980 1990 2000 2010
Year

Plat (2009) mortality improvement factor
 

U.S.
U.K.
Netherlands
Australia

Figure 4.5: Plots of theκ1
t factor for the Plat(2009) model for countries Australia

(purple), Great Britain (orange), England and Wales (green), USA (blue), Japan (light
green) and New Zealand (light blue)
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O’Hare and Li (2012) mortality improvement factor
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Figure 4.6: Plots of theκ1
t factor for the O’Hare and Li (2012) model for countries

Australia (purple), Great Britain (orange), England and Wales (green), USA (blue),
Japan (light green) and New Zealand (light blue)

Table 4.3: Break date results for US, UK, Netherlands and Australia using the Lee
Carter (1992), Cairns, Blake Dowd (2006), Plat (2009) and O’Hare and Li (2012)
models
Model and Country Break date test statistic p-value
Lee Carter (1992)
U.K. 1979 1.116 0.166
U.S. 1968 1.603 0.012
Netherlands 1972 1.673 0.007
Australia 1970 1.623 0.010
Cairns Blake Dowd (2006)
U.S. 1979 1.248 0.089
U.S. 1972 1.582 0.013
Netherlands 1972 1.863 0.002
Australia 1970 1.822 0.003
Plat (2009)
U.K. 1979 1.566 0.015
U.S. 1972 1.392 0.041
Netherlands 1970 1.728 0.005
Australia 1970 2.361 0.001
O’Hare and Li (2012)
U.K. 1979 1.366 0.048
U.S. 1972 1.288 0.072
Netherlands 1972 1.648 0.009
Australia 1970 2.126 0.001
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Table 4.4: Forecasting results for US, UK, Netherlands and Australia male mortality
rates by single age 20-89, 2001-2006 measured on E1 E2 and E3 with and without
allowance for structural breaks

Structural break No Structural break

E1 E2 E3 E1 E2 E3
U.S.

LC (1992) 1.5% 7.3% 1.0% 2.8% 8.0% 1.2%
CBD (2006) -6.2% 15.2% 5.3% -3.6% 16.4% 5.6%
Plat (2009) -6.4% 9.0% 1.3% -3.6% 7.4% 0.8%
Ohare and Li (2012) -6.1% 8.5% 1.4% -0.1% 5.5% 0.5%

U.K.

LC (1992) 3.3% 9.0% 1.6% -1.7% 9.3% 1.2%
CBD (2006) -4.8% 20.0% 7.5% 0.4% 24.0% 9.3%
Plat (2009) 3.3% 9.5% 2.5% 3.3% 9.6% 2.2%
Ohare and Li (2012) 3.8% 12.0% 4.1% 7.6% 9.6% 2.1%

Netherlands

LC (1992) 5.5% 9.4% 1.6% 7.4% 10.6% 2.0%
CBD (2006) 0.8% 20.7% 7.5% 4.4% 22.7% 8.5%
Plat (2009) 4.3% 9.3% 1.5% 5.4% 10.0% 1.7%
Ohare and Li (2012) 4.1% 10.1% 1.7% 11.1% 13.2% 3.0%

Australia
LC (1992) 4.6% 12.1% 3.2% 4.8% 11.5% 2.6%
CBD (2006) -1.7% 28.7% 12.6% 2.3% 31.0% 14.0%
Plat (2009) 6.6% 13.1% 6.7% 8.9% 13.2% 6.5%
Ohare and Li (2012) 11.8% 29.6% 28.6% 13.8% 16.3% 6.7%
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Figure 4.7: Cumulative sum of residuals test for the Cairns, Blake and Dowd (2006)
model for (from top left clockwise) US, UK, Netherlands and Australia
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Figure 4.8: Cumulative sum of residuals test for the Plat (2009) model for (from top
left clockwise) US, UK, Netherlands and Australia
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Figure 4.9: Cumulative sum of residuals test for the O’Hare and Li (2012) model for
(from top left clockwise) US, UK, Netherlands and Australia
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Figure 4.10: Test of the structural break for the Cairns, Blake, Dowd (2006) model for
(from top left clockwise) US, UK, Netherlands and Australia
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Figure 4.11: Test of the structural break for the Plat (2009) model for (from top left
clockwise) US, UK, Netherlands and Australia



4.9. Appendix: Additional Figures and Tables 127

Figure 4.12: Test of the structural break for the O’hare and Li (2012) model for (from
top left clockwise) US, UK, Netherlands and Australia
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Chapter 5

Spatial modelling of mortality rates

5.1 Introduction

Spatial variability in mortality rates as well as the effect of socioeconomic factors have

attracted increased attention recently. Life insurers issuing life and annuity products

allow for significant risk factors known to affect mortality rates including age, gender,

and smoking status. In life insurance adjustments are made to mortality rates used

for premiums based on health status. With the increase in sales of annuity products

insurers are offering impaired lives annuity rates. Postcode underwriting reflecting

geographical variation in mortality is increasingly used by insurers in mainland UK.

Mortality is known to vary spatially but should we expect regions in close proxim-

ity to one another to have similar mortality characteristics, otherwise known as spatial

clustering? Arguments for spatial clustering might include a lack of social mobility, or

exposure to similar socioeconomic externalities. Arguments against spatial clustering

may include the increased social mobility of individuals and the dispersion of public

health interventions. Significant geographical variation in mortality occurs in many

countries. In the United Kingdom, socioeconomic factors are implicitly allowed for

129
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in insurance based on annuity amounts. For example individuals with larger annuity

amounts have lower mortality rates. However, this proxy is not very robust and indeed

Richards (2008) shows that a mortality model using geographic classifications better

fits United Kingdom annuitant mortality than a model using pension amounts. In this

paper we assess the geographical variation in mortality rates in Northern Ireland. We

investigate mortality rates to see if the same conclusions can be drawn for Northern

Ireland data and we find a more mixed set of results. In particular, we find that al-

lowing for spatial frailties does not improve the model fit dramatically and indeed the

additional parameters necessary lead to a poor fit when measured using an informa-

tion criterion. It is common in general insurance for companies to collate significant

amounts of data (risk factor data) in order to appropriately price general insurance

products (car, home, contents, insurances etc.) however in the life insurance industry

this is less common. Life insurance companies need to assess mortality heterogeneity

more accurately for pricing and risk management of insurance policies if they are to

avoid adverse selection issues for example. With the collection of measures of depri-

vation this should be more possible. We conclude in this paper that the information

available from socioeconomic profiling is valuable in pricing longevity risk where even

within a locality there is significant heterogeneity.

The paper is laid out as follows. In the next section we give a summary of the

methods that we use to model our mortality rates in terms of socioeconomic covariates

(risk factors) with and without an allowance for spatial frailties. In section 3 we sum-

maries the data used in the analysis, looking at each of the socioeconomic factors in

turn exploring its variation across the region. In section 4 we summarise the results of

this study, we begin with the basic logistic regression model then carry out a general to

specific analysis. Finally we introduce two extensions to the simplified logistic model

and discuss the findings. Section 5 concludes.
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5.2 Literature review and Models of mortality

Spatial models have been developed and applied to modelling house prices, crime

levels and diseases amongst many others1. Rosen (1974) models house prices using

spatial covariates including environmental attributes and geographical characteristics.

Waller et al. (2007) models geographic variation in alcohol distribution and violent

crime in Houston. Kazembe (2007) examined spatial clustering of malaria risks in

northern Malawi. Geodemographic modelling, the spatial modelling of demographic

data, is used in a range of applications. Commercial applications include customer

profiling for product marketing and development. Grubesic (2004) applies geodemo-

graphic models to assess broadband access. Richards (2008) uses geodemographic

profiles based on postcodes to analyse life insurance and pension scheme mortality.

Tuljapurkar and Boe (1998) outline mortality differentials by sex, education and socio-

economic variables. Richards and Jones (2004) discuss the impact of socio-economic

status on mortality rates in the UK. For Northern Ireland, there is limited formal mod-

elling and analysis of mortality variation by geographical location using spatial models

and limited analysis of variation of mortality according to socio-economic risk factors.

Mortality can be modeled using survival (time to death) data or aggregate death

rate data. If data on individual characteristics including death dates are available then

hazard rates can be estimated using proportional hazards models to quantify the effect

of covariates2. For aggregate data on deaths and exposures, the effect of covariates on

death rates can be estimated using logistic regressions. Both approaches to modelling

can be modified to include spatial variation. Frailty models are used for heterogeneity

in mortality rates to account for unobserved covariates (Vaupelet al., 1979). Frailty

1For a review of the various applications see Sherris and Tang (2010)
2A proportional hazards model including covariates for different geographic regions are discussed

in Sherris and Tang (2010)
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models can also be used to capture spatial variation and unobserved heterogeneity.

Banerjee and Carlin (2003) provide details of spatial frailty models in the hierarchical

Bayes model. As the data we have in this study is at an aggregate level we will be using

a logistic regression model to fit the data with frailty modified versions to investigate

spatial clustering.

5.2.1 Spatial Logistic Modelling

With aggregate level death data the logistic regression model3 can be used. The time

to death or “event time” datatij is replaced with an indicator:

Yij =





1 if survived

0 otherwise

(5.1)

andρij = Pr(Yij = 1), has a logistic form:

logit(ρij) = βTxij, (5.2)

Independent frailties can be included in such a model by including the elementWi as

below:

logit(ρij) = βTxij + Wi, (5.3)

whereWi is the frailty term for regioni, β are the parameters andxij are the individual-

specific covariates for thejth subject in regioni, and where simple i.i.d. specifications

3Ingram and Kleinman (1989) and Doksum and Gasko (1990) show that the results for theβ param-
eters can be quite similar in the two different models when the probability of death is small or where
there is no censoring. However, since the proportional hazards model is based on more information than
the logistic regression model, Banerjeeet al. (2003) note that the proportional hazards model should be
more powerful in detecting significant covariate effects.
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including the gamma distribution, the log-normal distribution and the normal distribu-

tion, can be assumed forWi (McGilchrist and Aisbett, 1991; Wienke, 2003).

We can further investigate whether spatial clustering present by adjusting the as-

sumption of independent frailties. With independent frailties the models do not ac-

count for spatial clustering, but these effects can be modeled using continuous geosta-

tistical models or discrete lattice models. The geostatistical approach uses the exact

geographical location of a region (Cressie, 1993). FrailtiesW are indexed continu-

ously throughout a geographical regionD.4 In the case of Northern Ireland, where we

have aggregated death data for distinct regions we will be using a lattice modelling

approach to investigate spatial clustering.

5.2.2 Lattice Modelling

WhenW is defined only for discrete regions such that the regions form a partition of

the geographical study spaceD, then this is the lattice model. Banerjee and Carlin

(2002) use the conditionally autoregressive model (CAR) for the prior distribution:

W|λ ∼ CAR(λ), (5.4)

introduced in Besaget al. (1991). Bernardinelli and Montomoli (1992) refer to the

most common form of this prior having the following joint distribution:

W|λ ∝ λ1/2exp
[λ

2

I∑

i=1

ni∑

j=1

αijWi

(
Wi − 1∑ni

j=1 αij

I∑

j=1

αijWj

)]
, (5.5)

whereαij represents the weights between regioni and regionj. With spatial correla-

tion, higher weights should be assigned to regions in closer proximity to each other.

4For a geostatistical model a prior distribution, given observationsWi for known locationsi, i =
1 . . . I, is used for the unobserved frailty values at other target locations.
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For example,

αij =





1 i adj j,

0 otherwise

(5.6)

in which case Eq. (5.5) simplifies to:

W|λ ∝ λ1/2exp
[
− λ

2

I∑

i=1

miWi(Wi − Ŵj)
]

(5.7)

whereŴi is the average of the frailtiesWj 6=i that are adjacent to region i, andmi is

the number of the adjacent pairs. This then gives,

W|λ ∝ N
(
Ŵi,

1

λmi

)
(5.8)

The CAR model displaces each individual region-effect estimates towards the local

“mean effect”Ŵi. Banerjeeet al. (2003) note that the lattice model is computationally

simpler compared to the geostatistical approach.

Given that mortality rates evolve through time (Wilkinsonet al., 2000) a further

model could be proposed with both dependence in space and through time. It would

require data relating to deaths by geographical region across time and is not being

proposed here because of a lack of available data. For completion, such a model is

referred to as a spatial-temporal model. Iftijk denotes the time to death for thejth

subject in region i in the year k withi = 1 . . . I, k = 1 . . . K andj = 1 . . . nik, xijk

denotes the vector of covariates,Wik the spatial-temporal frailties corresponding to the

ith region in thekth year, then the proportional hazards model becomes:

h(tijk,xijk) = h0(tijk)exp(βTxijk + Wik), (5.9)
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whereh0 is the baseline hazard. Assuming a lattice structure and a CAR(λk) model

(see Besaget al., 1991) the prior distribution is:

λ
1/2
k exp

[
− λk

2

∑

iadjj

(Wik −Wjk)
2
]

∝ λ
1/2
k exp

[
− λk

2

I∑
i=1

miWik(Wik − Ŵjk)
2
]
,

(5.10)

whereiadjj denotes that region i and region j are adjacent to each other, andŴik is

the average of the frailtiesWjk adjacent to region i for thekth year andmi represents

the number of these adjacencies. The conditional distribution ofWik becomes:

Wik|W(j 6=i)k ∝ N
(
Ŵik,

1

λkmi

)
. (5.11)

5.2.3 Assessing Model Choice

When we fit each of these models we have to determine which model provides the best

fit. We use an information measure, the Deviance Information Criterion (DIC), as we

wish to ensure that when we add additional explanatory variables, spatial or socioe-

conomic that we are improving the model fit significantly. The DIC is an extension

of the Akaike Information Criterion (AIC), is commonly used to compare the perfor-

mance of different models (Spiegelhalteret al., 2002). It is readily calculated using

Markov Chain Monte Carlo (MCMC) methods (Banerjee and Carlin, 2003). The DIC

is defined as:

DIC = D̄ + pD, (5.12)



136 CHAPTER 5. Spatial modelling of mortality rates

with closeness of fit to the data measured byD̄ = Eθ|y[D] and the effective number of

parameters measured bypD. pD is defined as,

pD = Eθ|y[D]−D(Eθ|y[θ]) = D̄ −D(θ̄), (5.13)

which is the deviance of the posterior mean subtracted from the posterior mean at the

deviance. The deviance statistic is:

D(θ) = −2 ln f(y|θ) + 2 ln h(y), (5.14)

wheref(y|θ) is the likelihood,y the data vector,θ the parameter vector, andh(y)

a standardising function of the data alone. It does not have any impact on model

selection. Small values of̄D represent a good fit and small values ofpD indicate a

more parsimonious model. Smaller values of DICs are preferred. DICs are only used

to compare models.

5.3 Data

The analysis in this paper is based on data from 2008 provided by the Northern Ire-

land Statistical Research Agency NISRA and is divided geographically using Super

Output Areas (SOA) of which there are 890 in Northern Ireland. SOA’s are a set of

geographies developed in the UK after the 2001 census5.

5In Northern Ireland SOA’s typically contain2000 lives but range from1300 to 2800. They were
designed to improve reporting of small area statistics and to ensure that each area was of similar
size, unlike electoral wards which varied widely in size. The data is taken from the 2010 deprivation
study.http:www.nisra.gov.uk/deprivation/nimdm_2010.htm
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Table 5.1: Super Output Areas in Northern Ireland split by county
County Number of Super Output Areas
Antrim 174
Armagh 69
Belfast 150
Derry 122
Down 288
Fermanagh 25
Tyrone 62

5.3.1 Geographical Classification for Northern Ireland data

The socioeconomic and demographic factors used in this study include measures of

employment levels, education, crime and violence, income, proximity to services, en-

vironment and health deprivation. Separating Belfast from the counties the SOA’s

separate into the 6 counties and Belfast (See table 5.1). No SOAs were omitted in the

analysis as all had sufficiently large populations ranging from997 to 3, 6676.

5.3.2 Deaths Data

Death data and mid population estimates are available for each of the SOA’s in 2008

for males and females individually from the NISRA website7. Mortality rates were

determined by dividing the total number of deaths in each SOA by the annual mid-

year population estimates for each SOA.

The figures 5.1 and 5.2 show the normalised mortality rates for males and females

in 2008 split by super output area. Higher mortality rates occur in the more urban

areas of Northern Ireland, Belfast, North Down, Lisburn. Lower mortality rates oc-

cur in the more rural parts of Northern Ireland, for example Fermanagh and Tyrone.

However, within urban areas the mortality can still be seen to experience some degree

6A table of the Super output areas along with their names and SOA codes is available on request
7seehttp://www.nisra.gov.uk/
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Figure 5.1: The normalised mortality rates for males in 2008 split by super output area

Figure 5.2: The normalised mortality rates for females in 2008 split by super output
area
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of variability, figure 5.3 shows the mortality within the belfast area. Similar maps of

Northern Ireland for 1999 and 2003 show that the geographical variation in Northern

Irish mortality rates changed little over the period 1999-2008.

Figure 5.3: Histogram of the variation of the mortality across the Belfast region

5.3.3 Deprivation Data

The data series’ obtained were selected to reflect the major factors expected to affect

mortality. A detailed summary of the data upon which the deprivation factors were

based can be found on the NIRSA website8.

For interest, and specific to the Northern Ireland context, we define a measure

of political polarisation which we calculate using the proportion of catholics in each

region as the data item and converting this into a measure ranging from 0 to 1 reflecting

the concentration of one particular political orientation over another. The focus here

is on mortality rates in the two distinct types of area in Northern Ireland. “Polarised”

areas are regions where there is a predominance of the population from one particular

religious or political focus. The opposite to these sorts of areas are what are known

8http://www.nisra.gov.uk/deprivation/archive/Updateof2005Measures/
NIMDM_2010_Indicator_Summary.pdf
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as “mixed” areas where there is no particular concentration. We include this in the

analysis to see if there is any explanatory power for mortality in this variable. We use

the percentage of catholic believers in each SOA9 to measure political polarisation. If

we denoteαA as the proportion of catholics in region A then we calculate a factor to

reflect the concentration of one political orientation in an area as:

2 ∗max(αA, 1− αA)− 1. (5.15)

The formulation of this factor is such that areas with large densities of catholics will

measure equally with areas of the same density of non-catholics. The aim of the factor

being to capture areas of high polarisation (either catholic or non-catholic). Table 5.2

summarizes the definitions of the covariates used for analysis.

Table 5.2: Deprivation covariates
Symbol Covariate Detail
Inci Income Index of income deprivation
Empi Employment Index of employment deprivation
Edui Education Index of education deprivation
Envi Environment Index of environmental deprivation
Heai Health Index of health deprivation
Proxi Proximity to services index of proximity to services deprivation
Crimei Crime Index of crime deprivation
Agei Age Proportion of the population over age 60
PPi Political polarisation Based on the weighting of catholics / non-catholics in any region

We plot the socioeconomic standardised factors from the 2010 deprivation study

in figure 5.4 to show the distribution of socioeconomic characteristics in Northern

Ireland. Each covariate was standardized by subtracting its mean and then divided

by its standard deviation. In Appendix A we show the same distributions but in a

geographical fashion with thematic maps of the deprivation factors by super output

area. In the plots, darker blue indicates greater deprivation and lighter blue indicates

9http://www.ninis.nisra.gov.uk/mapxtreme/viewdata/Census/
CensusKS07b.xls
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lower deprivation in the SOA. Appendix B shows the distribution of age profiles across

the SOA’s of Northern Ireland. We have divided this into younger populations (people

under the age of 18), older populations (people over the age of 60/65) and the overall

population. Finally, in Appendix C we have summarised the political polarisation of

each SOA.
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Figure 5.4: Distribution of deprivation measures (a) Crime, (b) Education, (c) Employ-
ment, (d) Environment, (e) Healthcare, (f) Income, (g) Age, (h) Proximity to services,
and (i) Political polarisation .

These plots show how all covariates (deprivation factors and age and political ori-

entation) are spatially correlated, with similar measures of demographic and economic

characteristics between nearby SOAs. High levels of Employment, Income, Educa-

tion and Health deprivation exist in the North Western areas of Northern Ireland (Fer-

managh and Derry) and in the South Down and Armagh areas of Northern Ireland.

Deprivation of the living environment is high in the North Antrim and Fermanagh ar-

eas (these areas are significantly rural and have poor transportation links) and is also

high in some inner city areas of Belfast and Lisburn and Newtownards. Crime and

Disorder is more significant in the cities but also shows high levels in some pockets

of rural areas such as Tyrone, Armagh and Antrim. One significant factor to note for
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Northern Ireland is that nearly all areas (all areas except the Belfast, Lisburn, Newtow-

nards, Bangor quadrangle) suffer from a lack of facilities.

5.4 Empirical Analysis

The data, split by super output area, is aggregate death data,di, and exposure data,ei,

for each super output areai = 1, . . . , 890 over the year 2008. The variation in this data

will be heavily masked by the fact that the age profile of each super output area10 will

be different. Since we are investigating the impact of socio-economic measures on the

variation in mortality rates we first need to standardise the data for age. We do this by

running a simple regression model on the natural logarithm of the mortality rate with

only constant and age as the covariates.

ln
di

ei

= α + β ∗ Agei + εi (5.16)

The results of this model for males and females are given in table 5.3. From the

results we can see that the constant explains a significant amount of the log mortality

rates but this is to be expected since, whilst there is variation in the rates they all hover

around a similar level. Having identified the constant and age parameters we recal-

culate log transformed age-standardised mortality rates using the residuals specific to

each area. The remainder of the analysis will focus on the age standardised mortality

rates.

10Age profile data was taken fromhttp://www.ninis.nisra.gov.uk/mapxtreme/
viewdata/Census/CensusKS02.xls
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Table 5.3: Results of Simple GLM for Males 2008 and Females 2008 to control for
age and constant

Coefficient Std.Error t-value t-prob PartR2

Males
Intercept -4.9342 0.0191 -258 0 0.9868
age 0.3387 0.0191 17.7 0 0.2609
Females
Intercept -5.0132 0.0237 -211 0 0.9805
age 0.4463 0.0237 18.8 0 0.285

Figure 5.5: Male age standardised mortality rates

5.4.1 Simple Regression Model

In this subsection we show the results of fitting a simple linear model to the age stan-

dardised mortality rates derived from the data in Northern Ireland. We then demon-

strate how this model can be extended to allow for spatial frailties.

The modelling uses a hierarchical Bayes method. A prior distribution is assumed

for each of the parameters which we then combine with the likelihood of the data given

the parameters to give us the posterior distribution for the parameters given the data.

Parameters are estimated using Markov Chain Monte Carlo methods. The Condition-
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Figure 5.6: Female age standardised mortality rates

ally Autoregressive (CAR) model for spatial variation is used.

The generalized linear model of mortality ratemi for region i with a logit link

function has the following likelihood:

L(mi; β, x) ∝
I∏

i=1

( exp(
∑n

j=1 βjxij)

1 + exp(
∑n

j=1 βjxij)

)
, (5.17)

wheren is the number of covariates (socioeconomic or demographic factors),xi is the

vector of covariates respectively for each super output areai, i = 1 . . . I. The posterior

distribution is:

p(β|x) ∝ L(mi; β, x)p(β), (5.18)

where the first term on the right represents the logistic likelihood, and the second is the

prior distribution for the parameters. A vague uniform prior distribution is assumed

with small mean and large variance because of a lack of prior knowledge about the
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parameters (Banerjeeet al., 2003). This prior forβ is used in all the models.

The results of fitting the standardised mortality rates to a generalised linear logistic

regression model using all the standardised socioeconomic factors for Males 2008 and

Females 2008 are shown in table 5.4. We provide the parameter estimates and p-values

of the covariates for the 2008 data. However, we also find Employment, Healthcare and

Environment deprivation are significant. Proximity to local services was significant at

the 10% level for females but not for the male data. The political polarisation (PP)

variable does not show any significance on its own but proves to be significant through

income, education and employment for males and through employment and income

for females. Improved levels of Employment, Income, Education and Proximity to

services lead to lower mortality rates.

To demonstrate the confidence we have for the parameter estimates for each co-

variate table 5.5 provide the 2.5%, 50% and 97.5% posterior percentiles for each of

the predictors and interaction terms for the generalised linear model for both Males

and Females.

The quality of the fit using this model is measured using the DIC measure which

pits quality of fit against parsimony. Using this measure we have a fit given in table

5.6

This measure of fit quality is of little use on its own. One of the hypotheses in

this paper is that in the Northern Ireland context, introducing spatial frailties does not

improve the fit. Before addressing this we simplify the existing model. To simplify

the model we carry out a general to specific modelling analysis for both the Male

and Female data to eliminate those variables that are not significant in explaining the

variation we see in the age standardised mortality rates. We then extend the resulting

models adding spatial and non-spatial frailties to explain any residuals.
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Table 5.4: Results of Simple linear regression for Males 2008 and Females 2008

MALE Coefficient Std.Error t-value t-prob PartR2

Constant -4.9879 0.0286 -174.000 0.0000 0.9720
Crime -0.0474 0.0377 -1.260 0.2090 0.0018
Education -0.0937 0.0575 -1.630 0.1034 0.0030
Employment -0.1008 0.0803 -1.250 0.2099 0.0018
Environment 0.1040 0.0358 2.910 0.0038 0.0095
Healthcare 0.3765 0.0649 5.800 0.0000 0.0369
Income -0.0412 0.1045 -0.394 0.6937 0.0002
Proximity 0.0173 0.0288 0.601 0.5481 0.0004
PP -0.0050 0.0312 -0.162 0.8711 0.0000
PP*Inc -0.2305 0.0830 -2.780 0.0056 0.0087
PP*Edu 0.0507 0.0508 0.998 0.3186 0.0011
PP*Emp 0.1660 0.0671 2.480 0.0135 0.0069
FEMALE Coefficient Std.Error t-value t-prob PartR2

Constant -4.9284 0.0219 -225.000 0.0000 0.9829
Crime -0.0008 0.0289 -0.027 0.9788 0.0000
Education -0.0286 0.0440 -0.650 0.5157 0.0005
Employment -0.1381 0.0615 -2.240 0.0251 0.0057
Environment 0.04781 0.0274 1.740 0.0814 0.0035
Healthcare 0.3369 0.0497 6.770 0.0000 0.0497
Income 0.0466 0.0801 0.582 0.5608 0.0004
Proximity 0.0287 0.0221 1.300 0.1944 0.0019
PP -0.0249 0.0239 -1.040 0.2975 0.0012
PP*Inc -0.0878 0.0636 -1.380 0.1674 0.0022
PP*Edu 0.0018 0.0389 0.045 0.9641 0.0000
PP*Emp 0.0790 0.0514 1.540 0.1243 0.0027

5.4.2 General to specific modelling of covariates in Northern Ire-

land

In the General to Specific method the specification of the general model from which

reductions are made is crucial (Hendry, 2000 page 482) because a poorly specified

general model stands little chance of leading to a good final specific model. With a

cross sectional study we evaluated the congruency of the general model by applying

several mis-specification tests. These same tests are also applied at every stage of the

reduction process. We follow the approach of Krolzig and Hendry (2001) and carry out
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Table 5.5: Posterior percentiles for covariates and interaction terms for Male and Fe-
male data using the GLM model

Males Females
Coefficient 2.50% median 97.50%2.50% median 97.50%
Intercept -4.8680 -4.8440 -4.8190-4.860 -4.834 -4.807
Employment -0.2475 -0.1823 -0.0913-0.146 -0.065 0.015
Income -0.0569 0.0244 0.1107 -0.130 -0.033 0.067
Healthcare 0.2488 0.3190 0.3736 0.193 0.275 0.336
Education -0.0966 -0.0428 0.0109 -0.042 0.030 0.079
Environment -0.0138 0.0231 0.0595 -0.005 0.032 0.065
Crime -0.0611 -0.0161 0.0221 -0.055 -0.010 0.027
Proximity -0.0391 -0.0111 0.0182 -0.022 0.008 0.036
PP -0.0351 -0.0092 0.0183 -0.050 -0.023 0.005
PP*Emp 0.0495 0.1266 0.1904 -0.089 -0.012 0.059
PP*Inc -0.1868 -0.1090 -0.0186 0.002 0.086 0.182
PP*Edu -0.0265 0.0306 0.0836 -0.088 -0.038 0.025

Table 5.6: Goodness of fit for Males 2008 and Females 2008 generalised linear model

D̄ pD DIC
Males
GLM 5266.00 12.43 5278.43
Females
GLM 4493.71 12.83 4506.54

the following tests on the general model: (1) TwoF -tests for parameter constancy for

breakpoints at the sample mid-point and 90th percentile; and (2) Doornik and Hansens

(1994)χ2 test for normality of the error terms.

The figures 5.7 and 5.8below show scatter plots of the age standardised mortality

rates against the remaining depravation measures. They show that there may still be

some non-normal variation across the measures.

Carrying out the GETS analysis with the age standardised mortality variation rates

across Northern Ireland we find, in the case of male data, that the variables that re-

main in the specific model are environment, healthcare, and PP through income and

employment. For the females we are left with employment, healthcare and proximity.
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Figure 5.7: Scatter plots of the male age standardised mortality rates against depriva-
tion measures (a) Crime, (b) Education, (c) Employment, (d) Environment, (e) Health-
care, (f) Income, (g) Proximity to services, and (h) Political polarisation (i) PP * Em-
ployment, (j) PP * Income and (k) PP * Education.

We note from this analysis that PP does explain some of the variation we see in

male data but not in female data. Potential explanations for this could relate to the

specific problems that the Northern Ireland region has had over the past number of

years and the greater impact that this would have had on the male population. In this

study we do not attempt to explain but rather just identify the significant covariates. We

conclude from the GETS analysis that the covariates to use in our simplified model for

the standardised males mortality rates are: Healthcare, Environment and the interaction

terms PP by Income and PP by employment. For the females we will use Healthcare,

Employment and Environment.

The next step is to fit our linear models to the data but only allowing for the specific

factors identified by the GETS analysis. The results of the fitting process using only

the specified covariates are given in table 5.7 having identified the simpler model using

the general to specific modelling approach we now look at the issue of frailties and

consider several adaptations to the linear regression model encompassing independent
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Figure 5.8: Scatter plots of the female age standardised mortality rates against de-
privation measures (a) Crime, (b) Education, (c) Employment, (d) Environment, (e)
Healthcare, (f) Income, (g) Proximity to services, and (h) Political polarisation (i) PP
* Employment, (j) PP * Income and (k) PP * Education.

and spatial frailties.

Table 5.7: Results of Simple linear regression for Males 2008 and Females 2008

MALE Coefficient Std.Error t-value t-prob PartR2

Intercept -4.9918 0.0243 -205.000 0.0000 0.9795
Health 0.2672 0.0395 6.770 0.0000 0.0493
Environment 0.0783 0.0300 2.610 0.0093 0.0076
PP*Emp 0.1332 0.0639 2.080 0.0375 0.0049
PP*Inc -0.1739 0.0637 -2.730 0.0065 0.0084
FEMALE Coefficient Std.Error t-value t-prob PartR2

Intercept -4.9342 0.0173 -285.000 0.0000 0.9892
Employment -0.1197 0.0430 -2.780 0.0055 0.0087
Health 0.3208 0.0441 7.270 0.0000 0.0563
Environment 0.0435 0.0210 2.070 0.0388 0.0048

The confidence we have for the parameter estimates for each covariate table 5.8

provide the 2.5%, 50% and 97.5% posterior percentiles for each of the predictors and

interaction terms for the specific linear model for both Males and Females.
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Table 5.8: Posterior percentiles for covariates and interaction terms for Male and Fe-
male data using the GLM model

Males
Coefficient 2.50% median 97.50%
Intercept -4.852 -4.830 -4.807
Health 0.114 0.144 0.175
Environment -0.018 0.009 0.038
PP*Emp 0.024 0.098 0.163
PP*Inc -0.148 -0.080 -0.006
Females
Coefficient 2.50% median 97.50%
Intercept -4.847 -4.822 -4.797
Employment -0.112 -0.053 0.003
Health 0.196 0.255 0.319
Environment 0.000 0.030 0.056

5.4.3 Introducing frailties

In the previous section we have identified the main socioeconomic factors that explain

the variability of mortality rates across Northern Ireland. In this next section we extend

this standard regression model to include a frailty aspect picking up the geographical

location of each region. We then look at the fitting quality again using a DIC measure.

When we add the frailties the likelihood function becomes:

L(mi; β, x) ∝
I∏

i=1

( exp(
∑n

j=1 βjxij + Wi)

1 + exp(
∑n

j=1 βjxij + Wi)

)
, (5.19)

whereWi is the frailty for super output areai, which captures any remaining effects

not explained by the covariates. Under this non-spatial frailties setting, the frailties are

assumed to be identical and independently distributed with the following distribution:

Wi ∼ N(0, σ2). (5.20)

Eq. (5.20) assumes no spatial dependence since frailties in one SOA are indepen-
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dent of frailties in another. The hierarchical Bayes model is:

p(β, W, σ2|x) ∝ L(mi; β, x)p(W|σ2)p(β)p(σ2), (5.21)

where the likelihood is given by Eq. (5.19). As in Banerjeeet al. (2003), a Gamma

(0.001, 0.001) prior distribution is used forτ = 1/σ2 with mean 1 and variance 1000.

A flat Uniform prior was adopted forβ.

To allow for spatial clustering (i.e., adjacent super output areas showing simi-

lar mortality characteristics), we allow for spatial correlations between nearby SOAs

through a Conditional Auto-regression specification. In this specification an adjacency

matrix is defined to capture the geographical variations in mortality. The adjacency

matrix is defined by assigning theijth entry a value of1 if the super output areai is

adjacent to super output areaj and0 otherwise. The hierarchical Bayes model be-

comes:

p(β, W, λ|x) ∝ L(mi; β, x)p(W |λ)p(β)p(λ), (5.22)

where the priorW |λ is given by:

λ
1/2
k exp

[
− λk

2

∑

iadjj

(Wik −Wjk)
2
]

∝ λ
1/2
k exp

[
− λk

2

I∑
i=1

miWik(Wik − Ŵjk)
2
]
,

(5.23)

whereiadjj denotes that Super output areai and Super output areaj are adjacent to

each other,Ŵi is the average of the frailtiesWj , adjacent to SOAi andmi repre-

sents the number of these adjacent regions (Bernardinelli and Montomoli, 1992). A
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consequence of the above prior is that:

Wi|Wj 6=i ∝ N
(
Ŵi,

1

λmi

)
(5.24)

Repeating the fitting analysis now using the independent frailties model and the

spatial clustering model the parameter estimates along with confidence intervals are

shown in tables 5.9 and 5.10.

Table 5.9: Posterior percentiles for covariates for Male and Females 2008 data with
the independent frailties model

Males
Coefficient 2.50% median 97.50%
Intercept -4.936 -4.897 -4.821
Health 0.103 0.143 0.188
Environment -0.019 0.019 0.060
PP*Emp 0.001 0.104 0.193
PP*Inc -0.186 -0.095 0.009
Female
Coefficient 2.50% median 97.50%
Intercept -4.864 -4.835 -4.803
Employment -0.128 -0.059 0.000
Health 0.195 0.259 0.334
Environment 0.000 0.031 0.062

Looking at the deviance measure now for the independent frailties and the spatial

clustering models alongside the standard generalised model we have the results shown

in table 5.11. From this we can see that there is a minor benefit to be had by allowing

for non-spatial frailties however, after adding spatial frailties we do not improve the

model fit significantly. This suggested that our proposition that mortality rates may

have some form of spatial clustering is clearly not the case in Northern Ireland.

We test the residuals11 for normality for each of the three models above and note

11We follow the approach of Dowdet al. (2010) and test the age standardised mortality residuals for
males and females using the three models proposed. The tests used aim to identify whether the mortality
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Table 5.10: Posterior percentiles for covariates for Male and Females 2008 data with
the spatial frailties model

Males
Coefficient 2.50% median 97.50%
Intercept -4.937 -4.896 -4.842
Health 0.132 0.196 0.265
Environment -0.090 -0.032 0.025
PP*Emp -0.062 0.038 0.147
PP*Inc -0.153 -0.043 0.055
Female
Coefficient 2.50% median 97.50%
Intercept -4.859 -4.830 -4.800
Employment -0.116 -0.045 0.025
Health 0.190 0.253 0.331
Environment -0.026 0.013 0.047

Table 5.11: Goodness of fit for Males 2008 and Females 2008 generalised linear model
with spatial and non-spatial frailties

D̄ pD DIC
Males
GLM 5303.21 5.056 5308.27
IID 4378.52 460.203 4838.72
SPA 5590.56 1641.24 7231.8
Females
GLM 4501.95 4.248 4506.2
IID 4326.85 150.187 4477.04
SPA 5492.28 1185.74 6678.02

that the results are in line with those of Dowd et al (2011) who carried out similar tests

on a range of stochastic mortality models.

residuals are consistent with i.i.d. N(0,1) as assumed under the null hypothesis. The tests involves three
types of tests: (1) t-test of mean prediction; (2) Variance ratio (VR) test (see Cochrane, 1988; and Lo and
MacKinley, 1988 and 1989); (3) Jarque and Bera test of Normality based on the skewness and kurtosis
predictions. A statistically significant result for any of these tests - which we take to be any test which
produces a p-value of less than 1% - indicates inconsistency with i.i.d. N(0,1).The results are available
on request.
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5.4.4 Can geographical information replace socioeconomic data

We have demonstrated that spatial frailties do not add any fitting value when we have

sufficient socioeconomic data suggesting that spatial clustering of mortality rates may

not be present in the Northern Ireland region. However, we might expect that spatial

models will be more useful when we have little other data upon which to fit our mor-

tality rates. To test this we consider the situation where we do not have significant

amounts of socioeconomic data available to us. We assume the only covariate we have

is an aggregate age parameter for each SOA and we fit a simple regression model and

some extensions of it to the data for males and females in 2008 to the non-age stan-

dardised mortality rates. We chose this covariate to assess the impact of adding spatial

structure as it is the most readily available piece of information we might have and the

one which is likely to have the most significance when trying to explain raw mortality

rates. Three models were fitted to the data, firstly a simple generalised linear model

(GLM) with no allowance for spatial dependence (the no frailties model), secondly

a linear model allowing for independent, identically distributed frailties (non-spatial

frailties model) and finally a linear spatial frailties model which allows for spatial

dependence which employs a CAR specification to capture the spatial dependence be-

tween adjacent SOAs.

The models are again fitted using a Markov Chain Monte Carlo algorithm under a

basins hierarchical framework. A flat Uniform (-10000,10000) prior was adopted for

the parameter and a Gamma (0.001,0.001) was chosen for the frailtiesWi in the non-

spatial frailties model. For the spatial frailties model the smoothness parameterλ of

the CAR specification was given a Gamma(0.001,0.001) prior distribution. Table 5.12

compares the three models using the Deviance Information Criterion (DIC), which is

the sum of the expected deviance and the number of effective parameterspD.

Comparisons of DIC values show that the model with i.i.d. non-spatial frailties
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Table 5.12: Goodness of fit for Males 2008 and Females 2008 spatial and non-spatial
modelling

Males Females
Model pD DIC pD DIC
Non-Spatial No frailties Model 1.94 5340.092.09 4772.49
Non-Spatial Frailties Model 452.19 4989.52138.04 4743.69
Spatial Frailties Model 1698.49 7358.101259.65 6675.01

shows a mild improvement over the no-frailties model, despite the increase in the

number of effective parameters. However, the inclusion of spatial frailties does not

improve the fit further. In fact the DIC for the spatial frailties is poorer due to the

additional number of parameters.

5.5 Conclusions

This paper has considered geographical variation of mortality and the effect of socioe-

conomic explanatory factors using Northern Ireland data. Raw, logarithmically trans-

formed mortality rates where firstly standardised for age distribution differences across

the super output areas of Northern Ireland to generate a series of age-standardised mor-

tality rates for males and females. Regression models were then used to estimate the

impact of covariates extracted from the Northern Ireland Statistical Research Agency

(NISRA) on the age standardised rates. A General to specific analysis was carried

out to reduce and simplify the models which identified some differences between the

males and females in our study, in terms of the covariates that proved to be significant

in the final specific model. In the case of males we see that age standardised mortal-

ity rates can best be explained by the variation in deprivation measures; healthcare,

environment and political polarisation (through income and education). This would

suggest that the combined effect of living in a densely populated catholic (or protes-
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tant area) with poor education and income levels has an impact on mortality rates for

males. In the case of females we see that employment, healthcare and environment are

important. In both cases of males and females the quality of the immediate environ-

ment (heating, double glazing etc.) has come through as being a significant factor in

explaining mortality rate variation.

To assess the ability of geographical location to explain mortality rates and the

proposition that age standardised mortality rates may show some geographical clus-

tering, models including independent frailties and spatial frailties were fitted to the

data. When we allowed for independent frailties we found some improvement in the

fit measured on a deviance information criteria despite the additional parameterisation.

However when we fit a spatial structure to the data the information criteria was not im-

proved. We conclude that there is little evidence of spatial clustering in mortality rates

in Northern Ireland.

Finally we considered the case of frailties when we have little or no socio-economic

data available. In this case we seen again that with the inclusion of independent frailties

the fit can be improved using a DIC measure and in this case the improvement is more

dramatic which is to be expected since there is a larger unexplained element to the

mortality rates. This supports the view that there is a place for geographical location

data when we have limited other socio-economic data.

We carried out residual tests for normality on each of the frailty and non-frailty

models for the males and females using an approach of Dowd et al (2011) and find that

the models perform adequately when compared to the results found in that paper.

The results of this paper show that there is a place in mortality modelling for allow-

ing for underlying socioeconomic characteristics in the modelling process. Particularly

when forecasting mortality it would appear important that we forecast the underlying

socioeconomic profile and through this identify the direction in which mortality rates
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are moving. The inability of frailties to improve the fitting quality could be due to

some correlation between the socioeconomic variables included in this study and the

frailties themselves. We acknowledge this and suggest that this would be a possible

route for further investigation.
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5.6 Appendix: Additional Figures and Tables

Figure 5.9: Spatial distribution of age across Northern Ireland SOA’s



Figure 5.10: Spatial distribution of political density across Northern Ireland SOA’s

Figure 5.11: Income deprivation across Northern Ireland SOA’s
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Figure 5.12: Employment deprivation across Northern Ireland SOA’s

Figure 5.13: Environment deprivation across Northern Ireland SOA’s
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Figure 5.14: Education deprivation across Northern Ireland SOA’s

Figure 5.15: Crime deprivation across Northern Ireland SOA’s
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Figure 5.16: Proximity deprivation across Northern Ireland SOA’s

Figure 5.17: Proximity deprivation across Northern Ireland SOA’s



Chapter 6

Forecasting death rates using

exogenous variables

6.1 Introduction

Stochastic mortality models exploit patterns of common variation in deaths data across

ages over time. We argue in this paper that taking account of trends in the factors ex-

plaining mortality decline such as income, health expenditure and lifestyle leads to

improved forecasts. Lee and Carter (1992) model provided the seminal approach us-

ing a one factor time series approach. Subsequent innovations include modelling the

cohort effect (Renshaw & Haberman, 2003, 2006; Currie, 2006), adding a second pe-

riod effect (Cairns et al., 2006 hereafter CBD), widening of the model to fit ages 20-89

(Plat, 2009). Girosi and King (2008) use Bayesian methods to smooth over time, age

and country and this approach is extended further by King and Soneji (2011) to in-

corporate lagged exogenous variables in a Bayesian hierarchical model of mortality

rates. These approaches, which make use of the regularities found in the age and time

profile of mortality data have been the most successful methods to date but fail to ex-

163
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plain the drivers of mortality improvements and assume that trends seen in the past

will be continued into the future (Booth and Tickle, 2008). The work presented in this

paper can be divided into three parts. In the first part we use a principal components

approach to identify the factor structure of the mortality data for the U.S., U.K. and

Japan. The second stage takes the latent factors and explains these factors by observed,

exogenous factors (GDP, health expenditure, smoking levels, alcohol consumption etc)

using appropriate statistical techniques and using stopping rules to prevent the model

become over-parameterised. Finally, having identified the most appropriate exogenous

determinants we forecast the exogenous variables using ARIMA techniques and build

the forecasted exogenous variables into a model using the King and Soneji (2011) ap-

proach. Whereas King and Soneji (2011) used lagged exogenous variables to explain

mortality and so avoid the need to forecast these variables, we will forecast the exoge-

nous variables separately. There are many possible explanations for recent changes

in mortality rates. The health production function approach where health is proxied

by mortality provides a framework for understanding the determinants of mortality.

Auster et al. (1969) used the following health production model:

Mi = ci + αZi + βXi + γHCi + δEi + ui (6.1)

whereMi are logged (standardised) mortality rates by US state,Zi socio-economic

status (income, education),Xi lifestyle inputs (alcohol, tobacco),HCi are healthcare

inputs (drugs, doctors, hospital capital stock),Ei captures environmental variables

(urbanization, industrialization) andui is a random element. Higher incomes allow

people to spend more on health inputs. As average incomes rise, people can purchase

more non-healthcare inputs that benefit health such as better housing, more nutritious
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food and gym membership. Where healthcare coverage must be privately paid for (US

and partly in Japan), higher incomes also allow people to spend more on better doctors

and better hospital care.1 The choices that individuals make in relation to their health

also affect mortality. Lifestyle factors such as smoking (Leon, 2011; Thornton et al.

2002), obesity (Cutler et al., 2009) and alcohol consumption (Miller and Frech, 2000)

are all recognised as significant risk factors. In studying secular trends in mortality,

the role of advances in medical technology must be also considered. Cutler and Meara

(2004) attributed much of the decline in US adult mortality in the second half of the

twentieth century to cardiovascular disease treatment (new drugs, new surgical proce-

dures and specialised equipment). Other factors considered are economic instability

(Bethune, 1997; Iverson et al, 1998), environmental air pollution (Schwarz and Dock-

ery, 1992), pharmaceutical expenditure (Miller and Frech, 2000) and crime (Thornton

et al., 2002). The remainder of this paper is laid out as follows. In section 2 we discuss

the data that has been used in this study. The methodology is discussed in section 3.

The results are presented and analysed in section 4. Section 5 concludes.

6.2 Data

Data on possible determinants of health were taken from OECD Health data 2009.

Data availability dictated the candidate variables chosen: Alcohol consumption (for

those aged 15+), Tobacco consumption (15+), Total fat intake, Fruit and vegetable

consumption, Gross domestic product per capita (in 2000 prices) and total expenditure

on health per capita (in 2000 prices). Definitions and descriptive statistics are given

in Table 1. The health expenditure time series begins in 1970 while Japanese tobacco

1Although higher incomes also permit increased consumption of goods injurious to health such as
alcohol and tobacco. In addition, Ruhm (2004) argues that there are less motor vehicle accidents and
people adopt healthier lifestyles in economic downturns.



166 CHAPTER 6. Forecasting death rates using exogenous variables

consumption is only available from 1968 onwards. Therefore, data over the period

1970-2006 were only considered. GDP and Health expenditure have been both logged

in the statistical analysis. Other variables were excluded. The obesity time series are

short and patchy and to some extent this information is captured by the food measures

included. Data on pharmaceutical expenditure and medical technology capital stock

(CT and PET scanners, MRI units, radiation therapy etc) are insufficient and are cap-

tured crudely by aggregate health expenditure. Air quality emissions data (SOx,NOx

and CO) are inadequate.

Not all determinants of mortality are contemporaneous. Barker (1992) provided

evidence that insults to foetal health had life-long consequences based on an analysis

of the risk factors for cardiovascular diseases found in adults who were born at the

time of the WW2 Dutch famine. The short time series data considered in our study

precludes the inclusion of variables of large lag length. Several authors indicate that

these effects may be relatively minor. Murphy (2010) argues that exposure to a health

shock has two opposing consequences: selection (excess mortality in the relevant pe-

riod perhaps leading to the survival of a more robust cohort than average) and scarring

(a weakened cohort more susceptible to illness going forward) and that the resultant

effect is ambiguous. In a study of twins, Herskind et al. (1996) found no evidence

that family environment had an impact on longevity whereas current environmental

influences were influential. Similarly, Cutler et al. (2006) indicate cardiovascular risk

factors experienced in adulthood are much more significant on mortality than early

life exposures. The mortality data used is taken from the Human Mortality Database

collated by the Department of Demography at the University of California, Berkeley

and the Max Planck Institute for Demographic Research in Rostock, Germany. Death

rates, a ratio of the death count by single age and year divided by an estimate of the

exposure-to-risk in the same interval, for males in the US, UK and Japan over the pe-
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riod 1970-2006 were selected. Models were estimated over the period 1970-2000 and

mortality rates for the remaining 6 years, 2001-2006, were retained for comparison

with forecasts. These countries were chosen so as to provide a variety of results. On

the one hand, being non-tropical countries with developed health care systems similar

factors should determine trends in mortality. On the other hand, they are distinct in

terms of culture, diet, and the importance of private versus public provision in health

care which should generate distinct results. Due to the exponential nature of mortal-

ity rates we model the logarithmically transformed mortality rates. We carry out the

analysis on two age ranges to test the robustness of our conclusions.

6.3 Methodology

Many of the approaches to mortality modelling used in the actuarial literature are

based on a principal component analysis (PCA) of time series of mortality data by sin-

gle age. The Lee-Carter model is a one –PC model and other multifactorial derivatives

of this model add further cohort terms or additional factors to capture younger or older

age mortality. Yang et al. (2010) building on previous PCA studies of mortality (Bell,

1997; Hyndman and Ullah, 2005) considers a two-PC model.

An econometric literature on factor analysis is well-developed. Factor analysis has

been used extensively in economic forecasting, modelling business cycles and analyz-

ing contagion effects of economic crises. In order to put an economic interpretation on

latent factors extracted in these cases, Bai and Ng (2006) developed a statistical test for

large cross section (N) and large time dimension (T) datasets to test the adequacy of

observed variables as proxies for the unobserved factors. These tests take into account

that latent factors are not known but must be estimated.

Assuming that a set ofN variables,mit can be described by a weighted linear com-
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bination ofr (smaller thanN ) factors,Ft, we can apply Factor Analysis to the datasets.

This statistical technique accounts for the maximum amount of data variance with a

small number of factors while best reproducing the observed correlations between the

variables.

mit = λ′iFt + eit (6.2)

for i = 1, . . . , N and t = 1, . . . , T . In classical factor analysis the error terms

eit are presumed to be independent acrossi andt. In approximate factor analysis this

condition is relaxed.

Using principal components as estimates for the factors, the matrix of factor es-

timatesF̃ = (F̃1, . . . , F̃T )′ is given by ther eigenvectors associated with the largest

eigenvalues of the matrixXX′
NT

. The factor loadingsΛ = (λ1, . . . , λN)′ are given as

Λ = X′F̃
T

. In order to determine r, we use the stopping rule for principal component

analysis of the approximate factor model developed by Bai and Ng (2002). A number

of variants of the information criteria are given with the most popular statistic being:

ICp(r) = logσ̃2(r) + r
N + T

NT
ln[min(N, T )] (6.3)

whereσ̃2(k) = 1
NT

∑N
i=1 ẽ2

it and the tilda ( ) indicates estimation by PCA. The

number of factorsr for which this criterion is minimised gives the estimated number

of factorsr̃.

Given a matrixGt of m observed variables, we want to know if they are a linear

combination of ther latent variablesFt. Tests have been developed for testing each

variable ofGt singly and for testingGt as a group. Considering the single tests, each

variable ofGt may be an exact factor i.e.Gjt = δ′jFt∀t or an approximate factor

Gjt = δ′jFt + εjt∀t. Let δ̂j be the least squares estimate ofδj . Two tests have been
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developed for the exact case. LettinĝGjt =
ˆ

δ′jF̂t andτt(j) =
Ĝjt−Gjt

(var(Ĝjt)1/2)
, we count

the proportion of the time series for whicĥGjt deviates fromGjt by more thanφα, the

α percent critical value of the limiting distribution ofτt(j).

This gives the statistic

A(j) =
1

τ

τ∑
1

1(τ̂t(j) > φα) (6.4)

We also test how farĜjt is fromGjt using the statistic

M(j) = max1≤t≤T | τ̂t(j) | (6.5)

This is a more stringent test as it demands thatĜjt be close toGjt at every point in

time. Here,eit must be serially uncorrelated for the limiting distribution ofτt(j) to be

asymptotically normal.

In the approximate case, we use two goodness of fit statistics:

1. the noise to signal ratioNS(j) = ˆvar( ˆε(j))

ˆvar( ˆG(j))

2. the coefficient of determinationR2(j) = ˆvarĜ(j)
ˆvar(G(j))

Testing the groupGt as a set, the canonical correlations betweenGt andFt are

considered. The first canonical correlation,ρ1, is the largest correlation that can be

found for linear combinations ofGt andFt. The second canonical correlation,ρ2,

is the largest correlation that can be found from linear combinations ofGt and Ft

uncorrelated with those giving the first canonical correlation, and so on. Having to

estimateFt has no effect on the sampling distribution of the canonical correlations. For

k = 1, . . . , min[m, r] and(F ′
t , G

′
t)′ identically independently normally distributed,

(ρ2−
k , ρ2+

k ) = (ρ̃2
k − 2φα

ρ̃k(1− ρ̃2
k)√

T
, ρ̃2

k + 2φα
ρ̃k(1− ρ̃k)√

T
) (6.6)
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whereρ̃k is the kth canonical correlation betweenGt andF̃t. If all the m variables in

Gt are exact factors then the canonical correlations will all be unity. If the m variables

are linearly dependent then the number of non-zero canonical correlations will be less

than m. Any single variables inGt may be found to be exact or approximate factors

from the single tests but may be a linear combination of other observed variables as

indicated by the group tests.

Having identified the most appropriate exogenous factors to build into our model of

mortality we take the models of Girosi and King (2008) and its extension allowing for

exogenous variables (King and Soneji, 2011) as a starting point to build our epidemio-

logically informed model of mortality. Girosi and King (2008) developed a method of

modelling mortality rates across ages, years and countries which uses a Bayesian hi-

erarchical approach to information pooling. Their objective in doing this was to make

use of beliefs that data across neighbouring ages, years or countries should show sim-

ilar characteristics. For example, we might expect that the mortality rate experienced

by a 20 year old in a given year should be similar to that experienced by the 21 year old

or the 19 year old in the same year. Similarly, the mortality rate in say 2000, for a given

age should be similar to the mortality rate for that same age in 1999 or in 2001. The hi-

erarchical approach allows the smoothing of mortality rates for a single country across

ages and time and so produces realistic forecasts of mortality that do not break norms

in terms of age and time going forward (for example, mortality rates increasing with

age and improving in time). Considering the logarithmically transformed mortality

rate during year t for life aged x asmx,t they set out the following model specification:

mx,t ∼ N
(
µx,t,

σ2
x

bx,t

)
(6.7)

µx,t = Zx,tβx,t
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This specification only differs from a standard linear regression model in thebx,t

weighting that is applied to the variance and in the approach to defining the parameters

βx andσ2
x. The specification above provides the basic building block of the Bayesian

hierarchical approach in which we now interpret the coefficientsβx and standard de-

viationsσ2
x as random variables with their own prior distributions. The prior on the

coefficientsβx which depends on its own “hyper-parameter”θ is denotedP (β|θ) with

prior on the hyper-parameterP (θ). The prior for the variance random variableσis de-

notedP (σ). The functional form of the priors is chosen to be tractable and diffuse so

as not to influence the results with a gamma or inverse gamma density function being

used.

The prior for the coefficientβ is chosen to reflect the “similarity” belief across cross

sections. This is formalised by introducing a density function for the prior defined as:

P (β|θ) ∝ exp
(− 1

2
Hβ[β, θ]

)
(6.8)

where

Hβ[β, θ] ≡ 1

2

∑
si,j ‖ βi − βj ‖2

θ (6.9)

where the notation‖ βi − βj ‖2
θ denotes a weighted Euclidean norm and where the

symmetric matrix s is called the adjacency matrix.

It’s entries reflect the “proximity” of cross section i to cross section j and hence

the weight put on the relationship between the coefficients of cross section i and cross

section j. Using this approach the fitted model shows forecasts that are smooth in the

age and time dimension and that do not violate the smoothness beliefs across age and

time that “may” be violated by using multiple regression methods.

Linear regression provides a useful framework for including potentially informa-
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tive covariates, either a ‘cohort effect’ (e.g., a cohort’s earlier smoking patterns) or a

‘period effect’. Further by doing this within their model they also incorporate the em-

pirical regularities of smoothing by age and time imposed in this set-up. The method

used to develop their model with exogenous covariates was to identify links between

mortality rates and lagged covariates, specifically smoking habits and obesity. They

argue against using contemporaneous relationships in favour of lagged relationships

and from the literature determined the optimal lag period to be 25 years in the case

of smoking. They also argue that the additional forecasting step required to project

the exogenous variables would lead to additional uncertainty in the model. We argue

in this paper that this is not the case where the most appropriate covariates are first

identified by objective statistical criteria. Furthermore, although it may be appropri-

ate to use current data to determine future mortality in the case of smoking rates this

approach does not facilitate the inclusion of more contemporaneous variables such

as current GDP, health expenditure, alcohol consumption or diet. Therefore we at-

tempt to forecast these variables here while acknowledging better forecasts could be

obtained using more adequately specified structural models or more sophisticated sta-

tistical techniques.

In our model we forecast the identified exogenous variables using ARIMA meth-

ods and, taking the resulting forecasts, we build a model of mortality with exogenous

variables using the King and Soneji approach.

6.4 Results

6.4.1 Identifying exogenous factors

The pattern of mortality change over the last sixty years can be seen in figures 6.1-6.3

for the UK, US and Japan. Although not labelled, it can be inferred that mortality
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rates at younger ages are near the bottom of the graphs and older age mortality rates

at the top. A secular decline in mortality at all ages can be seen in each country. The

most noticeable differences between the graphs are at the younger ages. UK death

rates for those aged 20-40 are subject to more noisy fluctuations than those at other

ages. Figure 6.2 shows US mortality rates for these ages increasing gradually around

1970, decreasing over the next decade and increasing again around 1990. Younger

male mortality rates have decreased in Japan much more quickly than mortality rates

at older ages especially over the period 1950-1980.

We first of all try to get a sense of the latent factor structure of the mortality data

for males in each country over the fitting period 1970-2000. This shorter time period

was chosen due to data constraints imposed by the availability of suitable exogenous

variables. The number of factors is first determined and these factors are analysed to

check their association with younger or older age mortality variation.

Applying the stopping rule (equation 6.3) we find a similar factor structure for each

of the three countries: the estimated number of factors isr̂ = 2 for the UK and captures

86% of the variation in the data whilêr = 4 for the US and Japan capturing 98% of

the data variation in both cases. A Lee-Carter model with one factor or other early

derivatives of this model would be therefore inadequate to capture all the common

variation in the US and Japanese data while more recent multifactorial models such as

Plat (2009) or Cairns et al. (2006) would provide a factor structure of a more suitable

dimension for model fitting.

Before associating the factors extracted from the data with real-world trends, the

communality(the percentage of the variation explained) at each age is estimated and

graphed in figure 6.4. In US and Japan male mortality data, the four principal compo-

nents extracted explain almost all the variation in the data at every age. In the UK data,

older age mortality is also almost completely explained by the two principal compo-
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nents. However younger age mortality variation is only partially explained by common

factors and is subject to factors peculiar to particular ages or very small groups of ages

(as was mentioned above in relation to figure 6.2). Causes of death among younger

males in the UK are different at different ages with cancers and circulatory diseases

accounting for a large proportion of deaths among 35-39 year-olds while among 20-24

year-olds external causes such as transport accidents, suicides and violence are more

significant.2

The common factors extracted for each country tend to be associated with partic-

ular ages. From the factor loadings graphed in figures 6.5 and 6.6, we see that UK

and US factors are either associated with younger or older age mortality. For the UK

(figure 6.5) male mortality over 45 years of age is explained by factor 1 while the other

factor explains younger age mortality. From figure 6.6, it can be seen factors 1 and 3

explain US male mortality at older ages while the other two factors explain younger

age mortality. This would indicate that we need at least two types of exogenous factors

to explain the variation in mortality rates: perhaps lifestyle-related factors to explain

younger age mortality (e.g. alcohol consumption) and factors related to health treat-

ment improvements to explain older age mortality. Japanese mortality rates behave

differently with most factors not particularly associated with any particular ages ex-

cept perhaps factor 4 on which middle age mortality ages are more heavily loaded.

This would indicate that we require exogenous factors associated with mortality im-

provements at every age (e.g. income) or alternatively a large set of exogenous factors

which together explain each principal component extracted.

The proposed exogenous factors are graphed for each country in figures 6.8-6.13.

Alcohol consumption in the US and Japan has peaked and declined while it continues

to increase in the UK. The US decline although not exactly concurrent with declines

2See for example mortality data for 2000 in Office for National Statistics (UK), Mortality Statistics,
Series DH2 No. 27. Table 3
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in younger age mortality observed in figure 5 suggest a possible explanation for trends

there. Even at 2000 levels, UK annual consumption at 10.4 litres of pure alcohol

per capita was moderate compared to other countries in the OECD - Luxembourgers

consumed 15.4 litres per head in the same year - although the more harmful pattern of

binge drinking is more common among young adults in the UK that in many countries

(Kuntsche et al., 2004).

Smoking decline (figure 6.9), economic growth (figure 6.12) and steep increases

in health expenditure (figure 6.13) may explain declines in mortality at all ages for

all countries. Diets have been improving in the UK with less fat and more fruit and

vegetables being consumed. The opposite is true in Japan with fruit and vegetable

consumption declining slightly and fat intake increasing dramatically although it was

still second lowest in the OECD in 2000. Good diet behaviours have been negated by

bad ones in the US with both more fat and fruit and vegetables being consumed.

Each of the proposed exogenous determinants of mortality are, in turn, compared

to the principal components extracted from the data using the statistical tests outlined

in 6.4 and 6.5. Results for the UK are given in Table 2. None of the proposed ex-

ogenous determinants is an exact factor using the A(j) statistic which should be 5%

if factor j is an exact factor. Health expenditure per capita comes closest to being a

linear combination of the extracted principal components with A(j) = 0.484. The A(j)

statistic allows the relationship between the exogenous determinants of mortality and

the latent factors not to hold at some points in time. The M(j) statistic is a stronger

test and requires that at every point in time the relationship must hold within a small

degree of error. Using a 5% significance level with T=50 the critical value is 3.28.

Not surprisingly the test rejects all of the proposed factors. Bai and Ng (2006) note

that if anything both tests are underpowered so we can safely conclude that none of

the proposed factors are exact factors. Allowing for a close relationship between pro-
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posed factors and latent factors as opposed to an exact relationship is more realistic

where variables are measured with error, the statistical indicators do not reflect the

underlying construct accurately, the relationship might not be exactly linear or the re-

lationship might be moderated by other factors. The goodness of fit statisticR2(j) and

the noise to signal ratio (NS(j)) indicate how far the proxies are from the true factors.

Bai and Ng suggest that if NS(j)> 0.5 and/or R2(j) < 0.95 then errors in the linear

relationship between the proposed factors and the latent factors are non-negligible and

the proposed factors are not strong proxies for the latent factors. According to these

measures, Health expenditure per capita and GDP per capita are particularly strong

proxies and Total fat intake is a particularly poor proxy. Of course, numerous studies

have found cointegration between national income and health expenditure (Freeman,

2003; Westerlund, 2007; Moscone and Tosetti, 2010) and using the two variables may

provide little extra information than simply using one.

The squared canonical correlations are given in the final column. The first value

indicates that there is a linear combination of the proposed proxies and a linear combi-

nation of the two latent factors that are highly correlated. The second value indicates

that any linear combinations orthogonal to those already found are much less cor-

related (the confidence interval for the second canonical correlation almost includes

zero). There is therefore only one well-defined relation between the two sets and the

set of six proxy factors as a whole does not span the latent factor space. As both GDP

per capita and health expenditure per capita are both individually highly associated

with the latent factors either variable can be used to improve forecasting models.

The results for the US are given in Table 6.4. None of the proposed exogenous

determinants is an exact factor A(j) - alcohol consumption followed by health expen-

diture per capita are closest to being exact factors according to both the A(j) and M(j)

statistics. The importance of alcohol consumption in the US contrasts with its rela-
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tive unimportance in explaining variations in the UK mortality data. This bears out

the correlation noted above between variations in US younger age morality and alco-

hol consumption. Allowing for some deviation between the observed variables and

the latent factors (columns 4 and 5) and using the rule from before, Health expendi-

ture, Tobacco consumption, Alcohol consumption and GDP are all strong proxies for

the four latent factors. However, the set of six proposed factors does not span the la-

tent factor space as there are only two well-defined relations. The squared canonical

correlations between the latent factors and a set of just the two variables Alcohol con-

sumption and Health expenditure per capita are 0.997 and 0.934 suggesting that little

is gained by adding the extra four variables. For the purposes of forecasting, these two

variables - one a lifestyle variable and the other a medical care variable - appear to

be strongly associated with mortality trends and are sufficiently orthogonal to provide

distinct forecasting power.

In the case of Japan (Table 6.6), none of the proposed exogenous determinants is

an exact factor. Almost all the variables except tobacco consumption and fruit and

vegetable consumption are strong proxies for the four latent factors. This finding is in

keeping with figure 6.7 where a more complicated latent factor structure than for the

other two countries was observed. Nevertheless, the set of factors considered does not

encompass the latent factor structure. There are two well-defined relations between

proxies and latent factors although the third canonical correlation is large. As health

expenditure and GDP cointegrate, the three variables - alcohol consumption, fat intake

and health expenditure - provide an appropriate basis for forecasting models. This set

has squared canonical correlations of 0.995, 0.851 and 0.416 with the latent factors

which when compared to column 6 of Table 6.6 indicates some information is lost by

focusing on this smaller subset.

Although we have actual values of all potential covariates for 2001-06 we decided
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that using predictions of these values would make a fairer assessment of any gains in

forecastibility. Forecasts were made using the Box-Jenkins methodology. The usual

approach of deciding on the number of auto-regressive (AR) and moving average pa-

rameters (MA) using information criteria gives poor forecasts. The inclusion of mov-

ing average terms generally tends to worsen forecasts. We presume that a researcher

would realise this in practice by testing their model. Therefore, the Schwarz infor-

mation criteria were used to decide between models with various AR terms. As GDP

is generally found to be non-stationary (e.g. Westerlund, 2007), this variable was

first-differenced and consequently health expenditure per capita also. In summary,

the ARIMA(p,d,q) models were UK GDP (2,1,0), US health expenditure (1,1,0), US

Alcohol (3,0,0), Japan health expenditure (0,1,0), Japan alcohol (1,0,0) and Japan fat

(1,0,0). Assessing prediction errors post-hoc, these models did not necessarily pro-

vide the best forecasts but reflect the level of uncertainty encountered in practice. This

approach is not dissimilar to forecasting the common factor with ARIMA in Lee and

Carter (1992) and making mortality forecasts conditional on these forecasts.

Taking the predicted exogenous factors we apply the King and Soneji (2011) ap-

proach to forecast mortality rates. We do this using the YourCast software developed

by Girosi and King3. For U.K. we use GDP as the only exogenous variable to be

built into the model while for the U.S. heath expenditure and alcohol consumption

are used. Finally for Japan we use health expenditure, alcohol consumption and fat

intake. We present the fitting and forecasting results of our model in tables 5-10, for

the U.S., U.K., and Japan. We also present the results of fitting and forecasting the

mortality data using the models of Lee Carter(1992), CBD(2006) and the Girosi and

King (2008) model with no exogenous variables for comparison. For a given mortality

rate at time t and for age x (mx,t), we measure the fitting and forecasting quality using

3For more details on the YourCast software used in this study and developed by King and Soneji go
to http://www.gking.harvard.edu/yourcast.
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the three measures E1, E2 and E3 outlined below taking the standardized error to be

Errorx,t =
projected(mx,t)− actual(mx,t)

projected(mx,t)

(i). The average error, E1 – this equals the average of the standardized errors i.e.

E1 =
1

X1 −X2 + 1

X2∑
x=X1

T∑
t=1

Errorx,t (6.10)

This is a measure of the overall bias in the projections.

(ii). The average absolute error, E2 – this equals the average of absolute value of

the standardized errors i.e.

E2 =
1

X1 −X2 + 1

X2∑
x=X1

T∑
t=1

|Errorx,t| (6.11)

This is a measure of the magnitude of the differences between the actual and pro-

jected rates.

(iii). The standard deviation of the error, E3 – this equals the square root of the

average of the squared errors,

E3 =
√ 1

X1 −X2 + 1

X2∑
x=X1

T∑
t=1

(Errorx,t)
2 (6.12)

This is the root mean square of the standardized errors.

The results for the full 20-89 age range are presented in tables 6.8-6.10 (forecasting

results) and 6.11-6.13 (fitting results). We first comment on the comparison of atheo-

retical models ignoring the use of exogenous variables and then secondly on the value

added by incorporating epidemiological information in the King and Soneji model fo-

cusing on the forecasting results.
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6.4.2 Forecasting results

The most important point to note is that our technique, using forecast exogenous vari-

ables in a structured model (labelled King and Soneji in Tables 6.8-6.10) performs

best across all the countries in the study and using all three measures of fit quality. The

improvement over the atheoretical models of Lee Carter and Girosi and King is of the

order of 1-2% for the U.K. and the U.S irrespective of error measure and 4-4.5% for

Japan. The CBD model performs particularly badly over the 20-89 age range but this

was already noted by Cairns et al (2006) where the model is only fitted to older age

ranges.

The three measures E1, E2 and E3 are measuring differing aspects of the forecast-

ing and fitting quality. E1 measures the level of bias seen in the forecast whereas E2

and E3 measure the level of spread seen in the forecast with E3 only differing from E2

in the significance placed on outliers. When looking at the forecasting results on E1,

the level of bias is seen to be lower in the King and Soneji model than in the atheo-

retical models. The difference when compared with Lee Carter in the case of Japan is

particularly marked at 3.8% (Table 6.10). In some cases the measures for E1 and E2

are the same suggesting that the fitted mortality rates for some models and some coun-

tries are overestimated for every age and every year. This indicates that true mortality

rates are improving at a faster rate than the atheoretical models can accommodate and

suggests that perhaps using a logarithmically transformed mortality rate is no longer

sufficient to linearize the data before applying these types of models.

In most cases the Girosi and King method outperforms the Lee Carter model. In-

deed for the Japanese case, the Girosi and King model results in poorer forecasts when

compared with the Lee Carter model (E1-E3 in Table 6.10). This may be due to the

more complex factor structure of the Japanese data and the associated cost in terms

of fit quality when applying the smoothing method employed by the Girosi and King
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methods.

Table 6.10 which shows results for Japan would indicate that the improvement in

forecasting quality appears to be more pronounced where we have been able to identify

more exogenous variables to explain the latent factor structure. The statistical analy-

sis identified three exogenous variables to explain the latent factor structure and the

improvement in forecasting over the next best model (Lee Carter) is 3.9% on E2 and

4.3% on E3. In the case of the U.K. (Table 6.8) where the statistical analysis identified

only one exogenous variable to explain the latent factor structure the improvement in

forecasting over the next best is more modest at 1.1% on E2 and 0.9% on E3. With

more data and a bigger spanning set of exogenous variables we may be able to repeat

the superior performance shown in the Japanese case for the U.K. and U.S. as well as

other countries not considered here.

Looking at figures 6.14-6.16, where we exclude the CBD model due to its poor per-

formance, we can see the fitted (from 1970-2000) and forecast (2001-2006) mortality

rates for each of the models considered in this paper along with the actual mortality

rates. The first point to note is that we can see a high level of volatility in the actual

mortality rates (the solid bold lines) for 20 and 40 year olds. The profile for 60 and

80 year olds is less volatile perhaps due to larger numbers of deaths. In each case

the Lee Carter model (the solid line with “x” symbols) appears to overestimate the

mortality rate and this is particularly pronounced in the case of Japan (see Figure 16a

for example). The Girosi and King model appears to underestimate mortality rates for

most countries particularly where there has been an upward trend in the most recent

mortality experience (Figure 15a). This can be attributed to the smoothing mechanism

of the Girosi and King specification. Incorporating exogenous variables in our model

rectifies some of this underestimation. A particularly good example of our approach

improving upon the Girosi and King approach is for younger age mortality where the
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inclusion of exogenous variables substantially corrects for underpredictions leading to

very accurate forecasts (Figures 14b and 15a). This is possibly due to the fact younger

age mortality shows less common variation with mortality at older ages and is more re-

sponsive to trends in lifestyle behaviours. A more detailed analysis of the performance

of the King and Soneji model at each individual age and year (not shown) shows it

gives the most accurate forecasts for the middle-ages, 30-60 years of age, for the U.K.

and this is consistent across all measures of fitting quality. For the U.S. the story is dif-

ferent, where here the forecasting performance is superior mainly over the older ages.

In Japan where we had the largest set of exogenous determinants, performance is su-

perior across many young and many older ages. This would indicate that the larger the

set of exogenous variables identified the broader the age range over which forecasts

are better.

6.4.3 Fitting results

Turning to the fitting results (Tables 6.11-6.13) our model is generally superior across

all measures of fit quality but not across all countries. The exceptions are the UK

where the fit is poorer on all error measures and U.S. where fit is worse on measure E1.

Looking at the fitting quality of the Girosi and King approach against the Lee Carter

model and the CBD model, it can be seen that the Girosi and King model shows less

bias (shown by the lower value of E1) for all three countries considered in the study.

However, the Girosi and King model shows a poorer fit quality for all three countries

measured on the E2 and E3 measures (e.g. 0.4% worse on E2 and 0.2% on E3 for the

UK). This can be explained by the smoothing mechanism in the Girosi and King model

which improved smoothness at the cost of a more accurate fit. Finally, when we include

forecast exogenous variables the fit is improved. For example, comparing the King and

Soneji model with Girosi and King for Japan there is much less bias (0.07% compared
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with 0.24%) and forecasts show less variation around the actual realised mortality rates

(the E2 measured is reduced by 2.1% and E3 is reduced by 2.6%). The improvement

in fit would be expected for a model with a greater number of explanatory variables.

However an overparameterised model will not necessarily give better forecasts. That

we have found improved forecasts by incorporating additional exogenous variables

indicates that this approach has merit.

6.4.4 Robustness

As mentioned above in section 4.1, figures 6.5-6.7 indicate that in all three countries

mortality among those 40 and over share a common latent factor while mortality rates

among those under 40 share common drivers distinct from those at older ages. It

therefore would seem appropriate to consider mortality at older ages separately to see

if forecast can be further improved in this age range. The drawback of using a narrower

age range is that common factors are estimated on fewer variables and the results of

Bai and Ng (2002 and 2006) are only true asymptotically.

Conclusions from the latent factor analysis on ages 40-89 are very similar to the

analysis based on the age range 20-89 (not shown). For the UK as before, none of the

proposed exogenous determinants is an exact factor and income and health expenditure

are again identified as suitable proxies for the true factors. The squared canonical

correlations indicate only one well-defined relation between the two sets and either

GDP per capita or health expenditure per capita can be used to improve forecasting

models. For the US, health expenditure per capita is found to be an exact factor and

alcohol, tobacco and income are strong proxies. There are two-well defined relations

between the proxies and the latent factor space although the third canonical correlation

is larger than before at 0.577. The squared canonical correlations between the latent

factors and just the two variables Alcohol consumption and Health expenditure per
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capita are 0.998 and 0.882 suggesting that little is gained by adding the extra four

variables. In the case of Japan, the stopping rule indicates the factor structure has one

more factor than before i.e. five factors. None of the proposed exogenous determinants

is an exact factor and the same set of strong proxies as before is identified: Alcohol,

Fat, GDP and Health Expenditure. Canonical correlations indicate two well-defined

relations with the third bigger than before at 0.801 (compared to 0.786 in Table 6.6).

The three variables alcohol consumption, fat intake and health expenditure therefore

provide an appropriate basis for forecasting models.

The forecasting performance of the King and Soneji model is still generally su-

perior to the atheoretical models considered except in the US where Girosi and King

is best on all error measures (Tables 6.14-6.16). This may be due to the econometric

limitations of applying techniques developed for datasets of large number of variables

to narrow age ranges. Nevertheless for the UK and particularly Japan, the inclusion of

exogenous factors improves forecasts on this age range. Results for the CBD model

are dramatically improved but still inferior to all other models for the US and Japan.

6.5 Conclusion

In this paper we have taken an econometric approach recently developed in macroe-

conomics and finance to develop links between the latent factor structure of mortality

data and observable factors. We have employed stopping rules to manage the number

of factors and so avoid overfitting models. We explain the latent factors by comparing

with exogenous factors deemed plausible by health economics and epidemiological

literature. The techniques employed in this paper are novel to this literature although

well known as an econometric method. The incorporation of the identified exogenous

factors into mortality models are seen to robustly improve forecasts.
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We focus on data from the U.S., U.K. and Japan and note that in each of the cases

that a differing number of exogenous variables seem to explain the mortality variation

in each case. In the case of U.K. we identify one exogenous economic factor; for the

U.S., 2 factors are identified - one related to medical care and the other to lifestyle

and finally for Japan, we identify 3 factors - two related to lifestyle and the other to

medical care. We look at both 20-89 and 40-89 age ranges and note that the same

exogenous variables are identified in each case as being significant. We forecast these

exogenous factors using ARIMA methods and apply a model which incorporates these

exogenous factors using the methods of King and Soneji. Using our approach forecasts

can be dramatically improved over the standard atheoretical models.

Further work will involve expanding the set of the exogenous variables that could

be useful in explaining mortality variation ; using age-specific variables instead of

aggregate measures ; considering the inclusion of lagged variables where appropriate

and considering the ability of the model over a longer term forecasting period. Also,

the application of the semi-parametric estimation approach of Connor et al. (2011)

in this context would allow us to unite the identification of exogenous variables and

estimation of the latent factor model in one step.
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6.6 Appendix: Additional Figures and Tables

Figure 6.1: UK male crude mortality rates, 1950-2009 (log scale)

Figure 6.2: US male crude mortality rates, 1950-2009 (log scale)
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Table 6.1: Descriptive statistics, 1970-2000 (in order UK, US and Japan)
Mean Standard

Deviation
Definition

Alcohol (UK) 9.3
(US) 9.5
(Japan) 7.8

0.6
0.8
1.0

Annual consump-
tion of pure alcohol
in litres, per per-
son, aged 15 years
and over

Tobacco 2349
2645
3227

516
667
147

Annual con-
sumption of
tobacco items (eg
cigarettes, cigars)
in grams per person
aged 15 years and
over

Fat 138.9
133.5
73.1

3.0
10.0
8.9

Total fat (grams per
capita per day)

Fruit & Veg 151.8
219.7
173.1

14.3
17.6
8.8

All fruit and veg-
etable consumption
(except wine) in ki-
los per capita

GDP 11896
25420
2,994,819

2275
4712
707,685

Gross domestic
product per capita
in national cur-
rency units at 2000
price levels

Health exp 712
2787
191,957

222
1098
63,732

Total health ex-
penditure (private
and public) per
capita in national
currency units at
2000 price levels
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Table 6.2: Testing the factors in UK male crude mortality rates by single age 20-89,
1970-2000

Gj A(j) M(j) R2(j) NS(j) ρ̂(k)2

Alcohol 0.839 49.14 0.546 0.832 0.991
(0.310, 0.782) (0.987, 0.997)

Tobacco 0.871 24.62 0.809 0.236 0.323
(0.688, 0.930) (0.052, 0.594)

Fat 0.645 26.43 0.313 2.195 -
(0.042, 0.584)

Fruit & Veg 0.871 28.02 0.815 0.227 -
(0.698, 0.933)

GDP 0.645 10.43 0.967 0.035 -
(0.944, 0.990)

Health exp 0.484 14.80 0.970 0.031 -
(0.949, 0.991)

Table 6.3: A(j) is the frequency that|τ̂t(j)| exceeds the 5% asymptotic critical value.
M(j) is the value of the test.R2 is defined in 6.5, NS(j) defined in 6.4 andρ̂(k)2 is the
vector of canonical correlationsGt with respect toFt.

Table 6.4: Testing the factors in US crude mortality rates by single age 20-89, 1970-
2000

j A(j) M(j) R 2(j) NS(j) ρ̂(k)2

Alcohol 0.323 5.94 0.976 0.024 0.999
(0.960, 0.993) (0.998, 1.000)

Tobacco 0.710 7.53 0.991 0.009 0.951
(0.984, 0.997) (0.918, 0.985)

Fat 0.806 25.82 0.911 0.098 0.366
(0.850, 0.971) (0.096, 0.636)

Fruit & Veg 0.935 44.99 0.878 0.139 0.130
(0.798, 0.959) (-0.091, 0.352)

GDP 0.806 14.56 0.975 0.025 -
(0.958, 0.992)

Health exp 0.419 5.20 0.997 0.003 -
(0.994, 0.999)

Table 6.5: A(j) is the frequency that|τ̂t(j)| exceeds the 5% asymptotic critical value.
M(j) is the value of the test.R2 is defined in 6.5, NS(j) defined in 6.4 andρ̂(k)2 is the
vector of canonical correlationsGt with respect toFt.
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Table 6.6: Testing the factors in Japan crude mortality rates by single age 20-89, 1970-
2000

j A(j) M(j) R 2(j) NS(j) ρ̂(k)2

Alcohol 0.484 9.494 0.978 0.023 0.995
(0.962, 0.993) (0.992, 0.999)

Tobacco 0.484 6.893 0.804 0.244 0.938
(0.680, 0.928) (0.895, 0.980)

Fat 0.581 8.961 0.992 0.008 0.786
(0.986, 0.998) (0.652, 0.919)

Fruit & Veg 0.839 39.868 0.795 0.258 0.310
(0.666, 0.924) (0.039, 0.580)

GDP 0.484 8.338 0.993 0.007 -
(0.988, 0.998)

Health exp 0.548 7.130 0.992 0.008 -
(0.987, 0.998)

Table 6.7: A(j) is the frequency that|τ̂t(j)| exceeds the 5% asymptotic critical value.
M(j) is the value of the test.R2 is defined in 6.5, NS(j) defined in 6.4 andρ̂(k)2 is the
vector of canonical correlationsGt with respect toFt.

Table 6.8: Forecasting results for the U.K. for ages 20-89 and years 2001-2006
Model E1 E2 E3
Lee Carter 10.60% 10.65% 13.92%
Girosi and King 10.35% 10.36% 12.41%
CBD 18.85% 20.91% 27.78%
King and Soneji 9.25% 9.25% 11.55%

Table 6.9: Forecasting results for the U.S. for ages 20-89 and years 2001-2006
Model E1 E2 E3
Lee Carter 8.27% 8.33% 11.16%
Girosi and King 7.46% 7.70% 10.22%
CBD 13.35% 15.33% 23.15%
King and Soneji 6.66% 7.02% 8.84%

Table 6.10: Forecasting results for Japan for ages 20-89 and years 2001-2006
Model E1 E2 E3
Lee Carter 8.58% 8.58% 10.26%
Girosi and King 8.79% 8.79% 11.50%
CBD 14.31% 16.19% 23.41%
King and Soneji 4.73% 4.73% 6.01%
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Table 6.11: Fitting results for the U.K. for ages 20-89 and years 1970-2000
Model E1 E2 E3
Lee Carter 0.25% 3.50% 4.90%
Girosi and King 0.14% 3.90% 5.13%
CBD -0.08% 14.42% 21.86%
King and Soneji 0.12% 3.76% 4.94%

Table 6.12: Fitting results for the U.S. for ages 20-89 and years 1970-2000
Model E1 E2 E3
Lee Carter 0.33% 3.83% 5.78%
Girosi and King 0.04% 4.12% 5.99%
CBD -2.26% 13.50% 19.62%
King and Soneji -0.09% 2.55% 3.40%

Table 6.13: Fitting results for Japan for ages 20-89 and years 1970-2000
Model E1 E2 E3
Lee Carter 0.39% 3.86% 5.05%
Girosi and King 0.24% 4.99% 6.46%
CBD -6.39% 13.31% 20.68%
King and Soneji 0.07% 2.94% 3.85%

Table 6.14: Forecasting results for the U.K. for ages 40-89 and years 1970-2000
Model E1 E2 E3
Lee Carter 10.96% 10.96% 13.95%
Girosi and King 10.67% 10.67% 12.24%
CBD 10.49% 10.49% 13.17%
King and Soneji 9.20% 9.20% 10.38%

Table 6.15: Forecasting results for the U.S. for ages 40-89 and years 1970-2000
Model E1 E2 E3
Lee Carter 6.39% 6.39% 7.70%
Girosi and King 5.40% 5.40% 6.97%
CBD 9.08% 9.08% 10.71%
King and Soneji 5.72% 5.72% 7.52%



Table 6.16: Forecasting results for the Japan for ages 40-89 and years 1970-2000
Model E1 E2 E3
Lee Carter 8.29% 8.29% 9.71%
Girosi and King 6.09% 6.09% 8.05%
CBD 9.45% 9.45% 11.03%
King and Soneji 4.84% 4.84% 6.21%

Figure 6.3: Japan male crude mortality rates, 1950-2009 (log scale)

Figure 6.4: Proportion of variance explained by principal component extraction (com-
munality) by age for male crude mortality rates, 1970-2000
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Figure 6.5: Rotated factor loadings by age for UK male crude mortality rates, 1970-
2000.

Figure 6.6: Rotated factor loadings by age for US male crude mortality rates, 1970-
2000
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Figure 6.7: Rotated factor loadings by age for Japan male crude mortality rates, 1970-
2000.

Figure 6.8: Alcohol consumption - Liters per capita (15+)
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Figure 6.9: Tobacco consumption - Grammes per capita (15+)

Figure 6.10: Total fat intake - grammes per capita per day
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Figure 6.11: Fruit and Vegetables consumption - kilos per capita

Figure 6.12: Gross domestic product per capita at constant prices (1970 = 100)
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Figure 6.13: Total expenditure on health per capita at constant prices (1970=100)
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Figure 6.14: U.K. mortality rates fitted between 1970-2000, and forecast from 2001-
2006 for the Lee Carter,(black with “x”’s), Girosi and King (green), King and Soneji
(blue) models and actual mortality rates 1970-2006 (red) for males aged (a) 20, (b) 40,
(c) 60 and (d) 80
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Figure 6.15: U.S. mortality rates fitted between 1970-2000, and forecast from 2001-
2006 for the Lee Carter,(black with “x”’s), Girosi and King (green), King and Soneji
(blue) models and actual mortality rates 1970-2006 (red) for males aged (a) 20, (b) 40,
(c) 60 and (d) 80

1970 1975 1980 1985 1990
4

6

8

10

12

14
x 10

−4 (a)

1970 1975 1980 1985 1990
1

1.5

2

2.5

3

3.5
x 10

−3 (b)	

1970 1975 1980 1985 1990
0.005

0.01

0.015

0.02
(c)

1970 1975 1980 1985 1990
0.04

0.06

0.08

0.1

0.12

0.14
(d)

Figure 6.16: Japanese mortality rates fitted between 1970-2000, and forecast from
2001-2006 for the Lee Carter,(black with “x”’s), Girosi and King (green), King and
Soneji (blue) models and actual mortality rates 1970-2006 (red) for males aged (a) 20,
(b) 40, (c) 60 and (d) 80
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Chapter 7

Conclusions

The field of mortality risk and longevity risk and in particular the accurate forecasting

and financial management of such risks has become a topic of great interest to aca-

demics, actuaries and financial professionals. As individual life expectancies continue

to improve and the era of low equity returns and low interest rates persists the cur-

rent mechanisms for providing adequate coverage for individuals in their later years

are coming under strain. In addition the development of financial hedging products

has enabled many financial risks to be laid off and has exposed longevity risk as ar-

guably the most significant un-hedged risk in the developed world. The new visibility

of longevity risk and the constraint capacity of insurance firms and pension providers

to accommodate it has led to a need and desire to create innovative ways to lay this

risk off to new parties, namely the capital markets. This has resulted in the area of

longevity becoming a key new growth area for the capital markets who are designing

the products to be able to isolate, transfer and manage this risk.

Essential to the desire to create mechanisms to transfer longevity risk is the need

to accurately forecast mortality rates. This will ensure that new products are priced

appropriately and that a transparent market with willing sellers and buyers of the risk
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can emerge. Current research in mortality modelling does not prioritise the forecasting

of mortality rates, instead it focuses on providing models that give a best fit to the

data and on providing adequate short term forecasts. It also focuses on statistical,

extrapolative time-series methods rather than engaging with the socio-economic and

epidemiological factors that may be causing mortality improvements.

In this thesis I contribute to the existing literature on modelling mortality rates with

several papers in the broad areas of extrapolative modelling and socio-economic and

epidemiologically informed modelling of mortality rates.

In chapter 2 of the thesis I identify and addressed a limitation of the Plat (2009)

model and previous stochastic mortality models. This limitation is in the inability of

existing models to adequately fit mortality rates at the lower ages due to the non-linear

dynamics at the lower ages, the so calledlifestylemortality profile. I have designed

a new 4 factor extrapolative model which is demonstrated to have better fit and fore-

casting ability on a wider age range (5-89). The results of the analysis exposed the

weakness of previous models when trying to fit to non-linear features of the data and

showed that a more non-linear flexibility was needed to capture the mortality profile,

particularly at lower ages.

In chapter 3 of the thesis I look to the macro-economic forecasting research and

develop an alternative approach to modeling and forecasting mortality rates using a

method of Forniet al. The method is shown to give superior forecasts to many of the

standard stochastic mortality models that form the basis of longevity hedging products.

In particular the longer term forecasts were far superior. By focusing on the forecasting

quality of the model using out of sample comparisons we can conclude that existing

multifactorial models give poor forecasting performance and even with the simplest of

specifications the dynamic model outperformed the existing models of mortality.

In chapter 4 of the thesis the issue of structural breaks in mortality trends is con-



CHAPTER 7. Conclusions 201

sidered. Focusing on several of the leading extrapolative models of mortality rates

and applying the methods of Bai and Perron (2003) I test for the presence of struc-

tural breaks in the model specifications. By testing the model residuals in each case

I found that there was indeed a breakpoint visible in the residuals falling somewhere

in the 1970’s reaffirming previous demographic research. I then carry out the fore-

casting process again making allowance for the structural breaks identified with the

results showing that in nearly two-thirds of cases the model allowing for structural

breaks provided a more accurate forecast of mortality. These findings are significant

in highlighting the importance of the sample period when fitting a model to mortality

data.

In chapter 5 of the thesis the geographical variation of mortality is considered us-

ing socioeconomic explanatory factors in Northern Ireland data. Using a general to

specific analysis we identified some differences between the males and females in our

study, in terms of the covariates that proved to be significant in explaining the variation

in mortality rates. In the case of males we identified that age standardised mortality

rates could best be explained by the variation in healthcare, environment and polit-

ical polarisation (through income and education). This suggests that the combined

effect of living in a densely populated catholic (or protestant area) with poor education

and income levels has an impact on mortality rates for males. In the case of females

we identified that employment, healthcare and environment are important factors in

explaining mortality rates. In both cases of males and females the quality of the im-

mediate environment (heating, double glazing etc.) appeared to be a significant factor

in explaining mortality rate variation.

To assess the ability of geographical location to explain mortality rates and the

proposition that age standardised mortality rates may show some geographical clus-

tering, models including independent frailties and spatial frailties were fitted to the
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data. When we allowed for independent frailties we found some improvement in the

fit measured on a deviance information criteria despite the additional parameterisation.

However when we fit a spatial structure to the data the information criteria was not im-

proved. We conclude that there is little evidence of spatial clustering in mortality rates

in Northern Ireland.

Finally we considered the case of frailties when we have little or no socio-economic

data available. In this case we seen again that with the inclusion of independent frailties

the fit can be improved using a DIC measure and in this case the improvement is more

dramatic which is to be expected since there is a larger unexplained element to the

mortality rates. This supports the view that there is a place for geographical location

data when we have limited other socio-economic data. The results showed that there

is a place in mortality modeling for socio-economic characteristics.

Finally, in chapter 6 of the thesis we took an econometric approach recently devel-

oped in macroeconomics and finance to develop links between the latent factor struc-

ture of mortality data and observable (socio-economic and epidemiological) factors.

We employed stopping rules to manage the number of factors and so avoided over-

fitting models. We explained the latent factors by comparing with exogenous factors

deemed plausible by health economics and epidemiological literature. The techniques

employed in the paper were novel to the mortality literature although well known as

an econometric method. The incorporation of the identified exogenous factors into

mortality models were shown to robustly improve forecasts.

We focused on data from the U.S., U.K. and Japan and noted that in each of the

cases a differing number of exogenous variables seemed to explain the mortality vari-

ation. In the case of U.K. we identified one exogenous economic factor; for the U.S.,

2 factors were identified - one related to medical care and the other to lifestyle and

finally for Japan, we identified 3 factors - two related to lifestyle and the other to med-
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ical care. We looked at both 20-89 and 40-89 age ranges as a robustness check and

found that the same exogenous variables were identified in each case as being sig-

nificant. We forecasted these exogenous factors using ARIMA methods and applied

a model which incorporated these exogenous factors using the methods of King and

Soneji. Using this approach forecasts were shown to be dramatically improved over

the standard atheoretical models.





Chapter 8

Practical impact of findings

The research carried out in this thesis deals with the issue of accurately forecasting

mortality rates. This is of enormous importance to the actuarial profession which was

founded on the basis of mathematically pricing mortality risk through annuities. The

first mortality tables were created using historic data and assuming that future lifetimes

would continue to experience the same mortality risk as previous lives had.

The actuarial profession has published reports, working papers and updated mor-

tality tables since the early 1970’s through the Continuous Mortality Investigation

(C.M.I.). These have been based on pension and insurance data gathered from its

members and were designed to give actuaries a base from which to make their own

judgements regarding the mortality experience to apply when advising their own par-

ticular clients. The tables created were deterministic in nature with the actuary hav-

ing the ability toage ratethe tables to better fit the particular client experience. In

more recent years the C.M.I. have created projection models (CMI2009, CMI2010

and CMI2011)1 which enable the actuary to create their own mortality forecasts by ad-

1These can be found in working papers 41, 49 and 55 or athttp:
//www.actuaries.org.uk/research-and-resources/pages/
continuous-mortality-investigation-mortality-projections .
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justing some of the key parameters in the model. The structure of the model is a blend

between short term current and immediate past mortality improvement rates and the

expert judgement of the long term mortality improvement rate. In this way the model

allows the actuary to retain some autonomy with regards to their beliefs about the long

term rate of improvement in mortality that the actuary might expect. The model cur-

rently does not provide the facility to input any factors relating to socio-economic or

epidemiological aspects and more importantly it does not have the facility to provide

fan charts of mortality projection uncertainty.

The mortality market is currently in a phase of rapid change as, on the one hand,

more parties work to innovate around the management of mortality and longevity risk,

and on the other defined benefit pension schemes close and move their liabilities to

life insurance companies amongst others. This is leading to a need to develop more

accurate longer forecast mortality models as parties begin to trade on the price of mor-

tality itself. The closure of many defined benefit schemes also provides an opportunity

to improve the efficiency with which pension scheme valuations are carried out. The

reduced data administration requirements with closed schemes should allow firms to

better automate many of the processes involved in scheme valuation.

The chapters presented in this thesis contribute to the field by providing evidence

of the importance of socio-economic and epidemiological variables and by providing

a framework for the incorporation of them in a projection model of mortality. All the

models presented in the thesis have the ability to provide forecasts which incorporate

levels of uncertainty which can then also be communicated to the client. The methods

used are more innovative than current C.M.I. research by incorporating explanatory

variables and by demonstrating superior longer term forecasts, an important consider-

ation for mortality risk.

The models developed in this thesis are currently being applied to a stochastic pen-
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sion valuation tool that is being developed jointly between myself and a local actuarial

employer to be able to provide an integrated data management and stochastic valuation

platform which has the potential to redefine the pension scheme valuation landscape.

The tool when developed will provide immediate, stochastic simulation results of pen-

sion scheme liabilities using stochastic mortality modelling combined with stochastic

economic scenario generation to provide a distribution of funding levels with associ-

ated confidence from an online platform. this is one example of the application of the

work in this thesis.
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